首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
2.
3.
We outline a method of inferring rooting depth from a Terrestrial Biosphere Model by maximizing the benefit of the vegetation within the model. This corresponds to the evolutionary principle that vegetation has adapted to make best use of its local environment. We demonstrate this method with a simple coupled biosphere/soil hydrology model and find that deep rooted vegetation is predicted in most parts of the tropics. Even with a simple model like the one we use, it is possible to reproduce biome averages of observations fairly well. By using the optimized rooting depths global Annual Net Primary Production (and transpiration) increases substantially compared to a standard rooting depth of one meter, especially in tropical regions that have a dry season. The decreased river discharge due to the enhanced evaporation complies better with observations. We also found that the optimization process is primarily driven by the water deficit/surplus during the dry/wet season for humid and arid regions, respectively. Climate variability further enhances rooting depth estimates. In a sensitivity analysis where we simulate changes in the water use efficiency of the vegetation we find that vegetation with an optimized rooting depth is less vulnerable to variations in the forcing. We see the main application of this method in the modelling communities of land surface schemes of General Circulation Models and of global Terrestrial Biosphere Models. We conclude that in these models, the increased soil water storage is likely to have a significant impact on the simulated climate and the carbon budget, respectively. Also, effects of land use change like tropical deforestation are likely to be larger than previously thought.  相似文献   

4.
The Lund–Potsdam–Jena Dynamic Global Vegetation Model (LPJ) combines process‐based, large‐scale representations of terrestrial vegetation dynamics and land‐atmosphere carbon and water exchanges in a modular framework. Features include feedback through canopy conductance between photosynthesis and transpiration and interactive coupling between these ‘fast’ processes and other ecosystem processes including resource competition, tissue turnover, population dynamics, soil organic matter and litter dynamics and fire disturbance. Ten plants functional types (PFTs) are differentiated by physiological, morphological, phenological, bioclimatic and fire‐response attributes. Resource competition and differential responses to fire between PFTs influence their relative fractional cover from year to year. Photosynthesis, evapotranspiration and soil water dynamics are modelled on a daily time step, while vegetation structure and PFT population densities are updated annually. Simulations have been made over the industrial period both for specific sites where field measurements were available for model evaluation, and globally on a 0.5°° × 0.5°° grid. Modelled vegetation patterns are consistent with observations, including remotely sensed vegetation structure and phenology. Seasonal cycles of net ecosystem exchange and soil moisture compare well with local measurements. Global carbon exchange fields used as input to an atmospheric tracer transport model (TM2) provided a good fit to observed seasonal cycles of CO2 concentration at all latitudes. Simulated inter‐annual variability of the global terrestrial carbon balance is in phase with and comparable in amplitude to observed variability in the growth rate of atmospheric CO2. Global terrestrial carbon and water cycle parameters (pool sizes and fluxes) lie within their accepted ranges. The model is being used to study past, present and future terrestrial ecosystem dynamics, biochemical and biophysical interactions between ecosystems and the atmosphere, and as a component of coupled Earth system models.  相似文献   

5.
The climate has important influences on the distribution and structure of forest ecosystems, which may lead to vital feedback to climate change. However, much of the existing work focuses on the changes in carbon fluxes or water cycles due to climate change and/or atmospheric CO2, and few studies have considered how and to what extent climate change and CO2 influence the ecosystem structure (e.g., fractional coverage change) and the changes in the responses of ecosystems with different characteristics. In this work, two dynamic global vegetation models (DGVMs): IAP‐DGVM coupled with CLM3 and CLM4‐CNDV, were used to investigate the response of the forest ecosystem structure to changes in climate (temperature and precipitation) and CO2 concentration. In the temperature sensitivity tests, warming reduced the global area‐averaged ecosystem gross primary production in the two models, which decreased global forest area. Furthermore, the changes in tree fractional coverage (ΔFtree; %) from the two models were sensitive to the regional temperature and ecosystem structure, i.e., the mean annual temperature (MAT; °C) largely determined whether ΔFtree was positive or negative, while the tree fractional coverage (Ftree; %) played a decisive role in the amplitude of ΔFtree around the globe, and the dependence was more remarkable in IAP‐DGVM. In cases with precipitation change, Ftree had a uniformly positive relationship with precipitation, especially in the transition zones of forests (30% < Ftree < 60%) for IAP‐DGVM and in semiarid and arid regions for CLM4‐CNDV. Moreover, ΔFtree had a stronger dependence on Ftree than on the mean annual precipitation (MAP; mm/year). It was also demonstrated that both models captured the fertilization effects of the CO2 concentration.  相似文献   

