首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The involvement of oxidative stress in the pathogenesis of alcoholic diseases in the liver has been repeatedly confirmed. Resveratrol, a natural phytoalexin present in grape skin and red wine possesses a variety of biological activities including antioxidant. This study was conducted to evaluate whether resveratrol has a preventive effect on the main indicators of hepatic oxidative status as an expression of the cellular damage caused by free radicals, and on antioxidant defence mechanism during chronic ethanol treatment. Wistar rats were treated daily with 35% ethanol solution (3 g/kg/day i.p.) during 6 weeks and fed basal diet or basal diet containing 5 g/kg resveratrol. Control rats were treated with i.p. saline and fed basal diet. Experimentally, chronic ethanol administration leads to hepatotoxicity as monitored by the increase in the level of hepatic marker enzymes and the appearance of fatty change, necrosis, fibrosis and inflammation in liver sections. Ethanol also enhanced the formation of MDA in the liver indicating an increase in lipid peroxidation, a major end-point of oxidative damage, and caused drastic alterations in antioxidant defence systems. Particularly the activities of hepatic superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) were found reduced by ethanol treatment while glutathione reductase (GR) activity was unchanged. Dietary supplementation with resveratrol during ethanol treatment inhibited hepatic lipid peroxidation and ameliorated SOD, GPx and CAT activities in the liver. Conclusively, we can suggest that resveratrol could have a beneficial effect in inhibiting the oxidative damage induced by chronic ethanol administration, which was proved by the experiments that we conducted on rats.  相似文献   

2.
Oxidative stress is a hypothesis for the association of reactive oxygen species with cerebrovascular and neurodegenerative diseases. Thus, we examined whether oral betaine can act as a preventive agent in ethanol-induced oxidative stress on the cerebellum of rats. Thirty-two adult male Sprague–Dawley rats were divided into four equal groups (control, ethanol, betaine, and betaine plus ethanol) with different dietary regimens and were followed up for 1 month. Total homocysteine (tHcy) of plasma and cerebellum homogenate was determined by an Axis® homocysteine EIA kit, and antioxidant enzyme (glutathione peroxidase (GPx), SOD, and CAT) activities of cerebellum homogenate were measured chemically by a spectrophotometer. Lipid peroxidation of cerebellum was shown by the measurement of thiobarbituric reactive substances (TBARS) via a spectrophotometer. Ethanol-induced hyperhomocysteinemia was manifested by an increase in the concentrations of tHcy in the plasma and cerebellum homogenates of the ethanol group, while ethanol-induced oxidative stress was indicated via an increase in lipid peroxidation marker (TBARS) in cerebellum homogenates of ethanol-treated rats. In contrast, betaine prevented hyperhomocysteinemia and oxidative stress in the betaine plus ethanol group as well as the betaine group. The results of the present investigation indicated that the protective effect of betaine is probably related to its ability to strengthen the cerebellum membrane cells by enhancement of antioxidant enzyme activity principally GPx, while the methyl donor effect of betaine to reduce hyperhomocysteinemia has been explained previously and confirmed in the present study.  相似文献   

3.
Lipid peroxidation in the plasma membrane has been reported to decrease membrane fluidity. We examined membrane fluidity in relation to lipid peroxidation processes after UV-B exposure of cultured B-16 melanoma cells. UV exposure promptly increased TBA-positive material(s), but alteration of membrane fluidity was delayed. Plasma membrane fluidity increased significantly 6 hours after exposure when the TBA-value(s) had become under the control level. To examine the direct effect of lipid peroxides on the fluidity, tert-butyl hydroperoxide was added to B-16 melanoma cells. Similar results were obtained with respect to membrane fluidity. These results suggest that lipid peroxidation at UV doses maintaining cell viability does not directly induce a significant alteration of membrane fluidity, but may influence the fluidity either during metabolizing processes of UV-induced lipid peroxides or during repair processes following oxidative cell membrane damage.  相似文献   

4.
Objective: To study the evolution of lipid peroxidation, enzymatic antioxidants response, lipid profile and membrane fluidity in erythrocytes from very low birth weight (VLBW) infants during their first 7 days of extra-uterine life.

