首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Animals made diabetic by injection of streptozotocin or animals after 3 days of fasting show decreased insulin levels and a decrease in mean cell diameter of adipocytes from epidydymal fat pads in comparison with cells from normal animals. 2. 14CO2 production from D-[U-14C]glucose is impaired in diabetic and fasted animals both in presence or in absence of a concentration of insulin stimulating 14CO2 production maximally. 3. Insulin binding is increased in adipocytes from diabetic and fasted animals due to changes in affinity. 4. Transport studies show that basal and insulin stimulated 2-deoxy[1-14C]-glucose transport is decreased in absolute terms due to a decrease in V and an increase in Km. 5. The relative stimulatory effect of insulin is impaired in adipocytes of diabetic and fasted animals. 6. A shift of the maximal effect of insulin to lower insulin levels is seen in these cells.  相似文献   

2.
The dose response effect of a new adenosine analogue, GR 79236 (N-[1S trans-2-hydroxycyclopentyl] adenosine) upon insulin sensitivity was examined in human adipocytes. The influence of adenosine upon insulin sensitivity for suppression of lipolysis and stimulation of glucose transport was examined. Removal of adenosine by use of adenosine deaminase stimulated lipolysis to the same extent as did 10–9 M noradrenaline. GR79236 brought about dose dependent inhibition of lipolysis with half-maximal effect at 11.3±7.8×10–9 M. When lipolysis was stimulated by noradrenaline alone the subsequent inhibition of lipolysis brought about by GR79236 was significantly greater than that of insulin. To examine adenosine effects on the insulin signalling pathway separately from those on lipolysis, the insulin sensitivity of glucose transport was examined. Removal of adenosine brought about a small but significant increase in the concentration of insulin required for half-maximal stimulation of glucose transport. Adenosine agonists offer promise as new agents for the modulation of metabolism in diabetes and other states of insulin resistance.  相似文献   

3.
Insulin stimulates hexose transport and phosphorylation of the insulin receptor in monolayer cultures of intact 3T3-L1 adipocytes. To assess the phosphorylation state of the receptor in situ, cells were equilibrated with [32P]orthophosphate and then disrupted under denaturing conditions which preserved the phosphorylation state of the receptor established in the cell. The insulin receptor, isolated by lectin adsorption and two-dimensional nonreducing/reducing polyacrylamide gel electrophoresis, occurred as a single oligomeric species with an apparent alpha 2 beta 2 subunit composition. This oligomeric structure was not altered by treating cells with insulin. Only the beta-subunit of the receptor was phosphorylated; [32P]phosphoserine and [32P] phosphotyrosine were both identified in the beta-subunit from cells in the unstimulated state, but only [32P] phosphotyrosine increased in cells stimulated with insulin. Neither insulin-like growth factors I nor II stimulated insulin receptor beta-subunit phosphorylation, although both activated hexose transport. Upon the addition of insulin, [32P]orthophosphate incorporated into the beta-subunit increased 4.5-fold (7-fold with respect to [32P]tyrosine) and was complete within 1 min (t1/2 = 8 s). Following the removal of insulin from the monolayers, [32P]beta-subunit fell to the basal level (t1/2 = 2.5 min); there was no lag phase before either transition. The tyrosine protein kinase activity, measured in vitro with a model substrate, was higher with immunoaffinity-purified insulin receptor from insulin-stimulated cells than from cells in the basal state. Hexose transport rate, measured using 3-O-[methyl-14C]glucose, was half-maximally stimulated at 2 nM insulin. A 1-min latency period followed insulin addition, after which a 7-fold increase in the steady-state rate of hexose uptake was achieved within 5 min. Upon the removal of insulin, hexose transport continued at the stimulated steady-state rate for 2.5 min and then declined to the basal rate with a half-time of 8 min. These kinetic experiments in situ and protein kinase activity measurements in vitro support the hypothesis that beta-subunit phosphorylation is an intermediate step linking insulin binding to the increased glucose transport rate.  相似文献   

