首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescence in situ hybridization provides a rapid and accurate technique for detecting chromosomal aneuploidy. It is an excellent method for identifying mosaicism in placental tissues following prenatal diagnosis. Mosaicism, in the form of confined placental mosaicism, occurs im approximately 1%–2% of viable pregnancies studied by chorionic villus sampling at 9–11 weeks of gestation. It has been detected in pregnancies with both diploid and trisomic fetuses and appears to have an important effect on the intrauterine fetal survival. Using both standard cytogenetic analysis and fluorescence in situ hybridization, we have studied 12 placentas from pregnancies with trisomy 18 for the presence of chromosomal mosaicism. These included 2 that were spontaneously aborted, 5 that were terminated after prenatal diagnosis, and 4 that were delivered as either stillborn or liveborn. Significant levels of mosaicism, confined exclusively to cytotrophoblast, were detected in 7 pregnancies. This study demonstrates the usefulness of interphase cytogenetic analysis of uncultured tissues as an alternative method for the detection of mosaicism.  相似文献   

2.
Traditional first trimester chorionic villus sampling (CVS) for prenatal diagnosis can be performed by cytogenetic analysis of cytotrophoblast or chorionic villous stroma. Approximately 2% of pregnancies studied by CVS show confined placental mosaicism (CPM) involving either cytotrophoblast, stroma or both. We present the results of a cytogenetic study of nine term placentae from pregnancies with prenatally diagnosed CPM. The aneuploid cell lines involved trisomies for chromosomes 7,9,16, and X. The cytotrophoblast and villous stroma from multiple biopsies of these placentae were examined using a combination of interphase and metaphase cytogenetic analysis. CPM was detected in all nine of the term placentae and both tissue-specific and site-specific patterns of mosaicism could be discerned. These results indicate that the analysis of villous stroma and cytotrophoblast from multiple placental biopsies is necessary to improve our understanding of the evolution of CPM during pregnancy and its effect on the fetus. Received: 1 May 1995 / Revised: 11 August 1995  相似文献   

3.
Confined chorionic mosaicism in prenatal diagnosis   总被引:4,自引:1,他引:3  
Summary Confined chorionic mosaicism, detected commonly on chorionic villus sampling (CVS) and occasionally in cultured amniotic fluid cells, is described in five pregnancies that showed confined chorionic mosaicism for trisomies 12, 13, 14, 17 and a marker chromosome. Cytogenetic findings in these pregnancies support the conclusion that within chorion some chromosomal mosaicism are confined to the trophectoderm derivatives while others to the extra-embryonic mesoderm. The etiology of confined chorionic mosaicism is discussed in relation to a significant role of multiple cell lineages contributing to the early development of placenta. The need is indicated for the use of both direct and long-term cultures in CVS prenatal diagnosis, and for the confirmatory testing of fetal blood or amniotic fluid in cases where mosaicism is detected in chorionic villi.  相似文献   

4.
Uniparental disomy for chromosome 16 in humans.   总被引:16,自引:6,他引:10  
The association between chromosomal mosaicism observed on chorionic villus sampling (CVS) and poor pregnancy outcome has been well documented. CVS mosaicism usually represents abnormal cell lines confined to the placenta and often involves chromosomal trisomy. Such confined placental mosaicism (CPM) may occur when there is complete dichotomy between a trisomic karyotype in the placenta and a normal diploid fetus or when both diploid and trisomic components are present within the placenta. Gestations involving pure or significant trisomy in placental lineages associated with a diploid fetal karyotype probably result from a trisomic zygote which has lost one copy of the trisomic chromosome in the embryonic progenitor cells during cleavage. Uniparental disomy would be expected to occur in one-third of such cases. Trisomy of chromosome 7, 9, 15, or 16 is most common among the gestations with these dichotomic CPMs. Nine pregnancies with trisomy 16 confined to the placenta were prenatally diagnosed. Pregnancy outcome, levels of trisomic cells in term placentas, and fetal uniparental disomy were studied. Intrauterine growth retardation (IUGR), low birthweight, or fetal death was observed in six of these pregnancies and correlated with high levels of trisomic cells in the term placentas. Four of the five cases of IUGR or fetal death showed fetal uniparental disomy for chromosome 16. One of the infants with maternal uniparental disomy 16 had a significant malformation (imperforate anus). All infants with normal intrauterine growth showed term placentas with low levels of trisomic cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Summary Confined placental chorionic mosaicism is reported in 2% of viable pregnancies cytogenetically analyzed on chorionic villi samplings (CVS) at 9–12 weeks of gestation. In follow-up studies this mosaicism has been shown to be associated with increased frequency of second and third trimester pregnancy loss or intrauterine fetal growth retardation. We have studied 54 spontaneous abortions (SA) for the detection of confined placental mosaicism and found 11 of them to be mosaic. All mosaic cases were identified among first trimester spontaneous abortions, and the mosaicism was confined to specific placental or embryonic/fetal cell lineages. These results indicate that the previously reported mosaicism in SA represents both confined and generalized types of mosaicism and that its accepted frequency of 5%–10% in SA will likely be higher. Over the whole gestational period, the confined placental mosaicism is more common than the reported rate of 1%–2% seen in viable pregnancies at CVS, and a higher proportion of pregnancy complications than previously suspected may be associated with confined placental mosaicism.  相似文献   

