首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under certain conditions of nutrient stress, the budding yeast Saccharomyces cerevisiae initiates a striking developmental transition to a filamentous form of growth, resembling developmental transitions required for virulence in closely related pathogenic fungi. In yeast, filamentous growth involves known mitogen-activated protein kinase and protein kinase A signaling modules, but the full scope of this extensive filamentous response has not been delineated. Accordingly, we have undertaken the first systematic gene disruption and overexpression analysis of yeast filamentous growth. Standard laboratory strains of yeast are nonfilamentous; thus, we constructed a unique set of reagents in the filamentous Σ1278b strain, encompassing 3627 integrated transposon insertion alleles and 2043 overexpression constructs. Collectively, we analyzed 4528 yeast genes with these reagents and identified 487 genes conferring mutant filamentous phenotypes upon transposon insertion and/or gene overexpression. Using a fluorescent protein reporter integrated at the MUC1 locus, we further assayed each filamentous growth mutant for aberrant protein levels of the key flocculence factor Muc1p. Our results indicate a variety of genes and pathways affecting filamentous growth. In total, this filamentous growth gene set represents a wealth of yeast biology, highlighting 84 genes of uncharacterized function and an underappreciated role for the mitochondrial retrograde signaling pathway as an inhibitor of filamentous growth.  相似文献   

2.
Observing the effects of gene perturbation on cells or organisms has long been a standard strategy in biological research. We developed a genome-wide gene overexpression library as a new tool for large-scale functional analysis in budding yeast. Previous large-scale genetic studies have focused on applications of the deletion mutant collection, which has arguably revolutionized the functional characterization of yeast genes. While extremely powerful, deletion mutant experiments are generally limited to the characterization of loss-of-function phenotypes. We have explored the potential for using the Synthetic Genetic Array (SGA) method, a platform for high-throughput genetic analysis, with a genome-wide “overexpression array”, in which each strain on the array overexpresses a unique yeast gene. The overexpression array enables gain-of-function phenotypes to be examined on a large scale, providing a unique insight into gene function and a novel source of reagents for the global mapping of genetic networks and functional relationships amongst genes and pathways. Understanding the molecular bases of overexpression phenotypes should also shed new light on the nature of genetic dominance.  相似文献   

3.
A gene from Saccharomyces cerevisiae has been mapped, cloned, sequenced and shown to encode a catalytic subunit of an N-terminal acetyltransferase. Regions of this gene, NAT1, and the chloramphenicol acetyltransferase genes of bacteria have limited but significant homology. A nat1 null mutant is viable but exhibits a variety of phenotypes, including reduced acetyltransferase activity, derepression of a silent mating type locus (HML) and failure to enter G0. All these phenotypes are identical to those of a previously characterized mutant, ard1. NAT1 and ARD1 are distinct genes that encode proteins with no obvious similarity. Concomitant overexpression of both NAT1 and ARD1 in yeast causes a 20-fold increase in acetyltransferase activity in vitro, whereas overexpression of either NAT1 or ARD1 alone does not raise activity over basal levels. A functional iso-1-cytochrome c protein, which is N-terminally acetylated in a NAT1 strain, is not acetylated in an isogenic nat1 mutant. At least 20 other yeast proteins, including histone H2B, are not N-terminally acetylated in either nat1 or ard1 mutants. These results suggest that NAT1 and ARD1 proteins function together to catalyze the N-terminal acetylation of a subset of yeast proteins.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
The Cryptococcus neoformans Ras1 protein serves as a central regulator for several signaling pathways. Ras1 controls the induction of the mating pheromone response cascade as well as a distinct signaling pathway that allows this pathogenic fungus to grow at human physiological temperature. To characterize elements of the Ras1-dependent high-temperature growth pathway, we performed a multicopy suppressor screen, identifying genes whose overexpression allows the ras1 mutant to grow at 37 degrees C. Using this genetic technique, we identified a C. neoformans gene encoding a Rac homolog that suppresses multiple ras1 mutant phenotypes. Deletion of the RAC1 gene does not affect high-temperature growth. However, a rac1 mutant strain demonstrates a profound defect in haploid filamentation as well as attenuated mating. In a yeast two-hybrid assay, Rac1 physically interacts with the PAK kinase Ste20, which similarly regulates hyphal formation in this fungus. Similar to Rac1, overexpression of the STE20alpha gene also restores high-temperature growth to the ras1 mutant. These results support a model in which the small G protein Rac1 acts downstream of Ras proteins and coordinately with Ste20 to control high-temperature growth and cellular differentiation in this human fungal pathogen.  相似文献   

14.
15.
16.
17.
18.
Fleming JA  Vega LR  Solomon F 《Genetics》2000,156(1):69-80
Overexpression of the beta-tubulin binding protein Rbl2p/cofactor A is lethal in yeast cells expressing a mutant alpha-tubulin, tub1-724, that produces unstable heterodimer. Here we use RBL2 overexpression to identify mutations in other genes that affect formation or stability of heterodimer. This approach identifies four genes-CIN1, CIN2, CIN4, and PAC2-as affecting heterodimer formation in vivo. The vertebrate homologues of two of these gene products-Cin1p/cofactor D and Pac2p/cofactor E-can catalyze exchange of tubulin polypeptides into preexisting heterodimer in vitro. Previous work suggests that both Cin2p or Cin4p act in concert with Cin1p in yeast, but no role for vertebrate homologues of either has been reported in the in vitro reaction. Results presented here demonstrate that these proteins can promote heterodimer formation in vivo. RBL2 overexpression in cin1 and pac2 mutant cells causes microtubule disassembly and enhanced formation of Rbl2p-beta-tubulin complex, as it does in the alpha-tubulin mutant that produces weakened heterodimer. Significantly, excess Cin1p/cofactor D suppresses the conditional phenotypes of that mutant alpha-tubulin. Although none of the four genes is essential for viability under normal conditions, they become essential under conditions where the levels of dissociated tubulin polypeptides increase. Therefore, these proteins may provide a salvage pathway for dissociated tubulin heterodimers and so rescue cells from the deleterious effects of free beta-tubulin.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号