首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously described a lipopolyplex formulation comprising a mixture of a cationic peptide with an integrin-targeting motif (K16GACRRETAWACG) and Lipofectin, a liposome consisting of DOTMA and DOPE in a 1:1 ratio. The high transfection efficiency of the mixture involved a synergistic interaction between the lipid/peptide components. The aim of this study was to substitute the lipid component of the lipopolyplex to optimize transfection further and to seek information on the structure-activity relationship of the lipids in the lipopolyplex. Symmetrical cationic lipids with diether linkages that varied in alkyl chain length were formulated into liposomes and then incorporated into a lipopolyplex by mixing with an integrin-targeting peptide and plasmid DNA. Luciferase transfections were performed of airway epithelial cells and fibroblasts in vitro and murine lung airways in vivo. The biophysical properties of lipid structures and liposome formulations and their potential effects on bilayer membrane fluidity were determined by differential scanning calorimetry and calcein-release assays. Shortening the alkyl tail from C18 to C16 or C14 enhanced lipopolyplex and lipoplex transfection in vitro but with differing effects. The addition of DOPE enhanced transfection when formulated into liposomes with saturated lipids but was more variable in its effects with unsaturated lipids. A substantial improvement in transfection efficacy was seen in murine lung transfection with unsaturated lipids with 16 carbon alkyl tails. The optimal liposome components of lipopolyplex and lipoplex vary and represent a likely compromise between their differing structural and functional requirements for complex formation and endosomal membrane destabilization.  相似文献   

2.
Lipoplex size determines lipofection efficiency with or without serum   总被引:5,自引:0,他引:5  
In order to identify factors affecting cationic liposome-mediated gene transfer, the relationships were examined among cationic liposome/DNA complex (lipoplex)-cell interactions, lipoplex size and lipoplex-mediated transfection (lipofection) efficiency. It was found that lipofection efficiency was determined mainly by lipoplex size, but not by the extent of lipoplex-cell interactions including binding, uptake or fusion. In addition, it was found that serum affected mainly lipoplex size, but not lipoplex-cell interactions, which effect was the major reason behind the inhibitory effect of serum on lipofection efficiency. It was concluded that, in the presence or absence of serum, lipoplex size is a major factor determining lipofection efficiency. Moreover, in the presence or absence of serum, lipoplex size was found to affect lipofection efficiency by controlling the size of the intracellular vesicles containing lipoplexes after internalization, but not by affecting lipoplex-cell interactions. In addition, large lipoplex particles showed, in general, higher lipofection efficiency than small particles. These results imply that, by controlling lipoplex size, an efficient lipid delivery system may be achieved for in vitro and in vivo gene therapy.  相似文献   

3.
Transfection efficiency of lipoplex-mediated gene delivery is multifactorial. However, the mode of interaction between the factors which affect transfection is not fully understood. To help fill this deficiency we evaluated the effect of the interplay between several variables that affect transfection efficiency in cell cultures. For this, we applied the Analysis of Variance Model with Fixed Effects and Repeated Measures to assess the data. The variables studied include: two different genes, Luc, and human growth hormone (hGH), in three different plasmids (two of which contain the luciferase (Luc) gene, but different promoter-enhancer regions (CMV and H19) and one plasmid coding hGH with a S16 promoter); three topoisoforms of pDNA (supercoiled (SC), open circular (OC), and closed circular (CC)); three cationic lipid compositions, all based on the monocationic lipid DOTAP (100% DOTAP, DOTAP/DOPE 1 : 1, and DOTAP/cholesterol 1 : 1, all ratios are mole ratios); two DNA-/L+ charge ratios (0.2 and 0.5); and two cell lines (NIH 3T3 and MBT-2). Our statistical analysis confirmed that the cell type, the gene used for transfection, the promoter type, the type of helper lipid, and DNA-/DOTAP+ charge ratio, all affect transfection efficiency in a statistically significant manner. The most efficient lipoplex formulation in both cell lines was that based on DOTAP (without helper lipid), having CC plasmid DNA. We suggest that for obtaining the most transfection-efficient lipoplex one should select the best topoisoform of pDNA for each particular cell type, and complex it with cationic liposomes having optimal lipid composition.  相似文献   