Study design: One hundred and twenty infants were selected and divided in two groups according to their weight and gestational age. Hydroperoxides, fatty-acid profile, fluidity (DPH and TMA-DPH) and catalase, SOD and GPx activities were measured in erythrocytes.

Results: VLBW group showed higher concentration of hydroperoxides and lower membrane fluidity during the first 72 h, lower SOD activity during the first 3 h and higher GPx activity during the first 7 days of life. Also, this group showed lower n-3 polyunsaturated fatty-acids percentage with respect to the term group.

Conclusion: Erythrocytes from VLBW infants showed higher oxidative damage and lower fluidity in their membranes, at least during the first 3 days of extra-uterine life, which may cause alterations in their functions and flexibility.  相似文献   

5.
Previous studies from our laboratory have demonstrated that pyruvate, an endogenous α-keto acid metabolite, has a protective effect against oxidative stress induced damage to the ocular tissues including the lens, in which in addition to exerting its protective effect against tissue damage caused by oxyradicals generated under organ culture, it is also found effective in preventing actual cataract formation in vivo in animal models undergoing direct oxidative stress as well as in diabetes. In the latter studies, pyruvate was administered mixed with diet and drinking water. However, with the view of the desirability of treating eye diseases by topical administration of the pharmacological agents, the present studies were conducted to determine the penetrability of pyruvate through the cornea to the aqueous humor and the lens following its topical administration as its ester, ethyl pyruvate (EP). These experiments were done in CD-1 mice. After instillation of the drops in the conjunctival cul-de-sac, aqueous humor samples were aspirated at the desired times and analyzed for pyruvate. In a separate group of animals, analyses were done also in the lens. Analyses were done spectrophotometrically by monitoring the decrease in absorption of NADH due to the reduction of pyruvate to lactate by lactate dehydrogenase. The levels of pyruvate were found to be significantly elevated in both the aqueous humor as well as the lens, the peak concentrations being 4.7 and 3.6 mM, respectively. Such levels have been previously shown to be effective in exerting its antioxidant effects. The results are therefore considered pharmacological significant from the point of view of its potential use for topical treatment of cataracts induced by oxidative stress and diabetes.  相似文献   

6.
Objective: To study the evolution of lipid peroxidation, enzymatic antioxidants response, lipid profile and membrane fluidity in erythrocytes from very low birth weight (VLBW) infants during their first 7 days of extra-uterine life.

Study design: One hundred and twenty infants were selected and divided in two groups according to their weight and gestational age. Hydroperoxides, fatty-acid profile, fluidity (DPH and TMA-DPH) and catalase, SOD and GPx activities were measured in erythrocytes.

Results: VLBW group showed higher concentration of hydroperoxides and lower membrane fluidity during the first 72 h, lower SOD activity during the first 3 h and higher GPx activity during the first 7 days of life. Also, this group showed lower n-3 polyunsaturated fatty-acids percentage with respect to the term group.

Conclusion: Erythrocytes from VLBW infants showed higher oxidative damage and lower fluidity in their membranes, at least during the first 3 days of extra-uterine life, which may cause alterations in their functions and flexibility.  相似文献   

7.
Prenatal ethanol exposure (PNEE) causes long-lasting deficits in brain structure and function. In this study, we have examined the effect of PNEE on antioxidant capacity and oxidative stress in the adult brain with particular focus on four brain regions known to be affected by ethanol: cerebellum, prefrontal cortex and hippocampus (cornu ammonis and dentate gyrus subregions). We have utilized a liquid diet model of fetal alcohol spectrum disorders that is supplied to pregnant Sprague-Dawley rats throughout gestation. To examine the therapeutic potential of omega-3 fatty acid supplementation, a subset of animals were provided with an omega-3-enriched diet from birth until adulthood to examine whether these fatty acids could ameliorate any deficits in antioxidant capacity that occurred due to PNEE. Our results showed that PNEE caused a long-lasting decrease in glutathione levels in all four brain regions analyzed that was accompanied by an increase in lipid peroxidation, a marker of oxidative damage. These results indicate that PNEE induces long-lasting changes in the antioxidant capacity of the brain, and this can lead to a state of oxidative stress. Postnatal omega-3 supplementation was able to increase glutathione levels and reduce lipid peroxidation in PNEE animals, partially reversing the effects of alcohol exposure, particularly in the dentate gyrus and the cerebellum. This is the first study where omega-3 supplementation has been shown to have a beneficial effect in PNEE, reducing oxidative stress and enhancing antioxidant capacity.  相似文献   

