首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
翁华  冉亮  魏群 《植物学报》2003,20(5):609-615
随着多种蛋白磷酸酶在植物中的发现,可逆磷酸化作用在植物各种生理活动中的研究有许多重要的进展。本文概述了蛋白磷酸酶的类型与特点,并着重介绍近年来植物中多种磷酸酶的活性、基因、蛋白等各个水平上的鉴定工作。讨论了几类主要蛋白磷酸酶参与植物抵抗逆境胁迫的有关研究成果。  相似文献   

2.
高等植物中的蛋白磷酸酶与信号传递途径   总被引:3,自引:0,他引:3  
栾升 《Acta Botanica Sinica》1998,40(10):883-889
蛋白激酶与蛋白磷酸酶在细胞信号传递中起着重要作用。有关高等植物中蛋白激酶的研究工作已经较多,但关于蛋白磷酸酶的研究在以前却未受到足够的重视。本文主要介绍最近有关蛋白磷酸酶在高等植物的信号传递中有重要作用的研究工作。这些与蛋白磷酸酶有关的信号传递途径包括气孔运动调节与脱落酸的信号转导、植物对病原及逆境的响应以及植物发育的调控。这些研究工作清楚地证明,蛋白磷酸酶的功能不仅表现为蛋白激酶功能的逆向平衡机制,而且在许多信号传递过程中蛋白磷酸酶起着主导作用。  相似文献   

3.
张继红  陶能国 《广西植物》2015,35(6):935-941
蛋白磷酸酶(protein phosphatase,PP)是蛋白质可逆磷酸化调节机制中的关键酶,而PP2C磷酸酶是一类丝氨酸/苏氨酸残基蛋白磷酸酶,是高等植物中最大的蛋白磷酸酶家族,包含76个家族成员,广泛存在于生物体中。迄今为止,在植物体内已经发现了4种PP2C蛋白磷酸酶。蛋白激酶和蛋白磷酸酶协同催化蛋白质可逆磷酸化,在植物体内信号转导和生理代谢中起着重要的调节作用,蛋白质的磷酸化几乎存在于所有的信号转导途径中。大量研究表明,PP2Cs参与多条信号转导途径,包括PP2C参与ABA调控,对干旱、低温、高盐等逆境胁迫的响应,参与植物创伤和种子休眠或萌发等信号途径,其调控机制不同,但酶催化活性都依赖于Mg2+或Mn2+的浓度。植物PP2C蛋白的C端催化结构域高度保守,而N端功能各异。文中还综述了高等植物PP2C的分类、结构、ABA受体与PP2Cs蛋白互作、PP2C基因参与ABA信号途径以及其他逆境信号转导途径的研究进展。  相似文献   

4.
衰老是受遗传程序严格控制的植物个体发育过程中的一个必经阶段,由特殊发育信号通过一定的信号传导路径来启动和控制。研究发现,蛋白激酶和蛋白磷酸酶所介导的可逆磷酸化反应在叶片衰老信号传递和衰老的启动和进程控制过程中发挥了重要作用。本文对近年参与叶片衰老调控的蛋白激酶和蛋白磷酸酶基因的分离鉴定及功能研究进行了综述。  相似文献   

5.
蛋白酪氨酸磷酸酶(protein tyrosine phosphatases, PTPs)是一个结构多样的磷酸酶家族, 含有高度保守的催化结构域。在植物体内, PTP主要的靶蛋白是促细胞分裂剂激活性蛋白激酶(mitogen-activated protein kinase, MAPK)。MAPK级联途径参与有机体的发育、细胞增殖、激素调节以及逆境胁迫的信号转导, PTP在MAPK级联途径中主要起负调控作用。本文就PTP的结构和功能、MAPK在植物中的作用及PTP在MAPK级联途径中的功能进行综述, 并着重介绍PTP在拟南芥中的研究进展。  相似文献   

6.
高等植物体内酪氨酸蛋白磷酸酶及其功能   总被引:1,自引:1,他引:0  
对高等植物体内酪氨酸蛋白磷酸酶及其功能的研究进展作了简要介绍.  相似文献   

7.
李鑫强  朱培  李振轮 《菌物学报》2013,32(2):261-268
金龟子绿僵菌Metarhizium anisopliae是一种广泛分布于世界各地土壤中的重要的昆虫病原真菌。已有研究表明,胞外磷酸酶在绿僵菌侵染并致死寄主过程中发挥了重要作用。利用摇瓶培养方法探究了无机磷(KH2PO4)、简单有机磷(植酸钠、磷酸苯二钠)和蛋白有机磷(酪蛋白)为单独磷源条件下,绿僵菌生物量、产胞外酸性磷酸酶以及酪氨酸蛋白磷酸酶、丝/苏氨酸蛋白磷酸酶活性的变化。实验结果显示:加入酪蛋白的培养基,最有利于绿僵菌生长、胞外蛋白的分泌和产酸性磷酸酶;其次为加入KH2PO4和磷酸苯二钠的培养基;加入植酸钠的培养基不利于绿僵菌的生长代谢。然而,加入磷酸苯二钠的培养基,最有利于酪氨酸蛋白磷酸酶、丝/苏氨酸蛋白磷酸酶的分离纯化。  相似文献   