4.
Cationic lipid/DNA complexes (lipoplexes) are promising vehicles for DNA vaccines or gene therapy. In these systems, transfection efficiency is highly related to lipoplex charge ratio, since lipoplexes with charge ratios (±) lower than electroneutrality have most DNA uncovered by the liposomes, and thus are unprotected from enzyme degradation. However, a large excess of cationic lipids is undesirable because of eventual cytotoxicity. The aim of this work was to determine the minimum charge ratio from which all DNA molecules are complexed by the liposomes varying the lipid formulation and plasmid size, using a new FRET (fluorescence resonance energy transfer) methodology. The similarity of FRET results, fluorescence intensity data and fluorescence decays of several charge ratios above (±) ≥ 4 or 5 confirmed that once all DNA is covered by the liposomes, additional lipid molecules do not affect the lipoplex multilamellar repeat distance. It was also verified by FRET that the presence of helper lipid reduces the amount of cationic lipid required for DNA protection but does not affect the lipoplex multilamellar repeat distance. This distance varies with the plasmid size when supercoiled plasmid is used, being apparently larger when longer plasmids are used. Our study indicates that, despite the complexity of these systems not being totally described by our model, FRET is an informative technique in lipoplex characterization.  相似文献   

5.
In order to identify factors affecting cationic Iiposome-mediated gene transfer, the relationships were examined among cationic liposome/DNA complex (lipoplex)-cell interactions, lipoplex size and lipoplex-mediated transfection (lipofection) efficiency. It was found that lipofection efficiency was determined mainly by lipoplex size, but not by the extent of lipoplex-cell interactions including binding, uptake or fusion. In addition, it was found that serum affected mainly lipoplex size, but not lipoplex-cell interactions, which effect was the major reason behind the inhibitory effect of serum on lipofection efficiency. It was concluded that, in the presence or absence of serum, lipoplex size is a major factor determining Iipofection efficiency. Moreover, in the presence or absence of serum, lipoplex size was found to affect lipofection efficiency by controlling the size of the intracellular vesicles containing lipoplexes after internalization, but not by affecting lipoplex-cell interactions. In addition, large lipoplex particles showed, in general, higher lipofection efficiency than small particles. These results imply that, by controlling lipoplex size, an efficient lipid delivery system may be achieved for in vitro and in vivo gene therapy.  相似文献   

6.
We have previously described a lipopolyplex formulation comprising a mixture of a cationic peptide with an integrin-targeting motif (K16GACRRETAWACG) and Lipofectin®, a liposome consisting of DOTMA and DOPE in a 1:1 ratio. The high transfection efficiency of the mixture involved a synergistic interaction between the lipid/peptide components. The aim of this study was to substitute the lipid component of the lipopolyplex to optimize transfection further and to seek information on the structure-activity relationship of the lipids in the lipopolyplex. Symmetrical cationic lipids with diether linkages that varied in alkyl chain length were formulated into liposomes and then incorporated into a lipopolyplex by mixing with an integrin-targeting peptide and plasmid DNA. Luciferase transfections were performed of airway epithelial cells and fibroblasts in vitro and murine lung airways in vivo. The biophysical properties of lipid structures and liposome formulations and their potential effects on bilayer membrane fluidity were determined by differential scanning calorimetry and calcein-release assays. Shortening the alkyl tail from C18 to C16 or C14 enhanced lipopolyplex and lipoplex transfection in vitro but with differing effects. The addition of DOPE enhanced transfection when formulated into liposomes with saturated lipids but was more variable in its effects with unsaturated lipids. A substantial improvement in transfection efficacy was seen in murine lung transfection with unsaturated lipids with 16 carbon alkyl tails. The optimal liposome components of lipopolyplex and lipoplex vary and represent a likely compromise between their differing structural and functional requirements for complex formation and endosomal membrane destabilization.  相似文献   