8.
In order to investigate the efficiency of a single selenium (Se) administration in restoring selenium status, Se and antioxidant enzymes were studied in an animal model of Se depletion. In Se-depleted animals receiving or not a single parenteral administration of Se, plasma, red blood cell (RBC), and tissue Se levels were measured concurrently with glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities. The oxidative stress was assessed by thiobarbituric acid-reactive species (TBARs), total thiol groups, glutathione, and tocopherol measurements. Our study showed that Se depletion with alterations in the antioxidant defense system (Se and GPx activity decreases) led to an increase of lipid peroxidation, a decrease of the plasma vitamin E level, and SOD activation. Sodium selenite injection resulted after 24 h in an optimal plasma Se level and a reactivation of GPx activity. In liver, brain, and kidney, Se levels in injected animals were higher than those in reference animals. However, this single administration of Se failed to decrease free radical damage induced by Se depletion. Therefore, in burned patients who exhibit an altered Se status despite a daily usually restricted Se supplementation, the early administration of a consistent Se amount to improve the GPx activity should be of great interest in preventing the impairment of the antioxidant status.  相似文献   

9.
Fluorescence anisotropy measurements are widely used as sensitive indicators of cell membrane fluidity. 1-[4-(trimethylamino)phenyl]-6-phenyl hexa-1,3,5-triene (TMA-DPH) is a cationic fluorescent aromatic hydrocarbon that anchors at the lipid-water interface of membrane lipid bilayers. Its uptake into porcine pulmonary artery and aortic endothelial cells was monitored and the probe remained specifically localized on the cell surface for at least 4 h. It can therefore be recommended for use for specific plasma membrane lipid fluidity measurements in these cells. The effect of hyperoxia on plasma membrane fluidity was measured by using TMA-DPH. In both cell types, hyperoxic damage resulted in decreases in plasma membrane fluidity. Recovery was achieved 48 h after a 42-h hyperoxic exposure. These results indicate that TMA-DPH is a sensitive probe of plasma membrane lipid domains of pulmonary artery and aortic endothelial cells and that hyperoxia causes reversible changes in the physical state of superficial lipid domains of the plasma membrane of these cells.  相似文献   

10.
Oxidative stress has been increasingly postulated as a major contributor to endothelial dysfunction in preeclampsia (PE), although evidence supporting this hypothesis remains inconsistent. This study aimed to analyze in depth the potential role of oxidative stress as a mechanism underlying endothelial damage in PE and the pregnant woman's susceptibility to the disease. To this end, indicative markers of lipoperoxidation and protein oxidation and changes in antioxidant defense systems were measured in blood samples from 53 women with PE and 30 healthy pregnant controls. Results, analyzed in relation to disease severity, showed PE women, compared with women with normal pregnancy, to have: (1) significantly enhanced antioxidant enzyme SOD and GPx activities in erythrocytes; (2) similar plasma alpha-tocopherol levels and significantly increased alpha-tocopherol/lipids in both mild and severe PE; (3) significantly decreased plasma vitamin C and protein thiol levels; (4) similar erythrocyte glutathione content, total plasma antioxidant capacity, and whole plasma oxidizability values; (5) significantly elevated plasma total lipid hydroperoxides, the major initial reaction products of lipid peroxidation, in severe PE; (6) no intracellular or extracellular increases in any of the secondary end-products of lipid peroxidation, malondialdehyde or lipoperoxides; (7) similar oxidative damage to proteins quantified by plasma carbonyl levels, immunoblot analysis, and advanced oxidation protein products assessment; and (8) significantly elevated and severity-related soluble vascular cell adhesion molecule-1 serum levels reflecting endothelial dysfunction. No correlations were found among plasma levels of circulating adhesion molecules with regard to lipid and protein oxidation markers. Globally, these data reflect mild oxidative stress in blood of preeclamptic women, as oxidative processes seem to be counteracted by the physiologic activation of antioxidant enzymes and by the high plasma vitamin E levels that would prevent further oxidative damage. These results do not permit us to conclude that oxidative stress might be a pathogenetically relevant process causally contributing to the disease.  相似文献   