4.
The mechanisms used by insulin to activate the multifunctional intracellular effectors, extracellular signal-regulated kinases 1 and 2 (ERK1/2), are only partly understood and appear to vary in different cell types. Presently, in rat adipocytes, we found that insulin-induced activation of ERK was blocked (a) by chemical inhibitors of both phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC)-zeta, and, moreover, (b) by transient expression of both dominant-negative Deltap85 PI3K subunit and kinase-inactive PKC-zeta. Further, insulin effects on ERK were inhibited by kinase-inactive 3-phosphoinositide-dependent protein kinase-1 (PDK-1), and by mutation of Thr-410 in the activation loop of PKC-zeta, which is the target of PDK-1 and is essential for PI3K/PDK-1-dependent activation of PKC-zeta. In addition to requirements for PI3K, PDK-1, and PKC-zeta, we found that a tyrosine kinase (presumably the insulin receptor), the SH2 domain of GRB2, SOS, RAS, RAF, and MEK1 were required for insulin effects on ERK in the rat adipocyte. Our findings therefore suggested that PDK-1 and PKC-zeta serve as a downstream effectors of PI3K, and act in conjunction with GRB2, SOS, RAS, and RAF, to activate MEK and ERK during insulin action in rat adipocytes.  相似文献   

5.
Semicarbazide-sensitive amine oxidase (SSAO) is highly expressed in adipose cells, and substrates of SSAO such as benzylamine in combination with low concentrations of vanadate strongly stimulate glucose transport and GLUT4 recruitment in mouse 3T3-L1 adipocytes and in isolated rat adipocytes. Here we examined whether this combination of molecules also stimulates glucose transport in adipocytes from streptozotocin-induced diabetic rats and from Goto-Kakizaki diabetic rats. As previously reported, adipocytes obtained from streptozotocin-induced diabetic rats, showed a reduced stimulation of glucose transport in response to insulin. Under these conditions, the combination of benzylamine and vanadate caused a marked stimulation of glucose transport that was similar to the stimulation detected in control adipocytes. Adipocytes isolated from Goto-Kakizaki diabetic rats also showed a defective response to insulin; however, acute incubation in the presence of benzylamine and vanadate stimulated glucose transport in these cells to the same extent than in adipocytes from non-diabetic rats. These data indicate that adipocytes obtained from two different models of animal diabetes do not show resistance to the activation of glucose transport by SSAO activity, which is in contrast to the well reported resistance to insulin action. It seems to suggest that SSAO activity in combination with vanadate triggers a glucose transport-activating intracellular pathway that remains intact in the diabetic state. Further, our data support the view that the combination of benzylamine and vanadate could be an effective therapy in diabetes.  相似文献   

6.
Our objectives were to quantitate insulin-stimulated inward glucose transport and glucose phosphorylation in forearm muscle in lean and obese nondiabetic subjects, in lean and obese type 2 diabetic (T2DM) subjects, and in normal glucose-tolerant, insulin-resistant offspring of two T2DM parents. Subjects received a euglycemic insulin (40 mU.m(-2).min(-1)) clamp with brachial artery/deep forearm vein catheterization. After 120 min of hyperinsulinemia, a bolus of d-mannitol/3-O-methyl-d-[(14)C]glucose/d-[3-(3)H]glucose (triple-tracer technique) was given into brachial artery and deep vein samples obtained every 12-30 s for 15 min. Insulin-stimulated forearm glucose uptake (FGU) and whole body glucose metabolism (M) were reduced by 40-50% in obese nondiabetic, lean T2DM, and obese T2DM subjects (all P < 0.01); in offspring, the reduction in FGU and M was approximately 30% (P < 0.05). Inward glucose transport and glucose phosphorylation were decreased by approximately 40-50% (P < 0.01) in obese nondiabetic and T2DM groups and closely paralleled the decrease in FGU. The intracellular glucose concentration in the space accessible to glucose was significantly greater in obese nondiabetic, lean T2DM, obese T2DM, and offspring compared with lean controls. We conclude that 1) obese nondiabetic, lean T2DM, and offspring manifest moderate-to-severe muscle insulin resistance (FGU and M) and decreased insulin-stimulated glucose transport and glucose phosphorylation in forearm muscle; these defects in insulin action are not further reduced by the combination of obesity plus T2DM; and 2) the increase in intracelullar glucose concentration under hyperinsulinemic euglycemic conditions in obese and T2DM groups suggests that the defect in glucose phosphorylation exceeds the defect in glucose transport.  相似文献   

