首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
S i Matsuyama  N Yokota    H Tokuda 《The EMBO journal》1997,16(23):6947-6955
The Escherichia coli major outer membrane lipoprotein (Lpp) is released from the inner membrane into the periplasm as a complex with a carrier protein, LolA (p20), and is then specifically incorporated into the outer membrane. An outer membrane protein playing a critical role in Lpp incorporation was identified, and partial amino acid sequences of the protein, named LolB, were identical to those of HemM, which has been suggested to play a role in 5-aminolevulinic acid synthesis in the cytosol. In contrast to this suggested role, the deduced amino acid sequence of HemM implied that the gene encodes a novel outer membrane lipoprotein. Indeed, an antibody raised against highly purified LolB revealed its outer membrane localization, and inhibited in vitro Lpp incorporation into the outer membrane. Furthermore, LolB was found to be synthesized as a precursor with a signal sequence and then processed to a lipid-modified mature form. An E.coli strain possessing chromosomal hemM under the control of the lac promoter-operator required IPTG for growth, indicating that hemM (lolB) is an essential gene. Outer membrane prepared from LolB-depleted cells did not incorporate Lpp. When the Lpp-LolA complex was incubated with a water-soluble LolB derivative, Lpp was transferred from LolA to LolB. Based on these results, the outer membrane localization pathway for E.coli lipoprotein is discussed with respect to the functions of LolA and LolB.  相似文献   

2.
The major outer membrane lipoprotein (Lpp) of Escherichia coli requires LolA for its release from the cytoplasmic membrane, and LolB for its localization to the outer membrane. We examined the significance of the LolA-LolB system as to the outer membrane localization of other lipoproteins. All lipoproteins possessing an outer membrane-directed signal at the N-terminal second position were efficiently released from the inner membrane in the presence of LolA. Some lipoproteins were released in the absence of externally added LolA, albeit at a slower rate and to a lesser extent. This LolA-independent release was also strictly dependent on the outer membrane sorting signal. A lipoprotein-LolA complex was formed when the release took place in the presence of LolA, whereas lipoproteins released in the absence of LolA existed as heterogeneous complexes, suggesting that the release and the formation of a complex with LolA are distinct events. The release of LolB, an outer membrane lipoprotein functioning as the receptor for a lipoprotein-LolA complex, occurred with a trace amount of LolA, and therefore was extremely efficient. The LolA-dependent release of lipoproteins was found to be crucial for the specific incorporation of lipoproteins into the outer membrane, whereas lipoproteins released in the absence of LolA were nonspecifically and inefficiently incorporated into the membrane. The outer membrane incorporation of lipoproteins including LolB per se was dependent on LolB in the outer membrane. From these results, we conclude that lipoproteins in E. coli generally utilize the LolA-LolB system for efficient release from the inner membrane and specific localization to the outer membrane.  相似文献   

3.
An ATP-binding cassette transporter LolCDE complex of Escherichia coli releases lipoproteins destined to the outer membrane from the inner membrane as a complex with a periplasmic chaperone, LolA. Interaction of the LolA-lipoprotein complex with an outer membrane receptor, LolB, then causes localization of lipoproteins to the outer membrane. As far as examined, formation of the LolA-lipoprotein complex strictly depends on ATP hydrolysis by the LolCDE complex in the presence of LolA. It has been speculated, based on crystallographic and biochemical observations, that LolA undergoes an ATP-dependent conformational change upon lipoprotein binding. Thus, preparation of a large amount of the LolA-lipoprotein complex is difficult. Moreover, lipoproteins bound to LolA are heterogeneous. We report here that the coexpression of LolA and outer membrane-specific lipoprotein Pal from a very efficient plasmid causes the unusual accumulation of the LolA-Pal complex in the periplasm. The complex was purified to homogeneity and shown to be a functional intermediate of the lipoprotein localization pathway. In vitro incorporation of Pal into outer membranes revealed that a single molecule of LolB catalyzes the incorporation of more than 100 molecules of Pal into outer membranes. Moreover, the LolB-dependent incorporation of Pal was not affected by excess-free LolA, indicating that LolB specifically interacts with liganded LolA. Finally, the LolB depletion caused the accumulation of a significant amount of Pal in the periplasm, thereby establishing the conditions for preparation of the homogeneous LolA-lipoprotein complex.  相似文献   