7.
Using a group of structurally related cytofectins, the effects of different vehicle constituents and mixing techniques on the physical properties and biological activity of lipoplexes were systematically examined. Physical properties were examined using a combination of dye accessibility assays, centrifugation, gel electrophoresis and dynamic light scattering. Biological activity was examined using in vitro transfection. Lipoplexes were formulated using two injection vehicles commonly used for in vivo delivery (PBS pH 7.2 and 0.9% saline), and a sodium phosphate vehicle previously shown to enhance the biological activity of naked pDNA and lipoplex formulations. Phosphate was found to be unique in its effect on lipoplexes. Specifically, the accessible pDNA in lipoplexes formulated with cytofectins containing a gamma-amine substitution in the headgroup was dependent on alkyl side chain length and sodium phosphate concentration, but the same effects were not observed when using cytofectins containing a beta-OH headgroup substitution. The physicochemical features of the phosphate anion, which give rise to this effect in gamma-amine cytofectins, were deduced using a series of phosphate analogs. The effects of the formulation vehicle on transfection were found to be cell type-dependent; however, of the formulation variables examined, the liposome/pDNA mixing method had the greatest effect on transgene expression in vitro. Thus, though predictive physical structure relationships involving the vehicle and cytofectin components of the lipoplex were uncovered, they did not extrapolate to trends in biological activity.  相似文献   

8.
In order to investigate the relationship between lipid structure and liposome-mediated gene transfer, we have studied biophysical parameters and transfection properties of monocationic DOTAP analogs, systematically modified in their non-polar hydrocarbon chains. Stability, size and (by means of anisotropy profiles) membrane fluidity of liposomes and lipoplexes were determined, and lipofection efficiency was tested in a luciferase reporter gene assay. DOTAP analogs were used as single components or combined with a helper lipid, either DOPE or cholesterol. Stability of liposomes was a precondition for formation of temporarily stable lipoplexes. Addition of DOPE or cholesterol improved liposome and lipoplex stability. Transfection efficiencies of lipoplexes based on pure DOTAP analogs could be correlated with stability data and membrane fluidity at transfection temperature. Inclusion of DOPE led to rather uniform transfection and anisotropy profiles, corresponding to lipoplex stability. Cholesterol-containing lipoplexes were generally stable, showing high transfection efficiency at low relative fluidity. Our results demonstrate that the efficiency of gene transfer mediated by monocationic lipids is greatly influenced by lipoplex biophysics due to lipid composition. The measurement of fluorescence anisotropy is an appropriate method to characterize membrane fluidity within a defined system of liposomes or lipoplexes and may be helpful to elucidate structure-activity relationships.  相似文献   

9.
The large number of cytofectin and co-lipid combinations currently used for lipoplex-mediated gene delivery reflects the fact that the optimal cytofectin/co-lipid combination varies with the application. The effects of structural changes in both cytofectin and co-lipid were systematically examined to identify structure–activity relationships. Specifically, alkyl chain length, degree of unsaturation and the head group to which the alkyl side chain was attached were examined to determine their effect on lipoplex structure and biological activity. The macroscopic lipoplex structure was assessed using a dye-binding assay and the biological activity was examined using in vitro transfection in three diverse cell lines. Lipoplexes were formulated in three different vehicles currently in use for in vivo delivery of naked plasmid DNA (pDNA) and lipoplex formulations. The changes in dye accessibility were consistent with structural changes in the lipoplex, which correlated with alterations in the formulation. In contrast, transfection activity of different lipoplexes was cell type and vehicle dependent and did not correlate with dye accessibility. Overall, the results show a correlation between transfection and enhanced membrane fluidity in both the lipoplex and cellular membranes.  相似文献   

10.
Cationic lipids are widely used for gene transfection, but their mechanism of action is still poorly understood. To improve this knowledge, a structure-function study was carried out with two pyridinium-based lipid analogs with identical headgroups but differing in alkyl chain (un)saturation, i.e., SAINT-2 (diC18:1) and SAINT-5 (diC18:0). Although both amphiphiles display transfection activity per se, DOPE strongly promotes SAINT-2-mediated transfection, but not that of SAINT-5, despite the fact that DOPE effectively facilitates plasmid dissociation from either lipoplex. This difference appears to correlate with membrane stiffness, dictated by the cationic lipid packing in the donor liposomes, which governs the kinetics of lipid recruitment by the plasmid upon lipoplex assembly. Because of its interaction with the relatively rigid SAINT-5 membranes, the plasmid becomes inappropriately condensed, which results in formation of structurally deformed lipoplexes. This structural deformation does not affect its cellular uptake but, rather, hampers plasmid translocation across endosomal and/or nuclear membranes. This is inferred from the observation that both lipoplexes effectively translocate much smaller oligonucleotides into cells. In fact, SAINT-5/DOPE-mediated transfection is greatly improved when, before lipoplex assembly, the plasmid is stabilized by condensation with polylysine. The results emphasize a role of the structural shape of the plasmid in gaining cytosolic/nuclear access. Moreover, it has been proposed that such a translocation is promoted when the lipoplex adopts the hexagonal phase, and data are presented that demonstrate that the lamellar SAINT-5/DOPE lipoplex adopts such a phase after its interaction with acidic phospholipid-containing membranes.  相似文献   

