首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
D K Pitts  J Marwah 《Life sciences》1986,38(13):1229-1234
The effects of intravenous (i.v.) cocaine HCl on single identified spontaneously firing noradrenergic neurons in the nucleus locus coeruleus (LC) were studied in rats in vivo. Cocaine (0.25-1 mg/kg) produced inhibition of spontaneously firing LC neurons, which was reversed by the administration of the selective alpha 2-adrenoceptor antagonist, piperoxane (250 micrograms/kg, i.v.). Procaine, a local anesthetic that is structurally related to cocaine, did not inhibit LC neurons in doses up to 4 mg/kg, i.v. These results suggest that cocaine in low doses has significant central sympathomimetic effects at the single noradrenergic neuron level and that the inhibition of spontaneous activity may be mediated by alpha 2-adrenoceptors. Our results also indicate that cocaine in pharmacologically relevant doses, can significantly affect central alpha 2-adrenoceptor regulatory processes.  相似文献   

2.
In the present study, we investigated the involvement of rhombomere 1 patterning proteins in the regulation of the major noradrenergic centre of the brain, the locus coeruleus. Primary cultures of rat embryonic day 13.5 locus coeruleus were treated with fibroblast growth factor-8, noggin and members of the bone morphogenetic and Wnt protein families. We show that bone morphogenetic proteins 2, 5 and 7 increase and noggin decreases the number of tyrosine hydroxylase-positive locus coeruleus neurons. Interestingly, from all Wnts expressed in the first rhombomere by embryonic day 12.5 in the mice, we only found expression of wnt5a mRNA in the vicinity of the locus coeruleus. In agreement with this finding, from all Wnts studied in vitro, only Wnt5a increased the number of tyrosine hydroxylase-positive neurons in locus coeruleus cultures. Finally, we also found that fibroblast growth factor-8 increased the number of tyrosine hydroxylase-positive cells in locus coeruleus cultures. Neither of the identified factors affected the survival of tyrosine hydroxylase-positive locus coeruleus noradrenergic neurons or the proliferation of their progenitors or neurogenesis. Instead, our results suggest that these patterning signals of rhombomere 1 may work to promote the differentiation of noradrenergic progenitors at later stages of development.  相似文献   

3.
Extracellular single-cell recordings were performed on rat brain slices to compare the effects of morphine on noradrenergic neurons of the locus coeruleus (LC) and on dopaminergic neurons of the ventral tegmental area (VTA). Morphine inhibited the firing of LC neurons at very low concentrations. The mean IC50 was 13.4 +/- 1nM (mean +/- SEM) (n = 7). Moreover, the inhibitory effect of morphine was identical in slices obtained from rats anesthetized with chloral hydrate or from non-anesthetized rats. On the contrary, morphine did not have any influence on the firing of most VTA neurons (N = 20) up to 100 microM, and did not modify the sensitivity of their autoreceptors (N = 8). It is concluded that morphine potently inhibits the firing of LC neurons in vitro both in slices of anesthetized and not anesthetized animals and has no direct excitatory effect on VTA dopaminergic neurons of the rat.  相似文献   

4.
5.
Topography of catecholamine-containing (CA) neurons of the cat locus coeruleus was studied using a combination of the catecholamine histofluorescence method and rapid embedding of the brain tissue into the paraffin wax. The distribution of CA neurons was examined at frontal and sagittal sections of the brain stem. Unlike that shown previously the quantity of CA neurons in the rostral pole of the locus coeruleus was somewhat higher while at the frontal level of P--2.0-P--4.0 the significant number of CA cells of the locus coeruleus was localized more ventromedially.  相似文献   

6.
While abundant studies have begun to elucidate ontogeny of the peripheral nervous system, molecular mechanisms underlying brain development remain obscure. To approach this problem, we initiated parallel in vivo and in vitro studies of the mouse locus coeruleus (l.c.), a brainstem noradrenergic nucleus. The catecholaminergic enzymes tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) were used to monitor phenotype expression and development. TH catalytic activity and immunocytochemical reactivity were initially detectable on gestational Day 13 (E-13) in vivo, and adult levels of activity were approximately by the third postnatal week. Immunotitration studies indicated that the developmental increase was due to accumulation of enzyme molecules and not enzyme activation. The in vivo developmental profile of DBH approximated that of TH. To begin defining regulatory mechanisms, explants of embryonic brainstem were placed in culture. Explantation on E-12, prior to expression of TH or DBH, resulted in the de novo appearance of these phenotypic characters after 4 days. Explantation on E-18, after the enzymes are already expressed, was followed by a striking sixfold rise in TH activity. Immunotitration studies revealed that the increase in TH activity in E-18 cultures was attributable to increased molecule number, reproducing the in vivo results. Moreover, the E-18 explants, cultured for 3 weeks, attained higher plateau levels of TH activity than E-12 cultures, and this differences was due to increased molecule number. Morphometric analysis indicated that 3-week E-12 cultures actually had more l.c. cells than E-18 cultures, indicating that differences in TH were not due to increased cells in the E-18 l.c. Finally, systemic study revealed that the development of TH activity in culture increased progressively from E-11 to E-12 to E-13, suggesting that critical regulatory events occur at this time. Our studies suggest that the l.c. is an excellent model for the study of brain development in vivo and in vitro. Initial phenotypic expression and dramatic development occur in culture in the absence of normal targets, normal afferent innervation and, presumably, normal humoural milieu.  相似文献   