11.
It has been shown that emotional stress may induce oxidative damage, and considerably change the balance between pro-oxidant and antioxidant factors in the brain. The aim of this study was to verify the effect of repeated restraint stress (RRS; 1 h/day during 40 days) on several parameters of oxidative stress in the hippocampus of adult Wistar rats. We evaluated the lipid peroxide levels (assessed by TBARS levels), the production of free radicals (evaluated by the DCF test), the total radical-trapping potential (TRAP) and the total antioxidant reactivity (TAR) levels, and antioxidant enzyme activities (SOD, GPx and CAT) in hippocampus of rats. The results showed that RRS induced an increase in TBARS levels and in GPx activity, while TAR was reduced. We concluded that RRS induces oxidative stress in the rat hippocampus, and that these alterations may contribute to the deleterious effects observed after prolonged stress.  相似文献   

12.
Quinolinic acid (QUIN), a well known excitotoxin that produces a pharmacological model of Huntington's disease in rats and primates, has been shown to evoke degenerative events in nerve tissue via NMDA receptor (NMDAr) overactivation and oxidative stress. In this study, the antioxidant selenium (as sodium selenite) was tested against different markers of QUIN-induced neurotoxicity under both in vitro and in vivo conditions. In the in vitro experiments, a concentration-dependent effect of selenium was evaluated on the regional peroxidative action of QUIN as an index of oxidative toxicity in rat brain synaptosomes. In the in vivo experiments, selenium (0.625 mg per kg per day, i.p.) was administered to rats for 5 days, and 2 h later animals received a single unilateral striatal injection of QUIN (240 nmol/ micro L). Rats were killed 2 h after the induction of lesions with QUIN to measure lipid peroxidation and glutathione peroxidase (GPx) activity in striatal tissue. In other groups, the rotation behavior, GABA content, morphologic alterations, and the corresponding ratio of neuronal damage were all evaluated as additional markers of QUIN-induced striatal toxicity 7 days after the intrastriatal injection of QUIN. Selenium decreased the peroxidative action of QUIN in synaptosomes both from whole rat brain and from the striatum and hippocampus, but not in the cortex. A protective concentration-dependent effect of selenium was observed in QUIN-exposed synaptosomes from whole brain and hippocampus. Selenium pre-treatment decreased the in vivo lipid peroxidation and increased the GPx activity in QUIN-treated rats. Selenium also significantly attenuated the QUIN-induced circling behavior, the striatal GABA depletion, the ratio of neuronal damage, and partially prevented the morphologic alterations in rats. These data suggest that major features of QUIN-induced neurotoxicity are partially mediated by free radical formation and oxidative stress, and that selenium partially protects against QUIN toxicity.  相似文献   

13.
We studied the effect of glycine supplementation on lipid peroxidation and antioxidants in the erythrocyte membrane, plasma and hepatocytes of rats with alcohol-induced hepatotoxicity. Administering ethanol (20%) for 60 days to male Wistar rats resulted in significantly elevated levels of erythrocyte membrane, plasma and hepatocyte thiobarbituric acid reactive substances (TBARS) as compared with those of the experimental control rats. Decreased activities of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione peroxidase (GPx) and glutathione reductase (GR) were also observed on alcohol supplementation as compared with those of the experimental control rats. Glycine was administered at a dose of 0.6 g kg(-1) body weight to rats with alcohol-induced liver injury, which significantly decreased the levels of TBARS and significantly elevated the activities of SOD, CAT, GSH, GPx and GR in the erythrocyte membrane, plasma and hepatocytes as compared to that of untreated alcohol supplemented rats. Thus, our data indicate that supplementation with glycine offers protection against free radical-mediated oxidative stress in the erythrocyte membrane, plasma and hepatocytes of animals with alcohol-induced liver injury.  相似文献   