6.
Non-invasive prenatal testing (NIPT) demonstrated a small chance for a false negative result. Since the “fetal” DNA in maternal blood originates from the cytotrophoblast of chorionic villi (CV), some false negative results will have a biological origin. Based on our experience with cytogenetic studies of CV, we tried to estimate this risk. 5967 CV samples of pregnancies at high risk for common aneuplodies were cytogenetically investigated in our centre between January 2000 and December 2011. All cases of fetal trisomy 13, 18 and 21 were retrospectively studied for the presence of a normal karyotype or mosaicism < 30% in short-term cultured (STC-) villi. 404 cases of trisomies 13, 18 and 21 were found amongst 5967 samples (6,8%). Of these 404 cases, 14 (3,7%) had a normal or low mosaic karyotype in STC-villi and therefore would potentially be missed with NIPT. It involved 2% (5/242) of all trisomy 21 cases and 7.3% (9/123) of all trisomy 18 cases. In 1:426 (14/5967) NIPT samples of patients at high risk for common aneuploidies, a trisomy 18 or 21 will potentially be missed due to the biological phenomenon of absence of the chromosome aberration in the cytotrophoblast.  相似文献   

7.
8.
Raf kinase inhibitor protein (RKIP) regulates growth and differentiation signaling of mitogen-activated protein kinases (MAPK), GRK2 and NF-kappaB pathways each of which regulates cytotrophoblast differentiation and normal placental development. We show here that RKIP is expressed in human normal and preeclampic placentas as detected by immunostaining. RKIP was detected in villous cytotrophoblast in normal placenta and switched to syncytiotrophoblast in pre-eclampsia (PE)-complicated pregnancies. RKIP was also localized in extravillous cytotrophoblast of cell islands and cell columns both in normal and in PE placentas, although staining was less uniform in the latter specimens. In order to test RKIP involvement in cytotrophoblast function, we performed in vitro studies on HTR-8/SVneo cells, a first trimester cytotrophoblast cell line. We show that the RKIP inhibitor locostatin reduces ERK phosphorylation and impairs HTR-8/SV neo cells motility in wound closure experiments. We also document the presence of GRK2 mRNA, the reduction of phosphorylated RKIP expression by locostatin and the induction of PAI mRNA expression in HTR-8/SV neo cells, suggesting the involvement of GRK2 and NF-kappaB pathways in these cells. In conclusion, our work provides evidence that RKIP is a novel factor expressed in cytotrophoblast cells where it likely regulates cell migration.  相似文献   

9.
Summary An 8-year-old male with mental retardation, speech difficulties, and minor congenital anomalies is presented. The clinical findings suggest the trisomy-8 syndrome. The karyotype indicates trisomy-8 mosaicism with trisomic as well as normal cell lines in blood lymphocytes.  相似文献   

