首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two field experiments were carried out at the UAPNPBS experimental station, Seropédica, with two sorghum and one rice cultivars. The establishment, and inoculation effects, ofAzospirillum spp. andHerbaspirillum strains marked with antibiotic resistance were investigated. One grain sorghum (BR 300) and one sugar sorghum (Br 505) cultivar were used.Azospirillum lipoferum strain S82 (isolated from surface sterilized roots of sorghum) established in both cultivars and comprised 40 to 80% of theAzospirillum spp. population in roots and stems 60 days after plant emergence (DAE).Azospirillum amazonense strain AmS91 (isolated from surface-sterilized roots of sorghum) reached only 50%. At 90 DAE, S82 almost disappeared (less than 30% of establishment) while the establishment of AmS91 remained constant in roots and stems. No establishment ofH. seropedicae strain H25 (isolated from surface-sterilized roots of sorghum) orA. lipoferum strain S65 (isolated from the root surface of sorghum) could be observed on inoculated roots. Inoculation with S82, AmS91 or S65 but not withH. seropedicae H25, increased plant dry weight of both cultivars and total N in grain of the grain sorghum. In rice,A. lipoferum Al 121 andA. brasilense Sp 245 (isolated from surface sterilized rice and wheat roots respectively) established in the roots but there was no increase inAzospirillum spp. numbers due to inoculation. None of the strains affected plant growth or rice grain yield.Azospirillum amazonense, A82 andH. seropedicae Z95, which did not establish in roots, significantly enhanced seed germination.  相似文献   

2.
The effect of cellulase and pectinase on bacterial colonization of wheat was studied by three different experiments. In the first experiment, the root colonization of 3 wheat cultivars (Ghods, Roshan and Omid) by two A. brasilense strains (Sp7 and Dol) was compared using pre-treated roots with cellulase and pectinase, and non-treated with these enzymes (control). Although the root colonization varied greatly among strain-plant combinations in controls, the pre-treatment of roots with polysaccharide degrading enzymes significantly increased the bacterial count in roots, regardless of the strain-plant combination. This might be an indication that cell wall may act as an important factor in plant-Azospirillum interaction. In the second experiment, the root cellulase activity of the same wheat cultivars treated with and without the two Azospirillum brasilense, strains (Sp7 and Dol) was compared. The pre-treatment of wheat roots with Azospirillum enhanced the cellulase activity of wheat root extracts. Thus, the cellulase activity might participate in the initial colonization of wheat roots by Azospirillum. The comparison of the cellulase activity of root extracts within inoculated and non-inoculated seedlings showed that the inoculation had enhanced the cellulase activity in root extracts, but this effect was directly dependent on the strain-plant combination. Strain Sp7 stimulated the highest cellulase activity in cv. Roshan, but strain Dol induced the highest enzyme activity in cv. Ghods. In the third experiment, several growth parameters of those 3 wheat cultivars treated with and without those two bacterial strains (Sp7 and Dol) were compared. The highest magnitude of growth responses caused by Sp7 strain was in the cv Roshan, but Dol strain stimulated the highest growth in cv Ghods. Therefore, effective colonization may contribute to more growth responses.  相似文献   

