首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T. Hori  Ø. Moestrup 《Protoplasma》1987,138(2-3):137-148
Summary While green algae usually lack one of the outer dynein arms in the axoneme, flagella of the octoflagellated prasinophytePyramimonas octopus possess dynein arms on all peripheral doublets. The outer dynein arm on doublet no. 1 is modified, and additional structures are associated with doublets no. 2 and 6. The flagellar scales are asymmetrically arranged. Thus the two rows of thick flagellar hairscales are displaced towards doublet no. 6,i.e., in the direction of the effective stroke of each flagellum. The underlayer of small scales includes two nearly opposite double rows scales, arranged in the longitudinal direction of the flagellum. The hairscales emerge from these rows. The double rows are separated on one side by 9, on the other by 11 rows of helically arranged scales. The central pair of microtubules twists, but the axoneme itself (represented by the 9 peripheral doublets), does not seem to rotate. The flagella are arranged in two groups, showing modified 180° rotational symmetry. The effective strokes of the two central flagella are exactly opposite, while the other flagella beat in six intermediate directions.  相似文献   

2.
The Geometric Clutch hypothesis is based on the premise that transverse forces (t-forces) acting on the outer doublets of the eukaryotic axoneme coordinate the action of the dynein motors to produce flagellar and ciliary beating. T-forces result from tension and compression on the outer doublets when a bend is present on the flagellum or cilium. The t-force acts to pry the doublets apart in an active bend, and push the doublets together when the flagellum is passively bent and thus could engage and disengage the dynein motors. Computed simulations of this working mechanism have reproduced the beating pattern of simple cilia and flagella, and of mammalian sperm. Cilia-like beating, with a clearly defined effective and recovery stroke, can be generated using one uniformly applied switching algorithm. When the mechanical properties and dimensions appropriate to a specific flagellum are incorporated into the model the same algorithm can simulate a sea urchin or bull sperm-like beat. The computed model reproduces many of the observed behaviors of real flagella and cilia. The model can duplicate the results of outer arm extraction experiments in cilia and predicted two types of arrest behavior that were verified experimentally in bull sperm. It also successfully predicted the experimentally determined nexin elasticity. Calculations based on live and reactivated sea urchin and bull sperm yielded a value of 0.5 nN/microm for the t-force at the switch-point. This is a force sufficient to overcome the shearing force generated by all the dyneins on one micron of outer doublet. A t-force of this magnitude should produce substantial distortion of the axoneme at the switch-point, especially in spoke or spoke-head deficient motile flagella. This concrete and verifiable prediction is within the grasp of recent advances in imaging technology, specifically cryoelectron microscopy and atomic force microscopy.  相似文献   

3.
The Chlamydomonas mutant vfl-3 lacks normal striated fibers and microtubular rootlets. Although the flagella beat vigorously, the cells rarely display effective forward swimming. High speed cinephotomicrography reveals that flagellar waveform, frequency, and beat synchrony are similar to those of wild-type cells, indicating that neither striated fibers nor microtubular rootlets are required for initiation or synchronization of flagellar motion. However, in contrast to wild type, the effective strokes of the flagella of vfl-3 may occur in virtually any direction. Although the direction of beat varies between cells, it was not observed to vary for a given flagellum during periods of filming lasting up to several thousand beat cycles, indicating that the flagella are not free to rotate in the mature cell. Structural polarity markers in the proximal portion of each flagellum show that the flagella of the mutant have an altered rotational orientation consistent with their altered direction of beat. This implies that the variable direction of beat is not due to a defect in the intrinsic polarity of the axoneme, and that in wild-type cells the striated fibers and/or associated structures are important in establishing or maintaining the correct rotational orientation of the basal bodies to ensure that the inherent functional polarity of the flagellum results in effective cellular movement. As in wild type, the flagella of vfl-3 coordinately switch to a symmetrical, flagellar-type waveform during the shock response (induced by a sudden increase in illumination), indicating that the striated fibers are not directly involved in this process.  相似文献   