4.
5.
ATP-binding cassette transporter LolCDE was previously identified, by using reconstituted proteoliposomes, as an apparatus catalyzing the release of outer membrane-specific lipoproteins from the inner membrane of Escherichia coli. Mutations resulting in defective LolD were previously shown to be lethal for E. coli. The amino acid sequences of LolC and LolE are similar to each other, but the necessity of both proteins for lipoprotein release has not been proved. Moreover, previous reconstitution experiments did not clarify whether or not LolCDE is the sole apparatus for lipoprotein release. To address these issues, a chromosomal lolC-lolD-lolE null mutant harboring a helper plasmid that carries the lolCDE genes and a temperature-sensitive replicon was constructed. The mutant failed to grow at a nonpermissive temperature because of the depletion of LolCDE. In addition to functional LolD, both LolC and LolE were required for growth. At a nonpermissive temperature, the outer membrane lipoproteins were mislocalized in the inner membrane since LolCDE depletion inhibited the release of lipoproteins from the inner membrane. Furthermore, both LolC and LolE were essential for the release of lipoproteins. On the other hand, LolCDE depletion did not affect the translocation of a lipoprotein precursor across the inner membrane and subsequent processing to the mature lipoprotein. From these results, we conclude that the LolCDE complex is an essential ABC transporter for E. coli and the sole apparatus mediating the release of outer membrane lipoproteins from the inner membrane.  相似文献   

6.
Lipoproteins having a lipid-modified cysteine at the N-terminus are localized on either the inner or the outer membrane of Escherichia coli depending on the residue at position 2. Five Lol proteins involved in the sorting and membrane localization of lipoprotein are highly conserved in Gram-negative bacteria. We determined the crystal structures of a periplasmic chaperone, LolA, and an outer membrane lipoprotein receptor, LolB. Despite their dissimilar amino acid sequences, the structures of LolA and LolB are strikingly similar to each other. Both have a hydrophobic cavity consisting of an unclosed beta barrel and an alpha-helical lid. The cavity represents a possible binding site for the lipid moiety of lipoproteins. Detailed structural differences between the two proteins provide significant insights into the molecular mechanisms underlying the energy-independent transfer of lipoproteins from LolA to LolB and from LolB to the outer membrane. Furthermore, the structures of both LolA and LolB determined from different crystal forms revealed the distinct structural dynamics regarding the association and dissociation of lipoproteins. The results are discussed in the context of the current model for the lipoprotein transfer from the inner to the outer membrane through a hydrophilic environment.  相似文献   

7.
In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy.  相似文献   

8.
The outer membrane-specific lipoproteins of Escherichia coli are released from the inner membrane as a water-soluble complex with LolA and then transferred to the outer membrane receptor, LolB. LolA thus plays a critical role in the sorting and outer membrane localization of lipoproteins. To dissect the LolA function, the highly conserved residues were subjected to random mutagenesis, followed by selection for a growth defect. LolA(R43L), one of mutants thus constructed, possessed Leu in place of Arg at position 43 and caused accumulation of the LolA(R43L)-lipoprotein complex in the periplasm. LolA(R43L) was as active as wild-type LolA as to the release of lipoproteins from spheroplasts. In marked contrast, the transfer of lipoproteins from LolA(R43L) to LolB was completely inhibited, indicating that Arg at position 43 of LolA is involved in the lipoprotein transfer reaction.  相似文献   