7.
8.
Noradrenergic neurons of the locus coeruleus (LC) express the receptor tyrosine kinase c-ret, which binds ligands of the glial cell line-derived neurotrophic factor (GDNF) family. In the present study, we evaluated the function of neurturin (NTN), a GDNF family ligand whose function on LC neurons is unknown. Interestingly, we found that tyrosine hydroxylase (TH)-positive neurons in the LC express both GFRalpha1 and 2 receptors in a developmentally regulated fashion, suggesting a function for their preferred ligands: GDNF and NTN, respectively. Moreover, our results show that NTN mRNA expression is developmentally down-regulated in the LC and peaks in the postnatal hippocampus and cerebral cortex, during the target innervation period. In order to examine the function of NTN, we next performed LC primary cultures, and found that neither GDNF nor NTN promoted the survival of TH-positive neurons. However, both factors efficiently induced neurite outgrowth in noradrenergic neurons (147% and 149% over controls, respectively). Similarly, grafting of fibroblast cell lines engineered to express high levels of NTN did not prevent the loss of LC noradrenergic neurons in a 6-hydroxydopamine (6-OHDA) lesion model, but induced the sprouting of TH-positive cells. Thus our findings show that NTN does not promote the survival of LC noradrenergic neurons, but induces neurite outgrowth in developing noradrenergic neurons in vitro and in a model of neurodegeneration in vivo. These data, combined with data in the literature, suggest that GDNF family ligands are able to independently regulate neuronal survival and/or neuritogenesis.  相似文献   

9.
Wright  J. J.  Kydd  R. R.  Lees  G. J. 《Biological cybernetics》1985,52(6):351-356
The preceeding paper (Wright et al. 1985a) gives evidence that mesotelencephalic dopaminergic neurones regulate gross electrocortical waves with linear properties, by influencing the strength of their driving signals and temporal damping. The present study further generalises the findings to ascending noradrenergic neurones, which have different fields of termination to dopaminergic fibres. It is shown that: Estimates of the major groups of natural frequencies for the telencephalic system obtained from curve-fitting the ratio changes in the power spectrum attributable to unilateral noradrenergic neurone lesion, are again centered about the frequencies of the major cerebral rhythms. Estimates of electrode transfer characteristics, using parameters obtained from curve fitting ratio changes in power, in conjunction with the raw left and right power spectra, are again found to be equal left and right, as required by the theoretical derivation. Changes in relative amplitude of electrocortical waves and their relative phase are significantly in accord with the relationship expected from theory.  相似文献   

10.
11.
Westudied chemosensitive signaling in locus coeruleus (LC) neurons usingboth perforated and whole cell patch techniques. Upon inhibition offast Na+ spikes by tetrodotoxin (TTX), hypercapnic acidosis[HA; 15% CO2, extracellular pH (pHo) 6.8]induced small, slow spikes. These spikes were inhibited byCo2+ or nifedipine and were attributed to activation ofL-type Ca2+ channels by HA. Upon inhibition of bothNa+ and Ca2+ spikes, HA resulted in a membranedepolarization of 3.52 ± 0.61 mV (n = 17) thatwas reduced by tetraethylammonium (TEA) (1.49 ± 0.70 mV,n = 7; P < 0.05) and absent(0.97 ± 0.73 mV, n = 7; P < 0.001) upon exposure to isohydric hypercapnia (IH; 15%CO2, 77 mM HCO, pHo 7.45).Either HA or IH, but not 50 mM Na-propionate, activatedCa2+ channels. Inhibition of L-type Ca2+channels by nifedipine reduced HA-induced increased firing rate andeliminated IH-induced increased firing rate. We conclude that chemosensitive signals (e.g., HA or IH) have multiple targets in LCneurons, including TEA-sensitive K+ channels andTWIK-related acid-sensitive K+ (TASK) channels.Furthermore, HA and IH activate L-type Ca2+ channels, andthis activation is part of chemosensitive signaling in LC neurons.