4.
In the axoneme of eukaryotic flagella the dynein motor proteins form crossbridges between the outer doublet microtubules. These motor proteins generate force that accumulates as linear tension, or compression, on the doublets. When tension or compression is present on a curved microtubule, a force per unit length develops in the plane of bending and is transverse to the long axis of the microtubule. This transverse force (t-force) is evaluated here using available experimental evidence from sea urchin sperm and bull sperm. At or near the switch point for beat reversal, the t-force is in the range of 0.25-1.0 nN/ micro m, with 0.5 nN/ micro m the most likely value. This is the case in both beating and arrested bull sperm and in beating sea urchin sperm. The total force that can be generated (or resisted) by all the dyneins on one micron of outer doublet is also approximately 0.5 nN. The equivalence of the maximum dynein force/ micro m and t-force/ micro m at the switch point may have important consequences. Firstly, the t-force acting on the doublets near the switch point of the flagellar beat is sufficiently strong that it could terminate the action of the dyneins directly by strongly favoring the detached state and precipitating a cascade of detachment from the adjacent doublet. Secondly, after dynein release occurs, the radial spokes and central-pair apparatus are the structures that must carry the t-force. The spokes attached to the central-pair projections will bear most of the load. The central-pair projections are well-positioned for this role, and they are suitably configured to regulate the amount of axoneme distortion that occurs during switching. However, to fulfill this role without preventing flagellar bend formation, moveable attachments that behave like processive motor proteins must mediate the attachment between the spoke heads and the central-pair structure.  相似文献   

5.
A theoretical model based on molecular mechanisms of both dynein cross-bridges and radial spokes is used to study bend propagation by eukaryotic flagella. Though nine outer doublets are arranged within an axoneme, a simplified model with four doublets is constructed on the assumption that cross-bridges between two of the four doublets are opposed to those between the other two, corresponding to the geometric array of cross-bridges on the 6-9 and the 1-4 doublets in the axoneme. We also assume that external viscosity is zero, whereas internal viscosity is non-zero in order to reduce numerical complexity. For demonstrating flagellar movement, computer simulations are available by dividing a long flagellum into many straight segments. Considering the fact that dynein cross-bridge spacing is almost equal to attachment site spacing, we may use a localized cross-bridge distribution along attachment sites in each straight segment. Dynamics of cross-bridges are determined by a three-state model, and effects of radial spokes are represented by a periodic mechanical potential whose periodicity is considered to be a stroke distance of the radial spoke. First of all, we examine the model of a short segment to know basic properties of the system. Changing parameters relating to "activation" of cross-bridges, our model demonstrates various phenomena; for example "excitable properties with threshold phenomena" and "limit cycle oscillation". Here, "activation" and "inactivation" (i.e. switching mechanisms) between a pair of oppositely-directed cross-bridges are essential for generation of excitable or oscillatory properties. Next, the model for a flagellar segment is incorporated into a flagellum with a whole length to show bending movement. When excitable properties of cross-bridges, not oscillatory properties, are provided along the length of the flagellum and elastic links between filaments are presented at the base, then our model can demonstrate self-organization of bending waves as well as wave propagation without special feedback control by the curvature of the flagellum. Here, "cooperative interaction" between adjacent short segments, based on "cooperative dynamics" of cross-bridges, is important for wave propagation.  相似文献   

6.
Understanding the molecular architecture of the flagellum is crucial to elucidate the bending mechanism produced by this complex organelle. The current known structure of the flagellum has not yet been fully correlated with the complex composition and localization of flagellar components. Using cryoelectron tomography and subtomogram averaging while distinguishing each one of the nine outer doublet microtubules, we systematically collected and reconstructed the three-dimensional structures in different regions of the Chlamydomonas flagellum. We visualized the radial and longitudinal differences in the flagellum. One doublet showed a distinct structure, whereas the other eight were similar but not identical to each other. In the proximal region, some dyneins were missing or replaced by minor dyneins, and outer-inner arm dynein links were variable among different microtubule doublets. These findings shed light on the intricate organization of Chlamydomonas flagella, provide clues to the mechanism that produces asymmetric flagellar beating, and pose a new challenge for the functional study of the flagella.  相似文献   