8.
蛋白酪氨酸磷酸酶(protein tyrosine phosphatases,PTPs)是一个结构多样的磷酸酶家族,含有高度保守的催化结构域。在植物体内,PTP主要的靶蛋白是促细胞分裂剂激活性蛋白激酶(mitogen-activated protein kinase,MAPK)。MAPK级联途径参与有机体的发育、细胞增殖、激素调节以及逆境胁迫的信号转导,PTP在MAPK级联途径中主要起负调控作用。本文就PTP的结构和功能、MAPK在植物中的作用及PTP在MAPK级联途径中的功能进行综述,并着重介绍PTP在拟南芥中的研究进展。  相似文献   

9.
钙调神经磷酸酶及其研究进展   总被引:6,自引:0,他引:6  
钙调神经磷酸酶是蛋白磷酸酶家族中的一个成员,是细胞信号传递中的效应酶和调节酶,尤其在Ca^2+信号传递系统中起着举足轻重的作用。同时,CaN又是典型的Ca^2+/CaM结合酶、调节酶。CaN参与了多种重要的细胞过程,包括它和学习记忆及老年性痴呆的关系,以及它在T细胞活化过程中的关键作用和在细胞死亡中的重要作用等。  相似文献   

10.
钙调磷酸酶(calcineurin)是Ca2 /CaM依赖性的异源二聚体蛋白磷酸酶,它属于pp2B类。钙调磷酸酶的A亚基为保守性不强的催化亚基,B亚基为调节亚基。研究表明,内向K 通道蛋白磷酸化后被激活,钙调磷酸酶使通道蛋白去磷酸从而阻止K 进入细胞。钙调磷酸酶正是通过抑制Na 内流或其它阳离子进入细胞质从而提高植物耐盐性。全球约有40%的可灌溉土地受到盐碱的威胁,如何提高盐碱地农作物的产量,对人类生存具有重要的现实意义。由于钙调磷酸酶有抑制阳离子通道蛋白的功能,其研究日益受到人们重视。最初认为,钙调蛋白(CaM)是…  相似文献   

11.
Obesity is a worldwide epidemic as well as being a major risk factor for diabetes, cardiovascular diseases and several types of cancers. Obesity is mainly due to the overgrowth of adipose tissue arising from an imbalance between energy intake and energy expenditure. Adipose tissue, primarily composed of adipocytes, plays a key role in maintaining whole body energy homeostasis. In view of the treatment of obesity and obesity-related diseases, it is critical to understand the detailed signal transduction mechanisms of adipogenic differentiation. Adipogenic differentiation is tightly regulated by many key signal cascades, including insulin signaling. These signal cascades generally transfer or amplify the signal by using serial tyrosine phosphorylations. Thus, protein tyrosine kinases and protein tyrosine phosphatases are closely related to adipogenic differentiation. Compared to protein tyrosine kinases, protein tyrosine phosphatases have received little attention in adipogenic differentiation. This review aims to highlight the involvement of protein tyrosine phosphatases in adipogenic differentiation and the possibility of protein tyrosine phosphatases as drugs to target obesity. [BMB Reports 2012; 45(12): 700-706]  相似文献   

12.
The activation of glycogen synthase by insulin is in many instances stimulated by the presence of extracellular glucose. Previous observations in cell extracts, glycogen pellets and other crude systems suggest that this stimulation may be due to an increase in glucose 6-phosphate, which activates the dephosphorylation of glycogen synthase by protein phosphatases. Using purified rabbit muscle glycogen synthase D and protein phosphatases 1 and 2A, the types responsible for the activation of muscle synthase, it was found that glucose 6-phosphate, at low, physiological concentrations, stimulated the dephosphorylation of glycogen synthase. Both types of phosphatase were stimulated to the same extent when acting on glycogen synthase. The dephosphorylation of other protein substrates of the phosphatases was either not affected or inhibited by glucose 6-phosphate. It appears that the stimulatory effect of glucose 6-phosphate at physiological concentrations is apparently specific for glycogen synthase, and most likely due to an allosteric configuration change of this enzyme which facilitates its dephosphorylation. In addition, the effects of other reported modulators of glycogen synthase dephosphorylation, AMP, ATP and Mg2+, were studied in this 'in vitro' system.  相似文献   