10.
Studies of uniparental disomy and origin of nonmosaic trisomies indicate that both gain and loss of a chromosome can occur after fertilization. It is therefore of interest to determine both the relative frequency with which gain or loss can contribute to chromosomal mosaicism and whether these frequencies are influenced by selective factors. Thirty-two mosaic cases were examined with molecular markers, to try to determine which was the primary and which was the secondary cell line: 16 cases of disomy/trisomy mosaicism (5 trisomy 8, 2 trisomy 13, 1 trisomy 18, 4 trisomy 21, and 4 involving the X chromosome), 14 cases of 45,X/46,XX, and 2 cases of 45,X/47,XXX. Of the 14 cases of mosaic 45,X/46,XX, chromosome loss from a normal disomic fertilization predominated, supporting the hypothesis that 45,X might be compatible with survival only when the 45,X cell line arises relatively late in development. Most cases of disomy/trisomy mosaicism involving chromosomes 13, 18, 21, and X were also frequently associated with somatic loss of one (or more) chromosome, in these cases from a trisomic fertilization. By contrast, four of the five trisomy 8 cases were consistent with a somatic gain of a chromosome 8 during development from a normal zygote. It is possible that survival of trisomy 8 is also much more likely when the aneuploid cell line arises relatively late in development.  相似文献   

11.
I N Lebedev  S A Nazarenko 《Genetika》2001,37(11):1459-1474
The frequencies of autosomal trisomies in extraembryonic human tissues were estimated in the cases of different abnormalities of prenatal development, from the confined placental mosaicism (CPM) with either relatively normal embryogenesis or restricted intrauterine growth to spontaneous abortion. A tissue-specific compartmentalization was found to be characteristic of cell lines with trisomies for individual autosomes. Analysis of various phenotypical effects of chromosomal aberrations associated with mosaicism is necessarily required to understand the mechanisms and factors responsible for tissue chromosomal mosaicism. Based on analysis of the cell karyotype during prenatal diagnosing of chromosome aberrations in tissues of both extraembryonic and embryonic origin, in 1996, Wolstenholme proposed a model of CPM for individual chromosomes. According to the model, the distribution of cell lines with autosomal trisomies between extraembryonic tissues depends on the ratio between meiotic and mitotic mutations early in embryonic development. However, the model cannot be used to study tissue chromosomal mosaicism in spontaneous abortions, because little information is available on cell karyotype in embryonic tissues themselves after intrauterine fetal death. In this work, a model of tissue-specific chromosomal mosaicism was suggested based on the data on cell karyotype determined in extraembryonic tissues alone, which can be helpful in evaluating the contribution of tissue chromosomal differences into the etiology of early intrauterine death. Along with the experimental evidence, comparative analysis of the two models indicated that the meiotic chromosome nondisjunction plays the major role in trisomy formation and the resultant spontaneous arrest of embryonic development. Other factors responsible for tissue-specific distribution of chromosomal aberrations are also discussed. These are differences in cell proliferative activity, as well as changes in compartmentalization and migration of cells with abnormal karyotypes.  相似文献   

12.
The frequencies of autosomal trisomies in extraembryonic human tissues were estimated in the cases of different abnormalities of prenatal development, from the confined placental mosaicism (CPM) with either relatively normal embryogenesis or restricted intrauterine growth to spontaneous abortion. A tissue-specific compartmentalization was found to be characteristic of cell lines with trisomies for individual autosomes. Analysis of various phenotypical effects of chromosomal aberrations associated with mosaicism is necessarily required to understand the mechanisms and factors responsible for tissue chromosomal mosaicism. Based on analysis of the cell karyotype during prenatal diagnosing of chromosome aberrations in tissues of both extraembryonic and embryonic origin, in 1996, Wolstenholme proposed a model of CPM for individual chromosomes. According to the model, the distribution of cell lines with autosomal trisomies between extraembryonic tissues depends on the ratio between meiotic and mitotic mutations early in embryonic development. However, the model cannot be used to study tissue chromosomal mosaicism in spontaneous abortions, because little information is available on cell karyotype in embryonic tissues themselves after intrauterine fetal death. In this work, a model of tissue-specific chromosomal mosaicism was suggested based on the data on cell karyotype determined in extraembryonic tissues alone, which can be helpful in evaluating the contribution of tissue chromosomal differences into the etiology of early intrauterine death. Along with the experimental evidence, comparative analysis of the two models indicated that the meiotic chromosome nondisjunction plays the major role in trisomy formation and the resultant spontaneous arrest of embryonic development. Other factors responsible for tissue-specific distribution of chromosomal aberrations are also discussed. These are differences in cell proliferative activity, as well as changes in compartmentalization and migration of cells with abnormal karyotypes.  相似文献   