7.
Summary Transmission electron microscopy was used to study the development of the flagellar base and the flagellar necklace during spermatogenesis in a moth (Ephestia kuehniella Z.). Until mid-pachytene, two basal body pairs without flagella occur per cell. The basal bodies, which contain a cartwheel complex, give rise to four flagella in late prophase I. The cartwheel complex appears to be involved in the nucleation of the central pair of axonemal microtubules. In spermatids, there is one basal body; this is attached to a flagellum. At this stage, the nine microtubular triplets of the basal body do not terminate at the same proximal level. The juxtanuclear triplets are shifted distally relative to the triplets distant from the nuclear envelope. Transition fibrils and a flagellar necklace are formed at the onset of axoneme elongation. The flagellar necklace includes Y-shaped elements that connect the flagellar membrane and the axonemal doublets. In spindle-containing spermatocytes, the flagellar necklace is no longer detectable. During spermatid differentiation, the transition fibrils move distally along the axoneme and a prominent middle piece appears. Our observations and those in the literature indicate certain trends in sperm structure. In sperms with a short middle piece, we expect the presence of a flagellar necklace. The distal movement of the transition fibrils or equivalent structures is prevented by the presence of radial linkers between the flagellar membrane and the axonemal doublets. On the other hand, the absence of a flagellar necklace at the initiation of spermiogenesis enables the formation of a long middle piece. Thus, in spermatozoa possessing an extended middle piece, a flagellar necklace may be missing.  相似文献   

8.
Eukaryotic cilia and flagella are vital sensory and motile organelles. The calcium channel PKD2 mediates sensory perception on cilia and flagella, and defects in this can contribute to ciliopathic diseases. Signaling from Pkd2-dependent Ca2+ rise in the cilium to downstream effectors may require intermediary proteins that are largely unknown. To identify these proteins, we carried out genetic screens for mutations affecting Drosophila melanogaster sperm storage, a process mediated by Drosophila Pkd2. Here we show that a new mutation lost boys (lobo) encodes a conserved flagellar protein CG34110, which corresponds to vertebrate Ccdc135 (E = 6e-78) highly expressed in ciliated respiratory epithelia and sperm, and to FAP50 (E = 1e-28) in the Chlamydomonas reinhardtii flagellar proteome. CG34110 localizes along the fly sperm flagellum. FAP50 is tightly associated with the outer doublet microtubules of the axoneme and appears not to be a component of the central pair, radial spokes, dynein arms, or structures defined by the mbo waveform mutants. Phenotypic analyses indicate that both Pkd2 and lobo specifically affect sperm movement into the female storage receptacle. We hypothesize that the CG34110/Ccdc135/FAP50 family of conserved flagellar proteins functions within the axoneme to mediate Pkd2-dependent processes in the sperm flagellum and other motile cilia.  相似文献   

9.
The movement of eukaryotic flagella is characterized by its oscillatory nature. In sea urchin sperm, for example, planar bends are formed in alternating directions at the base of the flagellum and travel toward the tip as continuous waves. The bending is caused by the orchestrated activity of dynein arms to induce patterned sliding between doublet microtubules of the flagellar axoneme. Although the mechanism regulating the dynein activity is unknown, previous studies have suggested that the flagellar bending itself is important in the feedback mechanism responsible for the oscillatory bending. If so, experimentally bending the microtubules would be expected to affect the sliding activity of dynein. Here we report on experiments with bundles of doublets obtained by inducing sliding in elastase-treated axonemes. Our results show that bending not only "switches" the dynein activity on and off but also affects the microtubule sliding velocity, thus supporting the idea that bending is involved in the self-regulatory mechanism underlying flagellar oscillation.  相似文献   

10.
Analysis of serial cross-sections of the Chlamydomonas flagellum reveals several structural asymmetries in the axoneme. One doublet lacks the outer dynein arm, has a beak-like projection in its B-tubule, and bears a two-part bridge that extends from the A-tubule of this doublet to the B-tubule of the adjacent doublet. The two doublets directly opposite the doublet lacking the arm have beak-like projections in their B-tubules. These asymmetries always occur in the same doublets from section to section, indicating that certain doublets have consistent morphological specializations. These unique doublets give the axoneme an inherent structural polarity. All three specializations are present in the proximal portion of the axoneme; based on their frequency in random cross-sections of isolated axonemes, the two-part bridge and the beak-like projections are present in the proximal one quarter and one half of the axoneme, respectively, and the outer arm is absent from the one doublet greater than 90% of the axoneme's length. The outer arm-less doublet of each flagellum faces the other flagellum, indicating that each axoneme has the same rotational orientation relative to the direction of its effective stroke. This strongly suggests that the direction of the effective stroke is controlled by a structural component within the axoneme. The striated fibers are associated with specific triplets in a manner suggesting that they play a role in setting up or maintaining the 180 degrees rotational symmetry of the two flagella.  相似文献   