3.
Recent microscopic evidence acquired using strain-specific monoclonal antibodies and specific gene probes confirms earlier claims that some strains of Azospirillum lipoferum and A. brasilense, but not others, are capable of infecting the interior of wheat roots. The present study was performed to determine whether this strain specificity in the infection of the interior of wheat roots was apparent in the first 24 h of adsorption (`anchoring') of Azospirillum cells to the root surface. Strains of A. brasilense, originally isolated from surface-sterilised wheat roots (Sp 245, Sp 107) or with a proven ability to infect the interior of wheat roots (Sp 245), showed no greater ability to anchor to the roots than other Azospirillum strains isolated from the wheat rhizosphere (Sp 246) or from the rhizosphere or rhizosphere soil of other gramineae (Sp 7, Cd, S 82). The SEM images showed that at the root tip the Azospirillum cells were principally located in cracks between epidermal cells. In the root hair zone the bacteria were more numerous but again principally located in the depressions between epidermal cells. In all zones of the roots mucilage was present, and near the tip this appeared to have been partially digested, forming `halos' around the bacteria and revealing fibril-like strands attached to the bacteria. Subsequent studies were conducted using a technique originally developed for investigating competition of rhizobia for adsorption sites on legume roots. In the adaptation of this technique it was found that the presence of any significant concentration of Ca++ in the incubation medium reduced bacterial adsorption, as did concentrations of (PO4)3- above 50 mM. The influence of the pH of the incubation medium on the adsorption of ten different strains of Azospirillum showed, that with one exception, strains isolated from the roots or rhizosphere of wheat showed optimum adsorption at pH 6.0, and all other strains pH 7.0. Apart from this effect of pH no differences in adsorption were detected between strains with a proven capacity to infect wheat roots and those unable to do so. However, strains varied in their capability to compete for adsorption sites, there being a tendency for strains with a proven capacity to invade the internal tissues of wheat roots to be more competitive for adsorption sites.  相似文献   

4.
The present study was undertaken to comparatively investigate the attachment capacities of Azospirillum brasilenseSp245 and its lipopolysaccharide-defective Omegon-Km mutants KM018 and KM252, as well as their activities with respect to the alteration of the morphology of wheat seedling root hairs. The adsorption dynamics of the parent Sp245 and mutant KM252 strains of azospirilla on the seedling roots of the soft spring wheat cv. Saratovskaya 29 were similar; however, the attachment capacity of the mutant KM252 was lower than that of the parent strain throughout the incubation period (15 min to 48 h). The mutation led to a considerable decrease in the hydrophobicity of the Azospirillumcell surface. The lipopolysaccharides extracted from the outer membrane of A. brasilenseSp245 and mutant cells with hot phenol and purified by chromatographic methods were found to induce the deformation of the wheat seedling root hairs, the lipopolysaccharide of the parent strain being the most active in this respect. The role of the carbohydrate moiety of lipopolysaccharides in the interaction of Azospirillumcells with plants is discussed.  相似文献   

5.
Summary Two experiments were performed to examine the effects of inoculation of field grown wheat with various Azospirillum strains. In the first experiment the soil was sterilized with methyl bromide to reduce the Azospirillum population and15N labelled fertilizer was added to all treatments. Two strains ofAzospirillum brasilense isolated from surface sterilized wheat roots and theA. brasilense type strain Sp7 all produced similar increases in grain yield and N content. From the15N and acetylene reduction data it was apparent that these increases were not due to N2 fixation. In the second experiment performed in the same (unsterilized) soil, twoA. brasilense strains (Sp245, Sp246) and oneA. amazonense strain (Am YTr), all isolated from wheat roots, produced responses of dry matter and N content while the response to the strain Sp7 was much smaller. These data confirm earlier results which indicate that if natural Azospirillum populations in the soil are high (the normal situation under Brazilian conditions), strains which are isolated from wheat roots are better able to produce inoculation responses than strains isolated from other sources. The inoculation of a nitrate reductase negative mutant of the strain Sp245 produced only a very small inoculation response in wheat. This suggests that the much greater inoculation response of the original strain was not due to N2 fixation but to an increased nitrate assimilation due to the nitrate reductase activity of the bacteria in the roots. Consultant Inter-American Institute for Cooperation in Agriculture IICA/EMBRAPA World Bank Project.  相似文献   

6.
The agronomic impact of genetically tagged azospirilla (Azospirillum brasilense)was assessed in open field and their fluctuation were monitored in the soil/rhizosphere. Strain performance, upon inoculation of sorghum, was evaluated over a two-years period; agronomic treatments included nitrogen application (0, 80, 160 kg ha–1), and types of inoculant (Sp245 lacZ, Sp6 gusA, Sp6 IAA++ gusA). Grain yield was higher for inoculated seed plots than in non-inoculated ones, whereas nitrogen content, biomass of plant residues and nitrogen in plant residues gave values that were not statistically different. Root length density (RLD) of sorghum at the end of the stem elongation stage was affected only by the indole-3-acetic acid (IAA) overproducer Azospirillum strain (A. brasilense Sp6 IAA++ gusA) with respect to the normal IAA producer (A. brasilense Sp6 gusA), being higher in the first 40 cm of depth, notwithstanding the level of nitrogen fertilization. The traceability of the released genetically modified strains enabled to monitor their ability to colonise soil and roots. Moreover, the genetic modification per se vs. the non-modified counterpart, did not affect the culturable aerobic population in soil, microfungi, streptomycetes, fluorescent pseudomonads, soil microbial biomass, or some microbial activities, all selected as important indicators.  相似文献   