7.
1. Insulin increased basal 2-deoxyglucose uptake in isolated swine adipocytes by 75%. In the absence of insulin, isoproterenol did not inhibit basal 2-deoxyglucose transport. 2. Adenosine deaminase plus isoproterenol or theophylline alone reduced insulin effect by 10 and 40%, respectively. Isoproterenol alone or with 2-chloroadenosine did not inhibit insulin effect on glucose transport activity. 3. Insulin effect was inhibited by isoproterenol in the presence of theophylline but not in the presence of adenosine deaminase. 4. These results suggest that catecholamines do not counter-regulate basal and insulin-stimulated glucose transport in swine adipocytes.  相似文献   

8.
Okadaic acid, an inhibitor of protein phosphatases 1 and 2A, is known to provoke insulin-like effects on GLUT4 translocation and glucose transport, but the underlying mechanism is obscure. Presently, we found in both rat adipocytes and 3T3/L1 adipocytes that okadaic acid provoked partial insulin-like increases in glucose transport, which were inhibited by phosphatidylinositol (PI) 3-kinase inhibitors, wortmannin and LY294002, and inhibitors of atypical protein kinase C (PKC) isoforms, zeta and lambda. Moreover, in both cell types, okadaic acid provoked increases in the activity of immunoprecipitable PKC-zeta/lambda by a PI 3-kinase-dependent mechanism. In keeping with apparent PI 3-kinase dependence of stimulatory effects of okadaic acid on glucose transport and PKC-zeta/lambda activity, okadaic acid provoked insulin-like increases in membrane PI 3-kinase activity in rat adipocytes; the mechanism for PI 3-kinase activation was uncertain, however, because it was not apparent in phosphotyrosine immunoprecipitates. Of further note, okadaic acid provoked partial insulin-like increases in the translocation of hemagglutinin antigen-tagged GLUT4 to the plasma membrane in transiently transfected rat adipocytes, and these stimulatory effects on hemagglutinin antigen-tagged GLUT4 translocation were inhibited by co-expression of kinase-inactive forms of PKC-zeta and PKC-lambda but not by a double mutant (T308A, S473A), activation-resistant form of protein kinase B. Our findings suggest that, as with insulin, PI 3-kinase-dependent atypical PKCs, zeta and lambda, are required for okadaic acid-induced increases in GLUT4 translocation and glucose transport in rat adipocytes and 3T3/L1 adipocytes.  相似文献   

9.
In diabetic states, endothelial dysfunction is related to vascular complications. We hypothesized that insulin-induced relaxation and the associated proline-rich tyrosine kinase 2 (Pyk2)/Src/Akt pathway would be abnormal in aortas from the Goto-Kakizaki (GK) type 2 diabetic rat, which exhibits hyperglycemia/insulin resistance, and that losartan treatment of such rats (25 mg·kg(-1)·day(-1) for 2 wk) would correct these abnormalities. Endothelium-dependent relaxation was by measuring isometric force in helical strips of aortas from four groups, each of 30 rats: normal Wistar (control), GK (diabetic), losartan-treated normal, and losartan-treated GK. Pyk2, Src, and Akt/endothelial nitric oxide synthase (eNOS) signaling-pathway protein levels and activities were assayed mainly by Western blotting and partly by immunohistochemistry. In GK (vs. age-matched control) aortas, various insulin-stimulated levels [nitric oxide production and the phosphorylations of eNOS at Ser(1177), of Akt at Thr(308), of phosphoinositide-dependent kinase-1 (PDK1) at Ser(241), of Src at Tyr(416), and of Pyk2 at Tyr(579)] were all significantly decreased and unaffected by either Src inhibitor (PP2) or Pyk2 inhibitor (AG17), while the insulin-stimulated levels of insulin receptor substrate (IRS)-1 phosphorylation at Ser(307), total-eNOS, and total-Akt were significantly increased. Losartan treatment normalized these altered levels. The insulin-stimulated phosphorylation levels of Src/PDK1/Akt/eNOS, but not of Pyk2, were decreased by PP2 in control and losartan-treated GK, but not in GK, aortas. These results suggest that in the GK diabetic aorta increased phospho-IRS-1 (at Ser(307)) and decreased Pyk2/Src activity inhibit insulin-induced stimulation of the PDK/Akt/eNOS pathway. The observed increase in phospho-IRS-1 (at Ser(307)) may result from increased angiotensin II activity.  相似文献   