11.
We have used a newly discovered reversal response of ctenophore comb plates to investigate the structural mechanisms controlling the direction of ciliary bending. High K+ concentrations cause cydippid larvae of the ctenophore Pleurobrachia to swim backward. High-speed cine films of backward-swimming animals show a 180 degree reversal in beat direction of the comb plates. Ion substitution and blocking experiments with artificial seawaters demonstrate that ciliary reversal is a Ca++-dependent response. Comb plate cilia possess unique morphological markers for numbering specific outer-doublet microtubules and identifying the sidedness of the central pair. Comb plates of forward- and backward-swimming ctenophores were frozen in different stages of the beat cycle by an "instantaneous fixation" method. Analysis of transverse and longitudinal sections of instantaneously fixed cilia showed that the assembly of outer doublets does not twist during ciliary reversal. This directly confirms the existence of radial switching mechanism regulating the sequence of active sliding on opposite sides of the axoneme. We also found that the axis of the central pair always remains perpendicular to the plane of bending; more importantly, the ultrastructural marker showed that the central pair does not rotate during a 180 degree reversal in beat direction. Thus, the orientation of the central pair does not control the direction of ciliary bending (i.e., the pattern of active sliding around the axoneme). We discuss the validity of this finding for three-dimensional as well as two-dimensional ciliary beat cycles and conclude that models of central-pair function based on correlative data alone must now be re-examined in light of these new findings on causal relations.  相似文献   

12.
Motile cilia are molecular machines used by a myriad of eukaryotic cells to swim through fluid environments. However, available molecular structures represent only a handful of cell types, limiting our understanding of how cilia are modified to support motility in diverse media. Here, we use cryo‐focused ion beam milling‐enabled cryo‐electron tomography to image sperm flagella from three mammalian species. We resolve in‐cell structures of centrioles, axonemal doublets, central pair apparatus, and endpiece singlets, revealing novel protofilament‐bridging microtubule inner proteins throughout the flagellum. We present native structures of the flagellar base, which is crucial for shaping the flagellar beat. We show that outer dense fibers are directly coupled to microtubule doublets in the principal piece but not in the midpiece. Thus, mammalian sperm flagella are ornamented across scales, from protofilament‐bracing structures reinforcing microtubules at the nano‐scale to accessory structures that impose micron‐scale asymmetries on the entire assembly. Our structures provide vital foundations for linking molecular structure to ciliary motility and evolution.  相似文献   

13.
The cytoplasmic dynein regulatory factor Lis1, which induces a persistent tight binding to microtubules and allows for transport of cargoes under high-load conditions, is also present in motile cilia/flagella. We observed that Lis1 levels in flagella of Chlamydomonas strains that exhibit defective motility due to mutation of various axonemal substructures were greatly enhanced compared with wild type; this increase was absolutely dependent on the presence within the flagellum of the outer arm dynein α heavy chain/light chain 5 thioredoxin unit. To assess whether cells might interpret defective motility as a "high-load environment," we reduced the flagellar beat frequency of wild-type cells through enhanced viscous load and by reductive stress; both treatments resulted in increased levels of flagellar Lis1, which altered the intrinsic beat frequency of the trans flagellum. Differential extraction of Lis1 from wild-type and mutant axonemes suggests that the affinity of outer arm dynein for Lis1 is directly modulated. In cytoplasm, Lis1 localized to two punctate structures, one of which was located near the base of the flagella. These data reveal that the cell actively monitors motility and dynamically modulates flagellar levels of the dynein regulatory factor Lis1 in response to imposed alterations in beat parameters.  相似文献   

14.
The interphase flagellar apparatus of the green alga Chlorogonium elongatum resembles that of Chlamydomonas reinhardtii in the possession of microtubular rootlets and striated fibers. However, Chlorogonium, unlike Chlamydomonas, retains functional flagella during cell division. In dividing cells, the basal bodies and associated structures are no longer present at the flagellar bases, but have apparently detached and migrated towards the cell equator before the first mitosis. The transition regions remain with the flagella, which are now attached to a large apical mitochondrion by cross-striated filamentous components. Both dividing and nondividing cells of Chlorogonium propagate asymmetrical ciliary-type waveforms during forward swimming and symmetrical flagellar-type waveforms during reverse swimming. High-speed cinephotomicrographic analysis indicates that waveforms, beat frequency, and flagellar coordination are similar in both cell types. This indicates that basal bodies, striated fibers, and microtubular rootlets are not required for the initiation of flagellar beat, coordination of the two flagella, or determination of flagellar waveform. Dividing cells display a strong net negative phototaxis comparable to that of nondividing cells; hence, none of these structures are required for the transmission or processing of the signals involved in phototaxis, or for the changes in flagellar beat that lead to phototactic turning. Therefore, all of the machinery directly involved in the control of flagellar motion is contained within the axoneme and/or transition region. The timing of formation and the positioning of the newly formed basal structures in each of the daughter cells suggests that they play a significant role in cellular morphogenesis.  相似文献   