9.
S Matsuyama  T Tajima    H Tokuda 《The EMBO journal》1995,14(14):3365-3372
Lipoproteins are localized in the outer or inner membrane of Escherichia coli, depending on the species of amino acid located next to the N-terminal fatty acylated Cys. The major outer membrane lipoprotein (Lpp) expressed in spheroplasts was, however, retained in the inner membrane as a mature form. A novel protein that is essential for the release of Lpp from the inner membrane was discovered in the periplasm and purified. The partial amino acid sequence of this 20 kDa protein (p20) was determined and used to clone a gene for p20. Sequencing of the gene revealed that p20 is synthesized as a precursor with a signal sequence. p20 formed a soluble complex only with outer membrane-directed lipoproteins such as Lpp, indicating that p20 plays a critical role in the sorting of lipoproteins. Lpp released from the inner membrane in the presence of p20 was specifically assembled into the outer membrane in vitro. These results indicate that p20 is a periplasmic carrier protein involved in the translocation of lipoproteins from the inner to the outer membrane.  相似文献   

10.
Escherichia coli lipoproteins are anchored to the periplasmic surface of the inner or outer membrane depending on the sorting signal. An ATP-binding cassette (ABC) transporter, LolCDE, releases outer membrane-specific lipoproteins from the inner membrane, causing the formation of a complex between the released lipoproteins and the periplasmic molecular chaperone LolA. When this complex interacts with outer membrane receptor LolB, the lipoproteins are transferred from LolA to LolB and then localized to the outer membrane. The structures of LolA and LolB are remarkably similar to each other. Both have a hydrophobic cavity consisting of an unclosed beta-barrel and an alpha-helical lid. Structural differences between the two proteins reveal the molecular mechanisms underlying the energy-independent transfer of lipoproteins from LolA to LolB. Strong inner membrane retention of lipoproteins occurs with Asp at position 2 and a few limited residues at position 3. The inner membrane retention signal functions as a Lol avoidance signal and inhibits the recognition of lipoproteins by LolCDE, thereby causing their retention in the inner membrane. The positive charge of phosphatidylethanolamine and the negative charge of Asp at position 2 are essential for Lol avoidance. The Lol avoidance signal is speculated to cause the formation of a tight lipoprotein-phosphatidylethanolamine complex that has five acyl chains and therefore cannot be recognized by LolCDE.  相似文献   

11.
Escherichia coli lipoproteins are anchored to the periplasmic surface of the inner or outer membrane depending on the sorting signal. An ATP-binding cassette (ABC) transporter, LolCDE, releases outer membrane-specific lipoproteins from the inner membrane, causing the formation of a complex between the released lipoproteins and the periplasmic molecular chaperone LolA. When this complex interacts with outer membrane receptor LolB, the lipoproteins are transferred from LolA to LolB and then localized to the outer membrane. The structures of LolA and LolB are remarkably similar to each other. Both have a hydrophobic cavity consisting of an unclosed beta-barrel and an alpha-helical lid. Structural differences between the two proteins reveal the molecular mechanisms underlying the energy-independent transfer of lipoproteins from LolA to LolB. Strong inner membrane retention of lipoproteins occurs with Asp at position 2 and a few limited residues at position 3. The inner membrane retention signal functions as a Lol avoidance signal and inhibits the recognition of lipoproteins by LolCDE, thereby causing their retention in the inner membrane. The positive charge of phosphatidylethanolamine and the negative charge of Asp at position 2 are essential for Lol avoidance. The Lol avoidance signal is speculated to cause the formation of a tight lipoprotein-phosphatidylethanolamine complex that has five acyl chains and therefore cannot be recognized by LolCDE.  相似文献   