10.
An in vivo adenoviral gene delivery system was utilized to assess the effect of overexpressing protein kinase C (PKC)-zeta on rat skeletal muscle glucose transport activity. Female lean Zucker rats were injected with adenoviral/human PKC-zeta (hPKC-zeta) and adenoviral/LacZ in opposing tibialis anterior muscles. One week subsequent to adenoviral/gene delivery rats were subjected to hind limb perfusion. The hPKC-zeta protein was expressed at the same level (fast-twitch white) or at approximately 80% of the level (fast-twitch red) of endogenous PKC-zeta, thus approximately doubling the amount of PKC-zeta in tibialis anterior. Basal glucose transport activity was elevated approximately 3.4- and 2-fold, respectively, in fast-twitch white and red hPKC-zeta muscle relative to control. Submaximal insulin-stimulated glucose transport activity, corrected for basal transport, was approximately 90 and 40% over control values, respectively, in fast-twitch white and red hPKC-zeta muscle. The enhancement of glucose transport activity in muscle expressing hPKC-zeta occurred in the absence of any change in GLUT1 or GLUT4 protein levels, suggesting a redistribution of existing transporters to the cell surface. These results demonstrate that an adenoviral vector can be used to deliver expressible hPKC-zeta to adult rat skeletal muscle in vivo and also affirm a role for PKC-zeta in the regulation of glucose transport activity.  相似文献   

11.
Borst SE  Snellen HG  Lai HL 《Life sciences》2000,67(2):165-174
Although the glucose-lowering properties of metformin are well-established, its effects on glucose metabolism in skeletal muscle have not been clearly defined. We tested the effects of metformin in young adult male Sprague-Dawley rats, which have a documented reduced response to insulin in skeletal muscle. Rats were treated with metformin for 20 days (320 mg/kg/day) in the drinking water. During this period, metformin completely prevented the increase in food intake and decreased adiposity by 30%. Metformin also reduced insulin secretion by 37% following an intra-peritoneal injection of glucose. Finally, metformin enhanced transport of [3H]-2-deoxyglucose in isolated strips of soleus muscle. Metformin substantially increased insulin-stimulated transport, while having no effect on basal transport. In control rats, a maximal concentration of insulin stimulated transport 77% above basal. In metformin-treated rats, insulin stimulated transport 206% above basal. We conclude that in the Sprague-Dawley rat model, metformin causes a significant increase in insulin-responsiveness.  相似文献   

12.
Acute exercise increases insulin binding to its receptors on blood cells. Whether the enhanced insulin binding explains the exercise-induced increase in glucose uptake is unclear, since insulin binding and glucose uptake have not been measured simultaneously in a target tissue of insulin. In this study, we determined insulin binding and the rate of glucose transport in adipocytes obtained by needle biopsy from 10 healthy men before and after 3 h of cycle-ergometric exercise. During the exercise, plasma glucose (P less than 0.01) and insulin (P less than 0.001) fell and serum free fatty acid level rose 4.3-fold (P less than 0.001). 125I-insulin binding to adipocytes remained unchanged during exercise. The rate of basal glucose transport clearance fell from 28.1 +/- 5.7 fl.cell-1.s-1 to 22.9 +/- 5.6 fl.cell-1.s-1 (P less than 0.005), and the insulin-stimulated increase in glucose transport rate rose from 196 +/- 26 to 279 +/- 33% (P less than 0.025) during the exercise. Thus, in the adipocytes during exercise, the basal glucose transport rate and the responsiveness of glucose transport to insulin changed in the absence of alterations in insulin binding. These data indicate that the exercise-induced changes in insulin binding show tissue specificity and do not always parallel alterations in glucose transport.  相似文献   