11.
A cationic lipid (TRX) having an amidine headgroup was synthesized, and a lipoplex (i.e., plasmid DNA+lipid complex) was prepared from the mixture of TRX and two other neutral colipids. Small-angle X-ray scattering showed that the addition of DNA induced a structural transition from normal to inverted hexagonally packed cylinders. Transmission electron microscopy showed a threadlike micelle was transformed to a spherical micelle about 50-200 nm in diameter by adding DNA. A combination of these results leads to the conclusion that the complexed DNA is hexagonally packed (or condensed) into spherical aggregates. The size and morphology are believed suitable for endocytosis uptake or vesicle fusion. The complex made from pDNA (pEGFP-C1) and TRX was transfected to Hep G2. Flow cytometry and confocal microscopy showed that the present system expressed green fluorescence protein (GFP) more than a conventional transfection reagent. Additionally, TRX was less cytotoxic than other transfection reagents. This paper presents the attractive possibility of the amidine group for a transfection device.  相似文献   

12.
Y Xu  S W Hui  P Frederik    F C Szoka  Jr 《Biophysical journal》1999,77(1):341-353
Cationic lipid-nucleic acid complexes (lipoplexes) consisting of dioleoyltrimethylammoniumpropane (DOTAP) liposomes and plasmid DNA were prepared at various charge ratios (cationic group to nucleotide phosphate), and the excess component was separated from the lipoplex. We measured the stoichiometry of the lipoplex, noted its colloidal properties, and observed its morphology and structure by electron microscopy. The colloidal properties of the lipoplexes were principally determined by the cationic lipid/DNA charge ratio and were independent of the lipid composition. In lipoplexes, the lipid membranes as observed in freeze-fracture electron microscopy were deformed into high-radius-of-curvature features whose characteristics depended on the lipid composition. Lipoplexes prepared at a threefold or greater excess of either DOTAP or DNA could be resolved into complexes with a defined stoichiometry and the excess component by sedimentation to equilibrium on sucrose gradients. The separated, positively charged complex retained high transfection activity and had reduced toxicity. The negatively charged lipoplex showed increased transfection activity compared to the starting mixture. In cryoelectron micrographs the positively charged complex was spherical and contained a condensed but indistinct interior structure. In contrast, the separated negatively charged lipoplexes had a prominent internal 5.9 +/- 0.1-nm periodic feature with material projecting as spikes from the spherical structure into the solution. It is likely that these two lipoplexes represent structures with different lipid and DNA packing.  相似文献   

13.
Transfection of NIH-3T3 cells by a human growth hormone expression vector complexed with liposomes composed of N-(1-(2, 3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTAP) with or without helper lipids was studied. The transfection efficiency was dependent on the lamellarity of the liposomes used to prepare the lipoplexes. Multilamellar vesicles (MLV) were more effective than large unilamellar vesicles (LUV) of approximately 100 nm, irrespective of lipid composition. The optimal DNA/DOTAP mole ratio for transfection was 相似文献   