7.
Development and function ofAzospirillum-inoculated roots   总被引:1,自引:1,他引:0  
Summary The surface distribution ofAzospirillum on inoculated roots of maize and wheat is generally similar to that of other members of the rhizoplane microflora. During the first three days, colonization takes place mainly on the root elongation zone, on the base of root hairs and, to a lesser extent, on the surface of young root hairs.Azospirillum has been found in cortical tissues, in regions of lateral root emergence, along the inner cortex, inside xylem vessels and between pith cells. Inoculation of several cultivars of wheat, corn, sorghum and setaria with several strains ofAzospirillum caused morphological changes in root starting immediately after germination. Root length and surface area were differentially affected according to bacterial age and inoculum level. During the first three weeks after germination, the number of root hairs, root hair branches and lateral roots was increased by inoculation, but there was no change in root weight. Root biomass increased at later stages. Cross-sections of inoculated corn and wheat root showed an irregular arrangement of cells in the outer layers of the cortex. These effects on plant morphology may be due to the production of plant growth-promoting substances by the colonizing bacteria or by the plant as a reaction to colonization. Pectic enzymes may also be involved. Morphological changes had a physiological effect on inoculated roots. Specific activities of oxidative enzymes, and lipid and suberin content, were lower in extracts of inoculated roots than in uninoculated controls. This suggests that inoculated roots have a larger proportion of younger roots. The rate of NO 3, K+ and H2PO 4 uptake was greater in inoculated seedlinds. In the field, dry matter, N, P and K accumulated at faster rates, and water content was higher inAzospirillum-inoculated corn, sorghum, wheat and setaria. The above improvements in root development and function lead in many cases to higher crop yield.  相似文献   

8.
Summary Model experiments were performed to investigate the nitrogen fixation (C2H2 reduction) and denitrification (N2O formation) capabilities ofAzospirillum spp. in association with wheat. Plants and bacteria were grown together for a week and then assayed for activities. This association performed C2H2 reduction or N2O formation, depending on the concentrations of nitrate and oxygen in the vessels. Both activities depended on theAzospirillum strains used. The newly isolatedAzospirillum amazonense strains Y1 and Y6 showed significant C2H2 reduction and low N2O formation in association with wheat under the conditions employed and are possibly useful in practice. A cell-free preparation fromAzospirillum brasilense Sp 7 possessed a cytochrome cd type dissimilatory nitrite reductase.  相似文献   

9.
The effect of two Azospirillum strains (SP-7, Dol) was compared on root proton efflux and root enlargement of three wheat cultivars (Ghods, Omid and Roshan). Root colonization varied greatly among strain–plant combinations. Inoculation enhanced proton efflux and root elongation of wheat roots but this effect was directly dependent on the strain–plant combination. Strain SP-7 stimulated the greatest proton efflux and root elongation in cv. Roshan, whereas strain Dol induced the best effect on both these phenomena in cv. Ghods. Based on positive correlation between these two phenomena, it was suggests that proton efflux is related to increasing of root length by Azospirillum inoculation. The number of bacteria of both Azospirillum strains in root of cv. Omid was less than the other cultivars. Proton extrusion and root elongation of cv. Omid failed to respond significantly with these two strains. This may be due to incompatible host-strain combination. Thus compatible strains are necessary for increasing of proton efflux and root extension in wheat cultivars.  相似文献   