12.
An ATP binding cassette transporter LolCDE complex releases lipoproteins from the inner membrane of Escherichia coli in an ATP-dependent manner, leading to the formation of a complex between a lipoprotein and a periplasmic chaperone, LolA. LolA is proposed to undergo a conformational change upon the lipoprotein binding. The lipoprotein is then transferred from the LolA-lipoprotein complex to the outer membrane via LolB. Unlike most ATP binding cassette transporters mediating the transmembrane flux of substrates, the LolCDE complex catalyzes the extrusion of lipoproteins anchored to the outer leaflet of the inner membrane. Moreover, the LolCDE complex is unique in that it can be purified as a liganded form, which is an intermediate of the lipoprotein release reaction. Taking advantage of these unique properties, we established an assay system that enabled the analysis of a single cycle of lipoprotein transfer reaction from liganded LolCDE to LolA in a detergent solution. The LolA-lipoprotein complex thus formed was physiologically functional and delivered lipoproteins to the outer membrane in a LolB-dependent manner. Vanadate, a potent inhibitor of the lipoprotein release from proteoliposomes, was found to inhibit the release of ADP from LolCDE. However, a single cycle of lipoprotein transfer occurred from vanadate-treated LolCDE to LolA, indicating that vanadate traps LolCDE at the energized state.  相似文献   

13.
Escherichia coli lipoproteins are localized to either the inner or the outer membrane depending on the residue that is present next to the N-terminal acylated Cys. Asp at position 2 causes the retention of lipoproteins in the inner membrane. In contrast, the accompanying study (9) revealed that the residues at positions 3 and 4 determine the membrane specificity of lipoproteins in Pseudomonas aeruginosa. Since the five Lol proteins involved in the sorting of E. coli lipoproteins are conserved in P. aeruginosa, we examined whether or not the Lol proteins of P. aeruginosa are also involved in lipoprotein sorting but utilize different signals. The genes encoding LolCDE, LolA, and LolB homologues were cloned and expressed. The LolCDE homologue thus purified was reconstituted into proteoliposomes with lipoproteins. When incubated in the presence of ATP and a LolA homologue, the reconstituted LolCDE homologue released lipoproteins, leading to the formation of a LolA-lipoprotein complex. Lipoproteins were then incorporated into the outer membrane depending on a LolB homologue. As revealed in vivo, lipoproteins with Lys and Ser at positions 3 and 4, respectively, remained in proteoliposomes. On the other hand, E. coli LolCDE released lipoproteins with this signal and transferred them to LolA of not only E. coli but also P. aeruginosa. These results indicate that Lol proteins are responsible for the sorting of lipoproteins to the outer membrane of P. aeruginosa, as in the case of E. coli, but respond differently to inner membrane retention signals.  相似文献   

14.
The Lol system, comprising five Lol proteins, transfers lipoproteins from the inner to the outer membrane of Escherichia coli. Periplasmic LolA accepts lipoproteins from LolCDE in the inner membrane and immediately transfers them to LolB, a receptor anchored to the outer membrane. The unclosed beta-barrel structures of LolA and LolB are very similar to each other and form hydrophobic cavities for lipoproteins. The lipoprotein transfer between these similar structures is unidirectional and very efficient, but requires no energy input. To reveal the mechanisms underlying this lipoprotein transfer, Arg and Phe at positions 43 and 47, respectively, of LolA were systematically mutagenized. The two residues were previously found to affect abilities to accept and transfer lipoproteins. Substitution of Phe-47 with polar residues inhibited the ability to accept lipoproteins from the inner membrane. No derivatives caused periplasmic accumulation of lipoproteins. In contrast, many Arg-43 derivatives caused unusual periplasmic accumulation of lipoproteins to various extents. However, all derivatives, except one having Leu instead of Arg, supported the growth of cells. All Arg-43 derivatives retained the ability to accept lipoproteins from the inner membrane, whereas their abilities to transfer associated lipoproteins to LolB were variously reduced. Assessment of the intensity of the hydrophobic interaction between lipoproteins and Arg-43 derivatives revealed that the LolA-lipoprotein interaction should be weak, otherwise lipoprotein transfer to LolB is inhibited, causing accumulation of lipoproteins in the periplasm.  相似文献   