14.
It has been previously shown that transfection activity of cationic liposome/DNA lipoplexes delivered systemically is drastically inhibited by lipoproteins (Tandia, B. M., Vandenbranden, M., Wattiez, R., Lakhdar, Z., Ruysschaert, J. M., and Elouahabi, A. (2003) Mol Ther. 8, 264-273). In this work, we have compared the binding/uptake and transfection activities of DOTAP (N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride) and diC14-amidine (3-tetradecylamino-N-tert-butyl-N'-tetra-decylpropionamidine)-containing lipoplexes in the presence or absence of purified low density lipoproteins and high density lipoprotein. Binding/uptake of both lipoplexes by the mouse lung endothelial cell line was inhibited to a similar extent in the presence of lipoproteins. In contrast, transfection activity of diC14-amidine-containing lipoplexes was almost completely inhibited (approximately by 95%), whereas approximately 40% transfection activity of DOTAP-containing lipoplexes was preserved in the presence of lipoproteins. Interestingly, the ability of lipoproteins to inhibit the transfection efficiency of lipoplexes was well correlated with their ability to undergo lipid mixing with the cationic lipid bilayer as revealed by fluorescence resonance energy transfer assay. Incubation of lipoplexes with increased doses of lipoproteins resulted in enhanced lipid mixing and reduced transfection activity of the lipoplexes in mouse lung endothelial cells. The role of lipid mixing in transfection was further demonstrated using lipid-mixing inhibitor, lyso-phosphatidylcholine, or activator (dioleoylphosphatidylethanolamine). Incorporation of Lyso-PC into diC14-amidine-containing lipoplexes completely abolished their capacity to undergo lipid mixing with lipoproteins and allowed them to reach a high transfection efficiency in the presence of lipoproteins. On the other hand, the incorporation of dioleoylphosphatidylethanolamine into DOTAP/DNA lipoplex activated lipid mixing with the lipoproteins and was shown to be detrimental toward the transfection activity of these lipoplexes. Taken together, these results indicate that fusion of lipoplexes with lipoproteins is a limiting factor for in vivo transfection.  相似文献   

15.
Ethylphosphatidylcholines are positively charged membrane lipid derivatives, which effectively transfect DNA into cells and are metabolized by the cells. For this reason, they are promising nonviral transfection agents. With the aim of revealing the kinds of lipid phases that may arise when lipoplexes interact with cellular lipids during DNA transfection, temperature-composition phase diagrams of mixtures of the O-ethyldipalmitoylphosphatidylcholine with representatives of the major lipid classes (phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, cholesterol) were constructed. Phase boundaries were determined using differential scanning calorimetry and synchrotron x-ray diffraction. The effects of ionic strength and of DNA presence were examined. A large variety of polymorphic and mesomorphic structures were observed. Surprisingly, marked enhancement of the affinity for nonlamellar phases was observed in mixtures with phosphatidylethanolamine and cholesterol as well as with phosphatidylglycerol (previously reported). Because of the potential relevance to transfection, it is noteworthy that such phases form at close to physiological conditions, and in the presence of DNA. All four mixtures exhibit a tendency to molecular clustering in the gel phase, presumably due to the specific interdigitated molecular arrangement of the O-ethyldipalmitoylphosphatidylcholine gel bilayers. It is evident that a remarkably broad array of lipid phases could arise in transfected cells and that these could have significant effects on transfection efficiency. The data may be particularly useful for selecting possible "helper" lipids in the lipoplex formulations, and in searches for correlations between lipoplex structure and transfection activity.  相似文献   

16.

Background

Formulation of DNA/cationic lipid complexes (lipoplexes) designed for nucleic acid delivery mostly results in positively charged particles which are thought to enter cells by endocytosis. We recently developed a lipoplex formulation called Neutraplex that allows preparation of both cationic and anionic stable complexes with similar lipid content and ultrastructure.

Methodology/Principal Findings

To assess whether the global net charge could influence cell uptake and activity of the transported oligonucleotides (ON), we prepared lipoplexes with positive and negative charges and compared: (i) their physicochemical properties by zeta potential analysis and dynamic light scattering, (ii) their cell uptake by fluorescence microscopy and flow cytometry, and (iii) the biological activity of the transported ON using a splicing correction assay. We show that positively or negatively charged lipoplexes enter cells cells using both temperature-dependent and -independent uptake mechanisms. Specifically, positively charged lipoplexes predominantly use a temperature-dependent transport when cells are incubated OptiMEM medium. Anionic lipoplexes favour an energy-independent transport and show higher ON activity than cationic lipoplexes in presence of serum. However, lipoplexes with high positive global net charge and OptiMEM medium give the highest uptake and ON activity levels.