  相似文献   

12.
Central noradrenergic neurons from the locus coeruleus express unique plastic properties. The aim of this study was to identify factors that specifically regulate the development and the survival of the noradrenergic cells. Primary dissociated cultures of embryonic locus coeruleus (LC) neurons were established. Norepinephrine (NE) uptake was used as an index of maturation of the noradrenergic neurons. The noradrenergic cells were identified and quantified following immunocytochemical staining for tyrosine hydroxylase antibody. We have examined the effect of hippocampal target tissue and of cyclic-AMP (cAMP) on the development of these cells. Coculturing LC cells with a low density of hippocampal target cells, resulted in a significant increase in NE uptake. However, when the amount of hippocampal target cells was doubled an enormous decrease in NE uptake occurred. The target stimulatory effect was mediated by both neurons and glia, whereas the inhibitory effect was mediated by direct contact between target glia and LC neurons and detected only in the presence of serum. In addition to target effect, we also tested the effect of elevated intracellular cAMP level on NE uptake versus GABA uptake. GABA uptake served as a developmental index of the non noradrenergic cells. Increasing the intracellular cAMP level, by application of the membrane permeable analog dibutyryl cyclic AMP (DbcAMP), resulted in a selective stimulation of NE uptake, due to enhanced survival of noradrenergic neurons. GABA uptake and the number of non-noradrenergic cells were not changed in the presence of DbcAMP. DbcAMP could maintain the survival of LC neurons in the absence of glial cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effects of iontophoretically applied noradrenaline have been tested on intracellularly recorded locus coeruleus neurons grown in explant cultures from neonatal mice. In addition to hyperpolarizing responses mediated by alpha 2-adrenergic receptors, as observed in locus coeruleus neurons in vivo and in brain slices from adult animals, alpha 1-mediated depolarizations were observed to succeed the initial hyperpolarizations in some cultures. It was shown that the depolarizing responses were only present in younger cultures, i.e., less than 26 days in vitro. In cultures less than 20 days old, all cells displayed the biphasic hyperpolarizing-depolarizing responses. Both components of the response appear to be direct, since they were present when synaptic transmission was blocked by including tetrodotoxin or by altering divalent cations in the perfusate. The depolarizing responses were frequently reduced in solutions with altered divalent cation content, and this might reflect a calcium dependency of this response. The hyperpolarizing and depolarizing components of the responses to noradrenaline were progressively blocked by increasing concentrations of the selective antagonists yohimbine and prazosin, respectively, in the dose ranges of 100 mM - 1 microM (yohimbine) and 20-200 nM (prazosin). Recent results from electrophysiological studies of locus coeruleus neurons in brain slices suggest that similar changes occur in the animal as well as in culture. It is possible that the transient depolarizing responses reflect a developmentally important enhanced responsiveness of locus coeruleus neurons during the early postnatal period.  相似文献   

14.
The action of arecoline on rat locus coeruleus neurons was studied by intracellular recording from the in vitro brain slice preparation. Superfusion of arecoline (0.1-100 microM) caused two dose-related effects, an increased firing rate and, in neurons previously hyperpolarized to a constant potential by passing a steady hyperpolarizing current across the membrane, depolarization. Both effects were associated with a reduction in membrane input resistance. Moreover, the arecoline-induced excitatory effects were antagonized by the muscarinic receptor antagonist, atropine, but not by the nicotinic receptor antagonist, hexamethonium. Methoctramine, a selective M2-muscarinic receptor antagonist, was also effective in reversing the arecoline-induced effects, with a dissociation equilibrium constant of 14.2+/-1.2 nM (n=6). These results therefore suggest that arecoline exerts its excitatory actions by binding to M2-muscarinic receptors on the cell membrane of neurons of the locus coeruleus.  相似文献   

15.
16.
Previous studies have shown that aminergic neurons in the normal human brain contain acidophilic cytoplasmic inclusions--called protein bodies (PBs)--that are reduced or absent in parkinsonism and disrupted in depression. The purpose of the present study was to elucidate the constitution of PBs in five formalin-fixed normal human brains using histochemical methods specific for histones, protamines, and the amino acid arginine. PBs were revealed with alkaline fast green and bromphenol blue, exhibiting a high content in histones and in protamines. They developed blue metachromasia with phosphotungstic acid-hematoxylin and green fluorescence with phenanthrenequinone, which established the presence of arginyl residues. Using benzil, which selectively modifies the guanido group of arginine, staining was blocked for each of the above two methods. The application of Mallory's trichrome procedure after benzil differentiated the PBs into an unstained core and a still fuchsinophilic rim. Since the fuchsinophilia of the rim was shown to persist after acetylation as well, we suggest that this rim probably contains acidic macromolecules that attach to the basic charges of the amphoteric acid fuchsin. We conclude that the PB are complex structures consisting of a core segregating arginine-rich proteins and a rim which probably contains macromolecules of an acidic nature.  相似文献   