15.
Computer simulations have been carried out with a model flagellum that can bend in three dimensions. A pattern of dynein activation in which regions of dynein activity propagate along each doublet, with a phase shift of approximately 1/9 wavelength between adjacent doublets, will produce a helical bending wave. This pattern can be termed "doublet metachronism." The simulations show that doublet metachronism can arise spontaneously in a model axoneme in which activation of dyneins is controlled locally by the curvature of each outer doublet microtubule. In this model, dyneins operate both as sensors of curvature and as motors. Doublet metachronism and the chirality of the resulting helical bending pattern are regulated by the angular difference between the direction of the moment and sliding produced by dyneins on a doublet and the direction of the controlling curvature for that doublet. A flagellum that is generating a helical bending wave experiences twisting moments when it moves against external viscous resistance. At high viscosities, helical bending will be significantly modified by twist unless the twist resistance is greater than previously estimated. Spontaneous doublet metachronism must be modified or overridden in order for a flagellum to generate the planar bending waves that are required for efficient propulsion of spermatozoa. Planar bending can be achieved with the three-dimensional flagellar model by appropriate specification of the direction of the controlling curvature for each doublet. However, experimental observations indicate that this "hard-wired" solution is not appropriate for real flagella.  相似文献   

16.
In Part I of this paper, we present a modelto account for the force generationproducing bending, and the formation of awaveform in sperm flagella. The model isbased on the observation that dimers, andhence microtubules, possess dipole moments.The electric field these dipoles produce isthe source for storing mechanical work indynein arms. The mechanical work is thenreleased and act on the doublets to producea distally directed force with the resultthat bending occurs. The model described isconsistent with experimental observationsreported in the literature. The flexuralrigidity of a dynein arm is alsocalculated. In Part II of this paper, theconsequences of the bending mechanism arediscussed. It is shown that the sum offorces from dynein arms acting distallyalong doublet microtubules in a flagellumis essentially zero when all dyneins areattached thus resulting in the rigor state.The waveform in a flagellum occurs if oneof the sets of bending moments is zero,that is, a row of dyneins are detached oversome distance along the flagellum. Thedirection of the bend in the waveform isdetermined by which set of dynein arms aredetached with respect to the verticalmedian plane of the flagellum. Thepropagation of a bending wave is the resultof a moving region in which alternate sidesfrom the vertical median plane haveinactive dynein arms. The processes bywhich this moving region occurs and therelationship of the above results to thepropulsion of the flagellum are notconsidered.  相似文献   

17.
The waveform of the flagellum of the sea urchin spermatozoon is mainly planar, but its 3D-properties were evoked for dynamic reasons and described as helical. In 1975, the apparent twisting pattern of the sea urchin axoneme was described [Gibbons I. 1975. The molecular basis of flagellar motility in sea urchin spermatozoa. In: Inoué S, Stephens R, editors. Molecular and cellular movement. New York: Raven Press, p. 207-232.] and was considered to be one of the main elements involved in axonemal behaviour. Recently, planar, quasi-planar, and helical waveforms were observed when the flagellum of sea urchin sperm cells was submitted to an increase in viscosity. The quasi-planar conformation seemed to be due to the alternating torsion of the inter-bend segments [Woolley D, Vernon G. 2001. A study of helical and planar waves on sea urchin sperm flagella, with a theory of how they are generated. J. Exp. Biol. 204:1333-1345]. These three waveforms, which are due to a change in axonemal activity, are possibly used by the sperm cells to adapt their movement to variations in the physico-chemical characteristics of the medium (seawater) in which the cells normally swim. We constructed a simple model to describe qualitatively the central shear (between the axonemal doublets and the central pair) and the tangential shear (between the doublets themselves). In this model, the 3D-bending is resolved into components in two perpendicular planes and each of the nine planes of inter-doublet interaction defines a potential bending plane that is independently regulated. These shears were calculated for the three waveforms and their inter-conversion. This allowed us to propose that axoneme is resolved in successive modules delineated by abscissas where the sliding is always nil. We discuss these data concerning the axonemal machinery, and especially the alternating activity of opposite sides of (two) neutral surface(s) that seem(s) to be responsible for this inter-conversion, and for the possible twist of the axoneme during the beating.  相似文献   