14.
Effects of ethanol on the Escherichia coli plasma membrane.   总被引:11,自引:1,他引:10       下载免费PDF全文
The effects of ethanol on the fluidity of Escherichia coli plasma membranes were examined by using a variety of fluorescent probes: 1,6-diphenyl-1,3,5-hexatriene, perylene, and a set of n-(9-anthroyloxy) fatty acids. The anthroyloxy fatty acid probes were used to examine the fluidity gradient across the width of the plasma membrane and artificial membranes prepared from lipid extracts of plasma membranes. Ethanol caused a small decrease in the polarization of probes primarily located near the membrane surface. In comparison, hexanol decreased the polarization of probes located more deeply in the membrane. Temperature had a large effect on probes located at all depths. The effects of ethanol on E. coli membranes from cells grown with or without ethanol were also examined. Plasma membranes isolated from cells grown in the presence of ethanol were more rigid than those from control cells. In contrast to plasma membranes, artificial membranes prepared from lipid extracts of ethanol-grown cells were more fluid than those from control cells. These differences are explained by analyses of membrane composition. Membranes from cells grown in the presence of ethanol are more rigid than those from control cells due to a decrease in the lipid-to-protein ratio. This change more than compensates for the fluidizing effect of ethanol and the ethanol-induced increase in membrane C18:1 fatty acid which occurs during growth. Our results suggest that the regulation of the lipid-to-protein ratio of the plasma membrane may be an important adaptive response of E. coli to growth in the presence of ethanol.  相似文献   

15.
The in vitro effects of plant sterols were investigated with regard to their uptake and membrane lipid fluidity in human keratinocytes. Among the different media tested to transport sterols (liposomes, micelles and organic solvents), the best results in terms of incorporation and viability were obtained by the use of the organic solvents dimethylsulfoxide and ethanol. After 48 h incubation exogenous sterol can account for about 30% of the total cell sterol content. The total sterol amount in plasma membranes increased 2-fold after incubation with cholesterol, whereas it was not altered when phytosterols were incorporated. The incorporation of cholesterol, sitosterol and stigmasterol led to an increase in the percent of unsaturated fatty acid C18:1 in the plasma membrane. The effect of this uptake on membrane fluidity was studied by means of fluorescence polarisation using DPH and TMA-DPH as fluorescent probes. Whereas cholesterol and sitosterol had no significant effect on the DPH fluorescence anisotropy (rs), the presence of stigmasterol induced a 12% decrease of rs reflecting an increase in membrane fluidity. We can conclude from this study that in the presence of sitosterol, the mean fluidity of the membrane is regulated whereas stigmasterol triggers a looseness of molecular packing of phospholipids acyl chains, in accordance with previous results obtained on purely lipid model membranes.  相似文献   

16.
Dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) have been reported to modulate lipid raft-dependent signaling, but not yet lipid raft-dependent oxidative stress. Previously, we have shown that ethanol-induced membrane remodeling, i.e., an increase in membrane fluidity and alterations in physical and biochemical properties of lipid rafts, participated in the development of oxidative stress. Thus, we decided to study n-3 PUFA effects in this context, by pretreating hepatocytes with eicosapentaenoic acid (EPA), a long-chain n-3 PUFA, before addition of ethanol. EPA was found to increase ethanol-induced oxidative stress through membrane remodeling. Addition of EPA resulted in a marked increase in lipid raft aggregation compared to ethanol alone. In addition, membrane fluidity of lipid rafts was markedly enhanced. Interestingly, EPA was found to preferentially incorporate into nonraft membrane regions, leading to raft cholesterol increase. Lipid raft aggregation by EPA enhanced phospholipase Cγ translocation into these microdomains. Finally, phospholipase Cγ was shown to participate in the potentiation of oxidative stress by promoting lysosome accumulation, a major source of low-molecular-weight iron. To conclude, the ability of EPA to modify lipid raft physical and chemical properties plays a key role in the enhancement, by this dietary n-3 PUFA, of ethanol-induced oxidative stress.  相似文献   