Conclusions

These findings suggest that, in addition to endocytosis, lipoplexes may enter cell via a temperature-independent mechanism, which could be mediated by lipid mixing. Such characteristics might arise from the specific lipoplex ultrastructure and should be taken into consideration when developing lipoplexes designed for in vivo or ex vivo nucleic acid transfer.  相似文献   

17.
Non-viral gene therapy is based on the use of plasmid expression vectors and chemical or physical plasmid DNA delivery systems. This review discusses the roles of cationic lipids as vectors for gene transfection, reviews different strategies employed to improve cationic lipids for in vivo use, and provides original results on the physicochemistry of lipoplexes. Cationic lipid/DNA delivery vehicles have evolved considerably since their initial gene transfection experiments. Much work has been carried out to investigate their structure/activity relationships, methods of formulation and physicochemical properties. Further work has also focused on enhancing and prolonging their stability in a physiological environment as well as increasing their site-specific and tissue-specific interactions. Original data presented in this report confirm that cationic lipids associated to DNA form supramolecular lamellar structures, which protect DNA from serum DNAse degradation. The effect of formulation (and hence the size of the particles) on lipoplex in vivo circulation half-life and biodistribution is also discussed. A list of abbreviations can be found at the end of the review.  相似文献   

18.
To advance the use of cationic lipids for non-viral nucleic acid vector formulation, a panel of novel nitrogen heterocycle cholesteryl derivatives containing a biodegradable carbamate linker was synthesised. Optimally acting piperazine and cyclen compounds had nucleic acid-binding and lipoplex nanoparticle formation properties that were suitable for their use as non-viral vectors. It was found that the lipoplexes formed were capable of efficient non-toxic nucleic acid delivery to cells in culture. The chemical structure of individual cationic lipids, which is likely to influence lipoplex formation, affected efficiency of DNA or RNA transfection. The results indicated that the cyclen containing compound possessing two cholesteryl moieties resulted in efficient siRNA-mediated target gene silencing but was a poor reagent for DNA transfection.  相似文献   

19.
Cationic, O-alkylphosphatidylcholines, recently developed as DNA transfection agents, form bilayers indistinguishable from those of natural phospholipids and undergo fusion with anionic bilayers. Membrane merging (lipid mixing), contents release, and contents mixing between populations of positive vesicles containing O-ethylphosphatidylcholine (EDOPC) and negative vesicles containing dioleolylphosphatidylglycerol (DOPG) have been determined with standard fluorometric vesicle-population assays. Surface-charge densities were varied from zero to full charge. All interactions depended critically on surface-charge density, as expected from the adhesion-condensation mechanism. Membrane mixing ranged from zero to 100%, with significant mixing (>10 <70%) occurring between cationic vesicles that were fully charged and anionic vesicles that had fractional surface charges as low as 0.1. Such mixing with membranes as weakly charged as cell membranes should be relevant to transfection with cationic lipids. Unexpectedly, lipid mixing was higher at high than at low ionic strength when one lipid dispersion was prepared from EDOPC plus DOPG (in different proportions), especially when the other vesicles were of EDOPC; this may somehow be a consequence of the ability of the former mixture to assume non-lamellar phases. Leakage of aqueous contents was also a strong function of charge, with fully charged vesicles releasing essentially all of their contents less than 1 min after mixing. EDOPC was more active in this regard than was DOPG, which probably reflects stronger intermolecular interactions of DOPG. Fusion, as measured by contents mixing, exhibited maximal values of 10% at intermediate surface charge. Reduced fusion at higher charge is attributed to multiple vesicle interactions leading to rupture. The existence of previously published data on individual interactions of vesicles of the same composition made it possible for the first time to compare pairwise with population interactions, confirming the likelihood of population studies to overestimate rupture and hemifusion and underestimate true vesicle fusion.  相似文献   

20.
To evaluate the role of lipid charge density in the serum stability of DOTAP-Chol/DNA complexes (lipoplexes), lipid-DNA interactions, extent of aggregation, supercoil content, and in vitro transfection efficiency of lipoplexes were investigated. In general, higher serum concentration destabilized, and increasing molar charge ratio of DOTAP to negatively charged phosphates in the DNA (DOTAP(+)/DNA(-)) stabilized lipoplexes in serum as assessed by the criteria used in this study. The increase of cholesterol content led to increased serum stability, and DOTAP:Chol (mol/mol 1:4)/DNA lipoplex with DOTAP(+)/DNA(-) ratio 4 was the most serum stable formulation of all the formulations examined, and maintained lipid-DNA interactions, did not aggregate and exhibited high in vitro transfection efficiency in 50% (v/v) serum. The increased stability of this formulation could not be explained by the decreased charge density of the lipid component. Furthermore, no single parameter examined in the study could be used to consistently predict the in vitro transfection efficiency of lipoplexes in serum. Surprisingly, no correlation between the maintenance of supercoiled DNA content and in vitro transfection efficiency was found in the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号