6.
利用CASA模型模拟西南喀斯特植被净第一性生产力   总被引:23,自引:12,他引:23  
董丹  倪健 《生态学报》2011,31(7):1855-1866
基于SPOT NDVI遥感数据并结合数字高程模型、气象数据和植被参数,利用实测植被生产力计算和修正最大光能利用率,通过改进CASA过程模型,本文估算了中国西南喀斯特地区1999—2003年的植被净第一性生产力(NPP)。结果表明:1)改进后的CASA模型模拟的植被NPP与实测值相关性显著,可较好用于西南喀斯特植被的NPP估算;2)西南8省市区1999—2000年喀斯特和非喀斯特植被的NPP有轻度增加,但空间变化不显著,2001年低值区范围增加,2002年NPP高值区的范围明显扩大,随后在2003年又降低,但仍高于2001年;3)5年间西南喀斯特地区年NPP的变化范围是381.7—439.9 gC m-2 yr-1,平均值为402.34 gC m-2 yr-1,逐年NPP波动中呈现总体增长趋势,平均增加值为9.93 gC m-2 yr-1,5年总增加量为11TgC,但非喀斯特地区的年NPP平均值和增加值都大于喀斯特地区;4)5年间喀斯特地区的热带森林、亚热带森林、灌丛和草地的逐年NPP均小于非喀斯特地区,温带森林和农业植被则相反;这6种典型植被年NPP均呈增加趋势,热带森林的增加值最大,草地最小,非喀斯特地区植被NPP的增长趋势相似,但每种植被的年NPP增加值均大于喀斯特地区。西南喀斯特地区植被NPP的时空变化与气温、降水和太阳辐射的变化有关,而喀斯特植被NPP低于非喀斯特地区,则主要由喀斯特地区水分匮缺、土壤贫瘠等恶劣条件而抑制植物生长造成的。  相似文献   

7.
Concentrations of atmospheric CO(2) and tropospheric ozone (O(3)) are rising concurrently in the atmosphere, with potentially antagonistic effects on forest net primary production (NPP) and implications for terrestrial carbon sequestration. Using free-air CO(2) enrichment (FACE) technology, we exposed north-temperate forest communities to concentrations of CO(2) and O(3) predicted for the year 2050 for the first 7 yr of stand development. Site-specific allometric equations were applied to annual nondestructive growth measurements to estimate above- and below-ground biomass and NPP for each year of the experiment. Relative to the control, elevated CO(2) increased total biomass 25, 45 and 60% in the aspen, aspen-birch and aspen-maple communities, respectively. Tropospheric O(3) caused 23, 13 and 14% reductions in total biomass relative to the control in the respective communities. Combined fumigation resulted in total biomass response of -7.8, +8.4 and +24.3% relative to the control in the aspen, aspen-birch and aspen-sugar maple communities, respectively. These results indicate that exposure to even moderate levels of O(3) significantly reduce the capacity of NPP to respond to elevated CO(2) in some forests.  相似文献   

8.
Zeng H Q  Liu Q J  Feng Z W  Wang X K  Ma Z Q 《农业工程》2008,28(11):5314-5321
In this study, the BIOME-BGC model, a biogeochemical model, was used and validated to estimate GPP (Gross Primary Productivity) and NPP (Net Primary Productivity) of Pinus elliottii forest in red soil hilly region and their responses to inter-annual climate variability during the period of 1993–2004 and climate change scenarios in the future. Results showed that the average total GPP and NPP were 1941 g C m?2a?1 and 695 g C m?2a?1, and GPP and NPP showed an increasing trend during the study period. The precipitation was the key factor controlling the GPP and NPP variation. Scenario analysis showed that doubled CO2 concentration would not benefit for GPP and NPP with less than 1.5% decrease. When CO2 concentration fixed, GPP responded positively to precipitation change only, and temperature increase by 1.5°C with precipitation increase, while NPP responded positively to precipitation change only. When CO2 concentration was doubled and climate was changed, GPP and NPP responded positively to precipitation change, and GPP also responded positively to temperature increase by 1.5°C with precipitation change.  相似文献   