17.
The brainstem locus coeruleus (LC), the primary norepinephrinergic (NE) nucleus in the brain, has been implicated in the abuse of drugs such as opioids. However, whether and how the LC-NE system is involved in cocaine addiction remains elusive. Here, we demonstrated cocaine-evoked synaptic plasticity of glutamatergic transmission onto LC neurons as one of the earliest traces occurring after a single injection of cocaine. Twenty-four hours after mice were injected intraperitoneally with cocaine, the evoked α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) mediated synaptic transmission onto LC neurons were strongly potentiated without major effect on N-methyl-d-aspartate receptor (NMDAR) mediated synaptic transmission. Compared with saline-pretreated mice, AMPAR-mediated excitatory postsynaptic currents (EPSCs) of cocaine-pretreated mice showed a marked inward rectification, demonstrating the insertion of GluR2-lacking AMPARs to plasma membrane. In addition, the single injection of cocaine did not affect presynaptic glutamate release probability measured by paired pulse ratio. Furthermore, we found that the cocaine-induced potentiation of AMPAR EPSCs could be blocked by prazosin, an inhibitor of α1-adrenoreceptor (AR), indicating that cocaine increases AMPAR transmission via α1-ARs. These results reveal that LC-NE serves as an initial target of drug intake.  相似文献   

18.
Distribution of neurons forming projections to the parietal association cortex and spinal cord in the cat locus coeruleus (LC) was investigated by means of horseradish peroxidase retrograde transport and catecholamine histofluorescence techniques. Neurons projecting to the parietal cortex were found to be located mainly dorsally within the LC; largest numbers were observed on frontal plane P-1.0. Cells forming projections to the spinal cord were found in the ventral locus coeruleus; highest numbers of these were noted on frontal plane P-3.0. Labeled neurons were also identified in the midbrain reticular formation, pons, and medulla when applying horseradish peroxidase to the parietal cortex and spinal cord. Neurons projecting to the neocortex and spinal cord make up two different populations in the locus coeruleus, indistinguishable on grounds of neuronal morphological characteristics. It was concluded that the cat parietal association cerebral cortex, in common with the spinal cord, receives direct afferent inputs from the locus coeruleus and the reticular formation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 112–121, January–February, 1989.  相似文献   

19.
Terrestrial vertebrate embryos face a risk of low oxygen availability (hypoxia) that is especially great during their transition to air‐breathing. To better understand how fetal brains respond to hypoxia, we examined the effects of low oxygen availability on brain activity in late‐stage chick embryos (day 18 out of a 21‐day incubation period). Using cFos protein expression as a marker for neuronal activity, we focused on two specific, immunohistochemically identified cell groups known to play an important role in regulating adult brain states (sleep and waking): the noradrenergic neurons of the Locus Coeruleus (NA‐LC), and the Hypocretin/Orexin (H/O) neurons of the hypothalamus. cFos expression was also examined in the Pallium (the avian analog of the cerebral cortex). In adult mammalian brains, cFos expression changes in a coordinated way in these areas. In chick embryos, oxygen deprivation simultaneously activated NA‐LC while deactivating H/O‐producing neurons; it also increased cFos expression in the Pallium. Activity in one pallial primary sensory area was significantly related to NA‐LC activity. These data reveal that at least some of the same neural systems involved in brain‐state control in adults may play a central role in orchestrating prenatal hypoxic responses, and that these circuits may show different patterns of coordination than seen in adults. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1030–1037, 2014  相似文献   

20.
The locus coeruleus (LC) is a major target of several neurodegenerative disorders, including Parkinson's and Alzheimer's diseases. However, very little is known of the trophic requirements of LC neurons. In the present work, we have studied the biological activity of neurotrophic factors from different families in E15 primary cultures of LC neurons. In agreement with previous results, neurotrophin-3 (NT-3) and also glial cell line- derived neurotrophic factor (GDNF) increased the number of embryonic LC noradrenergic neurons in the presence of serum. In serum-free conditions, none of the factors tested, including NT-3, GDNF, neurturin, basic fibroblast growth factor (bFGF), or bone morphogenetic protein-2 (BMP-2), promoted the survival of tyrosine hydroxylase (TH)-immunoreactive neurons at 6 days in vitro. However, when BMP-2 was coadministered with any of these factors the number of LC TH-positive neurons increased twofold. Similar results were obtained by cotreatment of LC neurons with forskolin and NT-3, bFGF, or BMP-2. The strongest effect (a fourfold increase in the number of TH-positive cells) was induced by cotreatment with forskolin, BMP-2, and GDNF. Thus, our results show that LC neurons require multiple factors for their survival and development, and suggest that activation of LC neurons by bone morphogenetic proteins and cAMP plays a decisive role in conferring noradrenergic neuron responsiveness to several trophic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号