13.
When adipocytes were exposed to [3H]leucine for times ranging from 5 to 180 s, leucine was found to enter cells rapidly and equilibrate with the cell interior within 5 s. After an additional 15-30 s [3H]leucine was incorporated into nascent protein, and the rate of incorporation was linear for up to 6 h in both control and insulin-treated cells. Since treatment of adipocytes with 10 ng/ml insulin enhanced the rate of leucine incorporation 2-3-fold with minimal or no effect on the rate of protein degradation or leucine uptake, we conclude that the predominant effect of insulin is on enhancement of protein synthesis. To assess the time required for insulin to stimulate protein synthesis, we preincubated cells with 10 ng/ml of insulin for various times from 2 to 30 min and then measured [3H]leucine incorporation into protein during a 4-min assay. These results revealed that the insulin stimulation of protein synthesis is rapid (t 1/2 of 4.4 min), but 9-fold slower than insulin activation of glucose transport (t 1/2 less than 0.5 min under identical conditions). In contrast to the rapidity of insulin activation, we found that deactivation proceeded at much slower rates (t 1/2 of 32 and 21 min for protein synthesis and glucose transport, respectively). Desensitization of the glucose transport system has previously been shown to occur after adipocytes are exposed to high glucose and insulin. To examine the specificity of desensitization, we treated cells for 6 h with 20 mM glucose and 25 ng/ml insulin and then examined insulin sensitivity and maximal insulin responsiveness of both the glucose transport and protein synthesis systems. After treatment, the glucose transport was markedly insulin-resistant (60% loss in maximal insulin responsiveness and a marked loss in insulin sensitivity), whereas the protein synthesis system exhibited neither diminished insulin responsiveness nor loss of insulin sensitivity. In fact, insulin sensitivity actually increased, as indicated by the finding that less insulin was required to stimulate protein synthesis (insulin ED50 values of 0.25 and 18 ng/ml at 0 and 6 h of treatment). From these studies we conclude that desensitization of the glucose transport system by glucose and insulin treatment appears to be specific for this particular effector system and does not reflect a state of generalized cellular insulin resistance.  相似文献   

14.
This study was designed to understand the cellular mechanisms responsible for defects in the insulin-stimulated signal transduction pathway in a type 2 diabetic animal model. We examined the in vitro PC-1 phosphodiesterase activity and glucose uptake in adipose tissue of streptozotocin (STZ)-induced type 2 diabetic rats. The PC-1 activity was significantly increased in adipose tissue of diabetic rats (0.54 ± 0.08 nmol PNTP hydrolyzed/mg protein/min) compared with controls (0.29 ± 0.05 nmol PNTP hydrolyzed/mg protein/min, p < 0.05). Upon insulin stimulation (100 nM), glucose uptake in the adipose tissue of the controls (4.17 ± 1.28×10−8 μmol/mg/min) was significantly higher than that in the diabetic rats (1.26 ± 0.35×10−8; p < 0.05). These results suggest that elevated PC-1 phosphodiesterase activity and decreased glucose uptake in adipose tissues may be acquired characteristics contributing to the development of type 2 diabetes mellitus.  相似文献   

15.
16.
Insulin controls glucose uptake by translocating GLUT4 and other glucose transporters to the plasma membrane in muscle and adipose tissues by a mechanism that appears to require protein kinase C (PKC)-zeta/lambda operating downstream of phosphatidylinositol 3-kinase. In diabetes mellitus, insulin-stimulated glucose uptake is diminished, but with hyperglycemia, uptake is maintained but by uncertain mechanisms. Presently, we found that glucose acutely activated PKC-zeta/lambda in rat adipocytes and rat skeletal muscle preparations by a mechanism that was independent of phosphatidylinositol 3-kinase but, interestingly, dependent on the apparently sequential activation of the dantrolene-sensitive, nonreceptor proline-rich tyrosine kinase-2; components of the extracellular signal-regulated kinase (ERK) pathway, including, GRB2, SOS, RAS, RAF, MEK1 and ERK1/2; and, most interestingly, phospholipase D, thus yielding increases in phosphatidic acid, a known activator of PKC-zeta/lambda. This activation of PKC-zeta/lambda, moreover, appeared to be required for glucose-induced increases in GLUT4 translocation and glucose transport in adipocytes and muscle cells. Our findings suggest the operation of a novel pathway for activating PKC-zeta/lambda and glucose transport.  相似文献   