15.
LolB, catalyzing the last step of lipoprotein transfer from the inner to the outer membrane of Escherichia coli, is itself a lipoprotein anchored to the outer membrane. Five Trp residues of LolB are conserved among LolB homologs in Gram-negative bacteria. These Trp residues were mutagenized to obtain defective LolB mutants. Mutation of Trp at position 52 to Pro impaired the receptor activity and caused accumulation of the LolA-lipoprotein complex in the periplasm. Similar mutants were obtained for Trp at position 117. A mutant with Gly instead of Trp at position 148 retained the receptor activity but inhibited growth upon its overproduction. The outer membrane sorting of this mutant seemed to be defective, lipoprotein transfer thereby being perturbed when it was overproduced. Despite the strong conservation, no defective mutant for Trp at position 183 was obtained, and only weak mutants were isolated for Trp at position 18. Based on the crystal structure of LolB, the phenotypes of these mutants are discussed.  相似文献   

16.
Bacterial lipoproteins represent a subset of membrane-associated proteins that are covalently modified with lipids at the N-terminal cysteine. The final step of lipoprotein modification, N-acylation of apolipoproteins, is mediated by apolipoprotein N-acyltransferase (Lnt). Examinations with reconstituted proteoliposomes and a conditional mutant previously indicated that N-acylation of lipoproteins is required for their efficient release from the inner membrane catalyzed by LolA and LolCDE, the lipoprotein-specific chaperone and ABC transporter, respectively. Because Lnt is essential for Escherichia coli, a mutant lacking Lnt activity has not been isolated. However, we report here that lnt-null strains can be constructed when LolCDE is overproduced in strains lacking either the major outer membrane lipoprotein Lpp or transpeptidases that cross-link Lpp with peptidoglycan. Lipoproteins purified from the lnt-null strain exhibited increased mobility on SDS-PAGE compared to those from wild-type cells and could be sequenced by Edman degradation, indicating that lipoproteins in this mutant exist as apolipoproteins that lack N-acylation. Overexpression of Lpp in the lnt-null strain resulted in the accumulation of apoLpp in the inner membrane and caused growth arrest. In contrast to the release of mature Lpp in the presence of LolA and LolCDE, that of apoLpp from the inner membrane was significantly retarded. Furthermore, the amount of lipoproteins copurified with LolCDE was significantly reduced in the lnt-null strain. These results indicate that the affinity of LolCDE for apolipoprotein is very low, and therefore, overexpression of LolCDE is required for its release and sorting to the outer membrane.  相似文献   

17.
The Lol system comprising five Lol proteins, LolA through LolE, sorts Escherichia coli lipoproteins to outer membranes. The LolCDE complex, an ATP binding cassette transporter in inner membranes, releases outer membrane-specific lipoproteins in an ATP-dependent manner, causing formation of the LolA-lipoprotein complex in the periplasm. LolA transports lipoproteins through the periplasm to LolB on outer membranes. LolB is itself a lipoprotein anchored to outer membranes, although the membrane anchor is functionally dispensable. LolB then localizes lipoproteins to outer membranes through largely unknown mechanisms. The crystal structure of LolB is similar to that of LolA, and it possesses a hydrophobic cavity that accommodates acyl chains of lipoproteins. To elucidate the molecular function of LolB, a periplasmic version of LolB, mLolB, was mutagenized at various conserved residues. Despite the lack of acyl chains, most defective mutants were insoluble. However, a derivative with glutamate in place of leucine 68 was soluble and unable to localize lipoproteins to outer membranes. This leucine is present in a loop protruding from mLolB into an aqueous environment, and no analogous loop is present in LolA. Thus, leucine 68 was replaced with other residues. Replacement by acidic, but not hydrophobic, residues generated for the first time mLolB derivatives that can accept but cannot localize lipoproteins to outer membranes. Moreover, deletion of the leucine with neighboring residues impaired the lipoprotein receptor activity. Based on these observations, the roles of the protruding loop of LolB in the last step of lipoprotein sorting are discussed.  相似文献   