17.
Although a number of studies have focused on the higher ethyl pyruvate antioxidative activity than its sodium salt under various stress conditions, and the greater protective properties of the ester form have been suggested as the effect of better cell membrane penetration, the molecular mechanism has remained unclear. The aim of the present study was therefore to compare the antioxidative activities of sodium and ethyl pyruvate under in vitro conditions by using a liver homogenate as the model for cell membrane transport deletion. The potential effect of ethanol was also evaluated, and hypochlorous acid was used as an oxidant. Our data indicate the concentration-dependent scavenging potency of both sodium and ethyl pyruvate, with the ester having higher activity. This effect was not related to the presence of ethanol. Better protection of the liver homogenate by ethyl pyruvate was also apparent, despite the fact that cell membrane transport was omitted.  相似文献   

18.
Young, adult, and old rats were used to study the effect of age on the integrity and functioning of brain synaptosomes. An evaluation was made of the differences in lipid composition, membrane fluidity, Na+, K(+)-ATPase activity, and susceptibility to in vitro lipid peroxidation. There was an age-related increase in synaptosomal free fatty acids, with no modification in acyl chain composition, and a decrease in membrane phospholipids which increased the cholesterol/phospholipid mole ratio. With altered lipid composition, there was a corresponding age-dependent decrease in membrane fluidity, a reduction of Na+, K(+)-ATPase activity, and an overall greater susceptibility to in vitro lipid peroxidation. Furthermore, lipid peroxidation promoted strong modifications of the membrane fluidity, lipid composition, and Na+,K(+)-ATPase activity just as aging did, thus indicating a possible contribution of oxidative damage to ageing processes. The cases studied revealed that the greater responsiveness of old membranes to in vitro lipid peroxidation resulted in the highest degree of membrane alteration, indicating that all pathological states known to promote a peroxidative injury can have even more dramatic consequences when they take place in old brain.  相似文献   

19.
Macrophage activation is essential for a correct and efficient response of innate immunity. During oxidative stress membrane receptors and/or membrane lipid dynamics can be altered, leading to dysfunctional cell responses. Our aim is to analyze membrane fluidity modifications and cell function under oxidative stress in LPS-activated macrophages. Membrane fluidity of individual living THP-1 macrophages was evaluated by the technique two-photon microscopy. LPS-activated macrophage function was determined by TNFα secretion. It was shown that LPS activation causes fluidification of macrophage plasma membrane and production of TNFα. However, oxidative stress induces rigidification of macrophage plasma membrane and inhibition of cell activation, which is evidenced by a decrease of TNFα secretion. Thus, under oxidative conditions macrophage proinflammatory response might develop in an inefficient manner.  相似文献   

20.
Many chlorinated phenols and their derivatives are used extensively as insecticides, fungicides and herbicides by industrial and agricultural users throughout the world. Among these substances, pentachlorophenol (PCP) is a broad-spectrum biocide, which is still used as a wood preservative. In this paper, the digestive gland cells were used to assess the effect of PCP in the range of concentrations 3.75-75 microM (0.01-0.2 ppm) on oxidative DNA damage, fluidity changes and peroxidation activity in the plasma membrane. The toxic property of PCP on DNA strand breakage was studied using the comet assay. The results showed that pentachlorophenol in the range of 37.5-75 microM contributed to these lesions. To demonstrate the changes in the fluidity of plasma membrane we used the spectrofluorimetric method using two fluorescence probes: 1-[4-(trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH) and 12-(9-anthroyloxy) stearic acid (12-AS). It was shown that PC did not influence the surface of plasma membrane but contributed to the increase in the fluidity of the internal region of the lipid bilayer in the range of concentrations 18.75-75 microM (0.05-0.2 ppm). We also examined the effect of PCP on the lipid peroxidation. To imply its peroxidation properties the spectrophotometry method was used to measure the level of malondialdehyde (MDA), one of the endpoints of the peroxidation of polyunsaturated fatty acids. The obtained results showed that PCP in the used doses did not initiate the formation of lipid peroxides. Thus, our investigation indicates that PCP can behave as a prooxidant agent but its action depends on the used doses and parameters chosen for the research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号