9.
The net ecosystem CO2 exchange (NEE) drives the carbon (C) sink–source strength of northern peatlands. Since NEE represents a balance between various production and respiration fluxes, accurate predictions of its response to global changes require an in depth understanding of these underlying processes. Currently, however, detailed information of the temporal dynamics as well as the separate biotic and abiotic controls of the NEE component fluxes is lacking in peatland ecosystems. In this study, we address this knowledge gap by using an automated chamber system established across natural and trenching/vegetation removal plots to partition NEE into its production (i.e., gross and net primary production; GPP and NPP) and respiration (i.e., ecosystem, heterotrophic and autotrophic respiration; ER, Rh and Ra) fluxes in a boreal peatland in northern Sweden. Our results showed that daily NEE patterns were driven by GPP while variations in ER were governed by Ra rather than Rh. Moreover, we observed pronounced seasonal shifts in the Ra/Rh and above/belowground NPP ratios throughout the main phenological phases. Generalized linear model analysis revealed that the greenness index derived from digital images (as a proxy for plant phenology) was the strongest control of NEE, GPP and NPP while explaining considerable fractions also in the variations of ER and Ra. In addition, our data exposed greater temperature sensitivity of NPP compared to Rh resulting in enhanced C sequestration with increasing temperature. Overall, our study suggests that the temporal patterns in NEE and its component fluxes are tightly coupled to vegetation dynamics in boreal peatlands and thus challenges previous studies that commonly identify abiotic factors as key drivers. These findings further emphasize the need for integrating detailed information on plant phenology into process‐based models to improve predictions of global change impacts on the peatland C cycle.  相似文献   

10.
研究中国北方杨树人工林碳水通量对气候变化的响应,对于制定合理的经营管理措施以应对区域的气候变化具有重要意义。基于对杨树人工林碳水通量的连续监测数据和对Biome-BGC模型参数的校准,模拟分析杨树人工林碳水通量及水分利用效率(WUE)对气候变化(气温上升、降水变化和大气CO_2浓度上升)的响应规律。结果表明,Biome-BGC模型校准后显著提升了其对杨树人工林碳水通量的模拟精度,对GPP、ET模拟结果的Nash-Sutcliffe效率系数(NS)分别为0.69和0.63,各自提高了64.3%和80%,均方根误差(RMSE)则分别降低至1.94 g C m~(-2) d~(-1)和0.88 mm/d,分别下降了26.5%和25.4%。在未来气候变化情景中,单独的气温上升、降水增加和大气CO_2浓度上升分别造成GPP的降低、升高和升高,其中GPP对大气CO_2浓度上升的响应程度(28%—44%)远高于对气温上升(1%—5%)和降水变化(3%—10%)的,ET则主要受降水的影响,响应程度在5%—14%之间。GPP和ET对气候变化的响应则受不同水平的气温上升、降水变化和大气CO_2浓度上升三者综合作用的影响。基于GPP和ET对气候变化的响应,WUE随气温上升、降水增加表现为降低趋势,随降水减少和大气CO_2浓度升高则呈升高趋势;其对未来气候中大气CO_2浓度升高的响应程度为27.7%—43.6%,远高于对气温上升(1.2%—5.8%)和降水变化(1.2%—3.5%)的,说明未来气候变化中大气CO_2浓度上升是促进杨树生长的主要因素;其中相对于当前WUE(2.8 g C/kg H_2O),C2T2P1和C0T3P0情景下WUE的升高和降低幅度最大,分别为45.4%和5.8%。  相似文献   

11.
Arctic vegetation is characterized by high spatial variability in plant functional type (PFT) composition and gross primary productivity (P). Despite this variability, the two main drivers of P in sub‐Arctic tundra are leaf area index (LT) and total foliar nitrogen (NT). LT and NT have been shown to be tightly coupled across PFTs in sub‐Arctic tundra vegetation, which simplifies up‐scaling by allowing quantification of the main drivers of P from remotely sensed LT. Our objective was to test the LTNT relationship across multiple Arctic latitudes and to assess LT as a predictor of P for the pan‐Arctic. Including PFT‐specific parameters in models of LTNT coupling provided only incremental improvements in model fit, but significant improvements were gained from including site‐specific parameters. The degree of curvature in the LTNT relationship, controlled by a fitted canopy nitrogen extinction co‐efficient, was negatively related to average levels of diffuse radiation at a site. This is consistent with theoretical predictions of more uniform vertical canopy N distributions under diffuse light conditions. Higher latitude sites had higher average leaf N content by mass (NM), and we show for the first time that LTNT coupling is achieved across latitudes via canopy‐scale trade‐offs between NM and leaf mass per unit leaf area (LM). Site‐specific parameters provided small but significant improvements in models of P based on LT and moss cover. Our results suggest that differences in LTNT coupling between sites could be used to improve pan‐Arctic models of P and we provide unique evidence that prevailing radiation conditions can significantly affect N allocation over regional scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号