17.
We investigated the cellular mechanism(s) of insulin resistance associated with non-insulin dependent diabetes mellitus (NIDDM) using skeletal muscles isolated from non-obese, insulin resistant type II diabetic Goto-Kakizaki (GK) rats, a well known genetic rat model for type II diabetic humans. Relative to non-diabetic control rats (WKY), insulin-stimulated insulin receptor (IR) autophosphorylation and insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation were significantly inhibited in GK skeletal muscles. This may be due to increased dephosphorylation by a protein tyrosine phosphatase (PTPase). Therefore, we measured skeletal muscle total PTPase and PTPase 1B activities in the skeletal muscles isolated from control rats (WKY) and diabetic Goto-Kakizaki (GK) rats. PTPase activity was measured using a synthetic phosphopeptide, TRDIY(P)ETDY(P)Y(P)RK, as the substrate. Basal PTPase activity was 2-fold higher (P < 0.001) in skeletal muscle of GK rats when compared to WKY. Insulin infusion inhibited skeletal muscle PTPase activity in both control (26.20% of basal, P < 0.001) and GK (25.35% of basal, P < 0.001) rats. However, PTPase activity in skeletal muscle of insulin-stimulated GK rats was 200% higher than hormone-treated WKY controls (P < 0.001). Immunoprecipitation of PTPase 1B from skeletal muscle lysates and analysis of the enzyme activity in immunoprecipitates indicated that both basal and insulin-stimulated PTPase 1B activities were significantly higher (twofold, P < 0.001) in skeletal muscle of diabetic GK rats when compared to WKY controls. The increase in PTPase 1B activity in diabetic GK rats was associated with an increased expression of the PTPase 1B protein. We concluded that insulin resistance of GK rats is accompanied atleast by an abnormal regulation of PTPase 1B. Elevated PTPase 1B activity through enhanced tyrosine dephosphorylation of the insulin receptor and its substrates, may lead to impaired glucose tolerance and insulin resistance in GK rats.  相似文献   

18.
Glucose is an important fuel for rat brown adipose tissue in vivo and its utilization is highly sensitive to insulin. In this study, the different glucose metabolic pathways and their regulation by insulin and norepinephrine were examined in isolated rat brown adipocytes, using [6-14C]glucose as a tracer. Glucose utilization was stimulated for insulin concentrations in the range of 40-1000 microU/ml. Furthermore, the addition of adenosine deaminase (200 mU/ml) or adenosine (10 microM) did not alter insulin sensitivity of glucose metabolism. The major effect of insulin (1 mU/ml) was a respective 7-fold and 5-fold stimulation of lipogenesis and lactate synthesis, whereas glucose oxidation remained very low. The 5-fold stimulation of total glucose metabolism by 1 mU/ml of insulin was accompanied by an 8-fold increase in glucose transport. In the presence of norepinephrine (8 microM), total glucose metabolism was increased 2-fold. This was linked to a 7-fold increase of glucose oxidation, whereas lipogenesis was greatly inhibited (by 72%). In addition, norepinephrine alone did not modify glucose transport. The addition of insulin to adipocytes incubated with norepinephrine, induced a potentiation of glucose oxidation, while lipogenesis remained very low. In conclusion, in the presence of insulin and norepinephrine glucose is a oxidative substrate for brown adipose tissue. However the quantitative importance of glucose as oxidative fuel remains to be determined.  相似文献   

19.
The influence of alterations in phospholipid structure by phospholipase treatment on insulin action and glucose transport in rat adipocytes was studied. It appeared that phospholipase A2 from bee venom caused a breakdown of approximately 50% of phosphotidylcholine without lysis of the cells. Because of this treatment, insulin binding was increased, resulting in an increased sensitivity of glucose transport towards lower insulin concentrations. Moreover, an increased affinity of the transport system for 2-deoxyglucose was observed. Phospholipase C from Clostridium welchii caused complete lysis of adipocytes. Phospholipase A2 from Crotalus adamenteus was without effect.  相似文献   

20.
Under basal conditions (zero insulin), paraovarian adipocytes from 19-day-pregnant rats exhibited the same rates of [U-14C]glucose conversion into CO2 and total lipids as did those from age-matched virgin rats. The dose-response curves for insulin stimulation of glucose metabolism were similar in both groups: maximal response (+100% over basal values) and high sensitivity (half-maximal effect at 0.05 nM-insulin). The present results suggest that the insulin resistance in vivo that occurs during late pregnancy may involve circulating factors lost in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号