18.
Most flagellates with hispid flagella, that is, flagella with rigid filamentous hairs (mastigonemes), swim in the direction of the flagellar wave propagation with an anterior position of the flagellum. Previous analysis was based on planar wave propagation showing that the mastigonemes pull fluid along the flagellar axis. In the present study, we investigate the flagellar motions and swimming patterns for two flagellates with hispid flagella: Paraphysomonas vestita and Pteridomonas danica. Studies were carried out using normal and high-speed video recording, and particles were added to visualize flow around cells generating feeding currents. When swimming or generating flow, P. vestita was able to pull fluid normal to, and not just along, the flagellum, implying the use of the mastigonemes in an as yet un-described way. When the flagellum made contact with food particles, it changed the flagellar waveform so that the particle was fanned towards the ingestion area, suggesting mechano-sensitivity of the mastigonemes. Pteridomonas danica was capable of more complex swimming than previously described for flagellated protists. This was associated with control of the flagellar beat as well as an ability to bend the plane of the flagellar waveform.  相似文献   

19.
The “9+2” axoneme is a highly specific cylindrical machine whose periodic bending is due to the cumulative shear of its 9 outer doublets of microtubules. Because of the discrete architecture of the tubulin monomers and the active appendices that the outer doublets carry (dynein arms, nexin links and radial spokes), this movement corresponds to the relative shear of these topological verniers, whose characteristics depend on the geometry of the wave train. When an axonemal segment bends, this induces the compressed and dilated conformations of the tubulin monomers and, consequently, the modification of the spatial frequencies of the appendages that the outer doublets carry. From a dynamic point of view, the adjustments of the spatial frequencies of the elements of the two facing verniers that must interact create different longitudinal periodic patterns of distribution of the joint probability of the molecular interaction as a function of the location of the doublet pairs around the axonemal cylinder and their spatial orientation within the axonemal cylinder. During the shear, these patterns move along the outer doublet intervals at a speed that ranges from one to more than a thousand times that of sliding, in two opposite directions along the two opposite halves of the axoneme separated by the bending plane, respecting the polarity of the dynein arms within the axoneme. Consequently, these waves might be involved in the regulation of the alternating activity of the dynein arms along the flagellum, because they induce the necessary intermolecular dialog along the axoneme since they could be an element of the local dynamic stability/instability equilibrium of the axoneme. This complements the geometric clutch model [Lindemann, C., 1994. A “geometric clutch” hypothesis to explain oscillations of the axoneme of cilia and flagella. J. Theor. Biol. 168, 175-189].  相似文献   

20.
In the flagellum of mammalian spermatozoa, glutamylated and glycylated tubulin isoforms are detected according to longitudinal gradients and preferentially in axonemal doublets 1-5-6 and 3-8, respectively. This suggested a role for these tubulin isoforms in the regulation of flagellar beating. In the present work, using antibodies directed against various tubulin isoforms and quantitative immunogold analysis, we aimed at investigating whether the particular accessibility of tubulin isoforms in the mammalian sperm flagellum is restricted to this model of axoneme surrounded with periaxonemal structures or is also displayed in naked axonemes. In rodent lung ciliated cells, all studied tubulin isoforms are uniformly distributed in all axonemal microtubules with a unique deficiency of glutamylated tubulin in the transitional region. A similar distribution of tubulin isoforms is observed in cilia of Paramecium, except for a decreasing gradient of glutamylated tubulin labeling in the proximal part of axonemal microtubules. In the sea urchin sperm flagellum, predominant labeling of tyrosinated and detyrosinated tubulin in 1-5-6 and 3-8 doublets, respectively, were observed together with decreasing proximo-distal gradients of glutamylated and polyglycylated tubulin labeling and an increasing gradient of monoglycylated tubulin labeling. In flagella of Chlamydomonas, the glutamylated and glycylated tubulin isoforms are detected at low levels. Our results show a specific composition and organization of tubulin isoforms in different models of cilia and flagella, suggesting various models of functional organization and beating regulation of the axoneme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号