13.
Protein kinases and phosphatases play a central role in cellular signaling. Although protein kinases have been widely studied in higher plants, protein phosphatases have been largely neglected until recently. The article focuses on the most recent studies that have placed protein phosphatases in the context of several signal cascades in higher plants. These pathways include stomatal regulation and abscisic acid signal transduction, pathogen and stress responses, and developmental control. Studies clearly have demonstrated that protein phosphatases function not only to counterbalance the protein kinases but also take a leading role in many signaling processes.  相似文献   

14.
Data emerging from a number of different systems indicate that protein phosphatases are highly regulated and potentially responsive to changes in the levels of intracellular second messengers produced by extracellular stimulation. They may therefore be involved in the regulation of many cell functions. The protein phosphatases in the nervous system have not been well studied. However, a number of neuronal-specific regulators (such as DARPP-32 and G-substrate) exist, and brain protein phosphatases appear to have particularly low specific activity, suggesting that neuronal protein phosphatases possess considerable and unique potential for regulation. Several early events following depolarization or receptor activation appear to involve specific dephosphorylations, indicating that regulation of protein phosphatase activity is important for the control of many neuronal functions. This article reviews the current literature concerning the identification, regulation, and function of serine/threonine protein phosphatases in the brain, with particular emphasis on the regulation of the major protein phosphatases, PP1 and PP2A, and their potential roles in modulating neurotransmitter release and postsynaptic responses.  相似文献   

15.
Protein phosphatases play essential roles in many cellular processes through the reversible protein phosphorylation that dictates many signal transduction pathways among organisms. Based on an in silico analysis, we classified 163 and 164 non-redundant protein phosphatases in rice and Arabidopsis, respectively. Protein serine/threonine phosphatases make up 67% of the total in both plants, in contrast to those of human, where this fraction is about 27%. Based on domain organization and intron composition analyses, we found that protein phosphatases in the two plants are highly conserved in structure. Evolutionary analysis suggests that segmental duplications occurring 40–70 million years ago, contributed to the limited expansion of protein phosphatases. Gene expression analysis suggests that most phosphatases have broad expression spectra, with high abundance in four surveyed tissues (root, leaf, inflorescence, and seedling); only 46 and 12 phosphatases expressed in a single tissue of rice and Arabidopsis, respectively, regardless of their expression levels. Promoter analysis among different phosphatase subfamilies demonstrates a variable distribution of the w-box (a cis-element involved in disease resistance) between rice and Arabidopsis.  相似文献   

16.
Homology modeling based on the known spatial structures of Homo sapiens protein phosphatases types 1 and 2A was implemented. The spatial structures of human protein phosphatases and their plant homologs from Arabidopsis thaliana were predicted. The quality of the models was confirmed by the root mean square deviations of the atoms and conformational analysis results. The sites of okadaic acid bindings in the molecules of plant protein phosphatases (types 1 and 2A) were verified by the data of comparative analyses and molecular dynamics.  相似文献   

17.
Mochida S  Hunt T 《EMBO reports》2012,13(3):197-203
Cell cycle transitions depend on protein phosphorylation and dephosphorylation. The discovery of cyclin-dependent kinases (CDKs) and their mode of activation by their cyclin partners explained many important aspects of cell cycle control. As the cell cycle is basically a series of recurrences of a defined set of events, protein phosphatases must obviously be as important as kinases. However, our knowledge about phosphatases lags well behind that of kinases. We still do not know which phosphatase(s) is/are truly responsible for dephosphorylating CDK substrates, and we know very little about whether and how protein phosphatases are regulated. Here, we summarize our present understanding of the phosphatases that are important in the control of the cell cycle and pose the questions that need to be answered as regards the regulation of protein phosphatases.  相似文献   

18.
Protein-tyrosine phosphatases are key regulators of protein tyrosine phosphorylation. More than merely terminating the pathways initiated by protein-tyrosine kinases, phosphatases are active participants in many signaling pathways. Signals involving tyrosine phosphorylation are frequently generated in response to cell-matrix adhesion. In addition, high levels of protein tyrosine phosphorylation generally promote disassembly or turnover of adhesions. In this brief review, we will discuss the role of protein-tyrosine phosphatases in cell-matrix adhesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号