18.
We report a novel strategy for selecting mutations that mislocalize lipoproteins within the Escherichia coli cell envelope and describe the mutants obtained. A strain carrying a deletion of the chromosomal malE gene, coding for the periplasmic maltose-binding protein (MalE), cannot use maltose unless a wild-type copy of malE is present in trans. Replacement of the natural signal peptide of preMalE by the signal peptide and the first four amino acids of a cytoplasmic membrane-anchored lipoprotein resulted in N-terminal fatty acylation of MalE (lipoMalE) and anchoring to the periplasmic face of the cytoplasmic membrane, where it could still function. When the aspartate at position +2 of this protein was replaced by a serine, lipoMalE was sorted to the outer membrane, where it could not function. Chemical mutagenesis followed by selection for maltose-using mutants resulted in the identification of two classes of mutations. The single class I mutant carried a plasmid-borne mutation that replaced the serine at position +2 by phenylalanine. Systematic substitutions of the amino acid at position +2 revealed that, besides phenylalanine, tryptophan, tyrosine, glycine and proline could all replace classical cytoplasmic membrane lipoprotein sorting signal (aspartate +2). Analysis of known and putative lipoproteins encoded by the E. coli K-12 genome indicated that these amino acids are rarely found at position +2. In the class II mutants, a chromosomal mutation caused small and variable amounts of lipoMalE to remain associated with the cytoplasmic membrane. Similar amounts of another, endogenous outer membrane lipoprotein, NlpD, were also present in the cytoplasmic membrane in these mutants, indicating a minor, general defect in the sorting of outer membrane lipoproteins. Four representative class II mutants analysed were shown not to carry mutations in the lolA or lolB genes, known to be involved in the sorting of lipoproteins to the outer membrane.  相似文献   

19.
Outer membrane-specific lipoproteins of Escherichia coli are released from the inner membrane through the action of Lol-CDE, which leads to the formation of a complex between the lipoprotein and LolA, a periplasmic chaperone. LolA then transfers lipoproteins to LolB, a receptor in the outer membrane. The structures of LolA and LolB are very similar, having an incomplete beta-barrel covered with an alpha-helical lid forming a hydrophobic cavity inside. The cavity of LolA, but not that of LolB, is closed and thus inaccessible to the bulk solvent. Previous studies suggested that Arg at position 43 of LolA is critical for maintaining this closed structure. We show here, through a crystallographic study, that the cavity of the LolA(R43L) mutant, in which Leu replaces Arg-43, is indeed open to the external milieu. We then found that the binding of a fluorescence probe distinguishes the open/close state of the cavity. Furthermore, it was revealed that the hydrophobic cavity of LolA opens upon the binding of lipoproteins. Such a liganded LolA was found to be inactive in the release of lipoproteins from the inner membrane. On the other hand, the liganded LolA became fully functional when lipoproteins were removed from LolA by detergent treatment or transferred to LolB. Free LolA thus formed was inaccessible to a fluorescence probe. These results, taken together, reveal the LolA cycle, in which the hydrophobic cavity undergoes opening and closing upon the binding and release of lipoproteins, respectively.  相似文献   

20.
The Tol-Pal system of gram-negative bacteria is composed of five proteins. TolA, TolQ, and TolR are inner membrane proteins, TolB is a periplasmic protein, and Pal, the peptidoglycan-associated lipoprotein, is anchored to the outer membrane. In this study, the roles of Pal and major lipoprotein Lpp were compared in Escherichia coli. lpp and tol-pal mutations have previously been found to perturb the outer membrane permeability barrier and to cause the release of periplasmic proteins and the formation of outer membrane vesicles. In this study, we showed that the overproduction of Pal is able to restore the outer membrane integrity of an lpp strain but that overproduced Lpp has no effect in a pal strain. Together with the previously reported observation that overproduced TolA complements an lpp but not a pal strain, these results indicate that the cell envelope integrity is efficiently stabilized by an epistatic Tol-Pal system linking inner and outer membranes. The density of Pal was measured and found to be lower than that of Lpp. However, Pal was present in larger amounts compared to TolA and TolR proteins. The oligomeric state of Pal was determined and a new interaction between Pal and Lpp was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号