13.
The life span of murine trisomies is limited to the fetal or early postnatal period. However, rescue of the hematopoietic system of fetal mice with trisomies (Ts) 12, 13, 14, 16, 18, and 19 is possible by transplanting hematopoietic stem cells from the liver into lethally irradiated adult hosts. Thus, radiation chimeras with permanent and almost complete trisomic hematopoietic and lymphocytopoietic systems were constructed. The longest documented survival of a trisomic graft was 12 months in Ts 19 chimeras. Blood counts in trisomic chimeras reveal a marked anemia in Ts 16 chimeras; lymphocytopenia in Ts 12, Ts 16, and Ts 19 chimeras; and granulocytopenia in Ts 18 chimeras. Survival rates of Ts 12, Ts 18, and Ts 19 chimeras were not different from those of the respective controls, whereas survival rates of chimeras with Ts 13 and Ts 16 hematopoiesis were markedly reduced and that of Ts 14 chimeras only slightly reduced. These results indicate that transplanted hematopoietic stem cells from Ts 13, Ts 14, and Ts 16 fetuses exhibit relevant genetically determined defects, resulting in a reduced restoration capacity of hematopoietic organs and/or deficiencies of differentiated blood cells. © 1992 Wiley-Liss, Inc.  相似文献   

14.
The life span of murine trisomies is limited to the fetal or early postnatal period. However, rescue of the hematopoietic system of fetal mice with trisomies (Ts) 12, 13, 14, 16, 18, and 19 is possible by transplanting hematopoietic stem cells from the liver into lethally irradiated adult hosts. Thus, radiation chimeras with permanent and almost complete trisomic hematopoietic and lymphocytopoietic systems were constructed. The longest documented survival of a trisomic graft was 12 months in Ts 19 chimeras. Blood counts in trisomic chimeras reveal a marked anemia in Ts 16 chimeras; lymphocytopenia in Ts 12, Ts 16, and Ts 19 chimeras; and granulocytopenia in Ts 18 chimeras. Survival rates of Ts 12, Ts 18, and Ts 19 chimeras were not different from those of the respective controls, whereas survival rates of chimeras with Ts 13 and Ts 16 hematopoiesis were markedly reduced and that of Ts 14 chimeras only slightly reduced. These results indicate that transplanted hematopoietic stem cells from Ts 13, Ts 14, and Ts 16 fetuses exhibit relevant genetically determined defects, resulting in a reduced restoration capacity of hematopoietic organs and/or deficiencies of differentiated blood cells.  相似文献   

15.
The placenta is a regulator organ for many metabolic activities between mother and fetus. Therefore, fetal growth is directly related to the placental development. Placental development is a series of events that depend on the coordinated action of trophoblasts’ proliferation, differentiation and invasion. Studies on cell cycle related proteins which control these events are fairly limited. How placental tissue proliferation is affected by diabetes is not exactly known yet. Therefore in this study, the immunohistochemical localizations of cell cycle related proteins like PCNA, Ki67, cyclin D3, p27 and p57 in the differentiation, proliferation and apoptosis mechanisms of normal and diabetic placentas were investigated. Information on cell cycle related proteins that control these events is limited and how they are affected in diabetes mellitus is not fully understood yet. Therefore, in this study, to understand the role of cell cycle regulators in diabetic placentas we aimed to determine the spatio-temporal immunolocalizations of cell cycle regulators in diabetic and normal human term placentas. Term placentas were obtained from diabetic women and from normal pregnancies with informed consent following caesarean deliveries. Placental samples were stained via immunohistochemistry with PCNA, Ki67, cyclin D3, p27 and p57 antibodies and were examined by light microscopy. When compared to control placentas, PCNA, Ki67 and cyclin D3 staining intensities significantly increased in villous parts of diabetes group. Moreover, Ki67 and cyclin D3 stainings also significantly increased in basal plates and chorionic plate respectively. In chorionic plates, p27 and p57 staining intensities significantly decreased in diabetic group. p57 staining also significantly decreased in villous parts of diabetic placentas. Placental abnormalities seen in diabetic placentas could be associated with proliferation and cell cycle arrest mechanisms’ alterations occurred in diabetes mellitus.  相似文献   

16.
17.
Fetal growth restriction is a serious, still poorly understood pregnancy-related pathology often associated with preeclampsia. Recent studies speculate on the role of human transthyretin, a carrier protein for thyroxin and retinol binding protein, in the etiology of both pregnancy pathologies. Objective was to investigate the localization and abundance of transthyretin (TTR) in placentas of pregnancies suffering from fetal growth restriction with and without preeclampsia and HELLP. This was a retrospective case control study on human paraffin-embedded placentas from pregnancies with a gestational age at delivery between the 24th and 34th week of gestation. 16 placentas were included in this study, 11 cases and 5 from normotensive pregnancies as controls. Cases were divided into three groups: four from early onset idiopathic intrauterine growth restriction (IUGR), four from early-onset severe preeclampsia (PE), and three from early-onset IUGR with preeclampsia plus HELLP syndrome. Distribution and abundance of TTR were investigated by means of immunohistochemistry. Semi quantitative analysis of TTR staining of placental sections revealed that TTR was mostly expressed in the villous trophoblast covering placental villi. Only weak staining of TTR in villous stroma could be detected. The comparison of placentas revealed that in pure IUGR and severe PE there is a much stronger TTR reactivity compared to controls and cases with IUGR?+?PE?+?HELLP. Concluding, the study showed that TTR is dysregulated in cases of IUGR and severe early onset preeclampsia. Interestingly, TTR expression is not affected in cases with HELLP syndrome that reveal the same staining intensities as age-matched controls.  相似文献   

18.
Heme oxygenase (HO) catalyzes the oxidation of heme to carbon monoxide (CO), biliverdin, and iron and is thought to play a role in protecting tissues from oxidative damage. There are three isoforms of HO: HO-1 (inducible), HO-2 (constitutive), and HO-3 (unknown function). Preeclampsia is characterized by an inadequately perfused placenta and areas of tissue damage. We hypothesized that damaged areas of placentas from women with PE and uncomplicated pregnancies are associated with an alteration in HO expression. Compared with microsomes isolated from morphologically normal and peri-infarct chorionic villi of pathological placentas, microsomes from infarcted chorionic villi from the same placentas had decreased HO activity measured under optimized assay conditions. There was no correlation between microsomal HO levels and activity and tissue damage in uncomplicated pregnancies. Whereas there was no significant difference in HO-1 protein levels across all regions of uncomplicated and mildly preeclamptic pregnancies, HO-2 protein levels were decreased (P < 0.05) in peri-infarct regions and infarcted chorionic villi of mildly preeclamptic pregnancies. Immunohistochemical analysis revealed an apparent decrease in both HO-1 and HO-2 protein expression in damaged tissues. HO-1 and HO-2 were immunolocalized in the syncytiotrophoblast layer of the chorionic villi, the underlying cytotrophoblast, and in the vascular endothelium. This study suggests that the ability of the chorionic villi to oxidize heme to CO, biliverdin, and iron may be compromised in areas of tissue damage in the placenta of women with preeclampsia.  相似文献   

19.
The morphology of placentas from trisomy 16 and trisomy 19 mouse conceptuses aged 12 to 18 gestational days was studied at the light microscopic level. Comparisons were made with placentas from normal littermate animals. Trisomy 16 placentas showed marked changes from normal: 1) the junctional zone showed little indication of normal morphologic differentiation throughout gestation; 2) clusters of germinal trophoblast cells persisted in the labyrinth throughout gestation, whereas these cells disappeared by gestational day 16 in the normal littermate placentas; 3) the labyrinth was reduced in size in the trisomic placentas, and the differentiation of the interhemal membranes was delayed. The size of the labyrinths from trisomy 19 placentas appeared to be decreased, but otherwise the placentas appeared to have normal morphology. These observations and others from the literature show that placental development is affected by the presence of a trisomic genome, and that different trisomies influence the development of the placenta differently. For trisomy 16, we propose that the striking changes of the junctional zone may be associated with the trisomy 16-related gene dosage effect for alpha- and beta-interferon cell surface receptors. Because of the homology for this and other genes on mouse chromosome 16 with genes on human chromosome 21, findings related to the altered development of the trisomy 16 mouse may be relevant to understanding some of the phenotypic variations associated with human trisomy 21, the Down syndrome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号