10.
The results of the cross reactions of the 27 strains of Azospirillum spp. with 4 fluorescent antibodies (FA) show a neat differentiation between the two species. A. lipoferum represents a more homogenous group in respect to FA reactions and highly fluorescent preparations were obtained with strains from a large scope origin against Sp59 FA, the type strain. In contrast A. brasilense contains at least three sub groups in respect to FA reactions. The first includes all denitrifing strains (nir+) which react with FA from Sp7 the type strain. None of the nir- strains reacted strongly with Sp7 FA. One part of the A. brasilense nir- group which includes the strains isolated from well sterilized rice and wheat roots (Sp 107, 107 st, 106 and 109 st) reacts with FA of their reference strain Sp107 but not with that of Sp28 FA. The strains isolated from unsterilized roots and soils reacted with SP28 FA and not with that of Sp107 FA. In addition there were 3 strains (Sp A4, 34 and 67) which reacted with neither of the FAs.Abbreviations Fa fluorescent antibody - FITC fluorescein isothiocyanate - Rh ITC gelatin-rhodamine isothiocyanate - nir+ nitrite reductase positive - nir- nitrite reductase negative  相似文献   

11.
Yegorenkova  I.V.  Konnova  S.A.  Sachuk  V.N.  Ignatov  V.V. 《Plant and Soil》2001,231(2):275-282
The dynamics of adsorption of the nitrogen-fixing soil bacteria Azospirillum brasilense 75 and 80 (isolated from soil samples collected in Saratov Oblast, southern Russia) and A. brasilense Sp245 to the roots of seedlings of common spring wheat was studied in relation to inoculum size, period of incubation with the roots and bacterial-growth phase. The number of root-attached cells increased with increasing size of inoculum and time of contact. The saturation of root-surface adsorption was observed by 24 h of co-incubation for A. brasilense 75, by 6 h for A. brasilense 80, and by 3 h for A. brasilense Sp245. The firmness of bacterial–root attachment increased after extended co-incubation. Differences in the adsorption kinetics of the azospirilla were found that were associated with bacterial-growth phases. Azospirilla attached to the roots of their host cultivar more actively than they did to the roots of a non-host cultivar. Adsorption was partially inhibited when the roots were treated with N-acetyl-D-glucosamine. Maximal inhibition occurred after a 3-h exposure of the roots to the bacteria. Root-hair deformation induced with polysaccharide-containing complexes from the Azospirillum capsular material was inhibited by N-acetyl-D-glucosamine and chitotriose, specific haptens of wheat germ agglutinin. A possible mechanism of the mutual influence of bacteria and plants may involve key roles of wheat germ agglutinin, present on the roots, and the polysaccharide-containing components of the Azospirillum capsule.  相似文献   

12.
Azospirillum spp. is a well known plant-growth-promoting rhizobacterium. Azospirillum-inoculated plants have shown to display enhanced lateral root and root hair development. These promoting effects have been attributed mainly to the production of hormone-like substances. Nitric oxide (NO) has recently been described to act as a signal molecule in the hormonal cascade leading to root formation. However, data on the possible role of NO in free-living diazotrophs associated to plant roots, is unavailable. In this work, NO production by Azospirillum brasilense Sp245 was detected by electron paramagnetic resonance (6.4 nmol. g–1 of bacteria) and confirmed by the NO-specific fluorescent probe 4,5-diaminofluorescein diacetate (DAF-2 DA). The observed green fluorescence was significantly diminished by the addition of the specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). Azospirillum-inoculated and noninoculated tomato (Lycopersicon esculentum L.) roots were incubated with DAF-2 DA and examined by epifluorescence microscopy. Azospirillum-inoculated roots displayed higher fluorescence intensity which was located mainly at the vascular tissues and subepidermal cells of roots. The Azospirillum-mediated induction of lateral root formation (LRF) appears to be NO-dependent since it was completely blocked by treatment with cPTIO, whereas the addition of the NO donor sodium nitroprusside partially reverted the inhibitory effect of cPTIO. Overall, the results strongly support the participation of NO in the Azospirillum-promoted LRF in tomato seedlings.  相似文献   

13.
Seven Azospirillum strains induced more deformation of root hairs of wheat than did strains of Rhizobium leguminosarum, Azotobacter chroococcum, or Escherichia coli. Azospirillum sp. strain Sp245 caused the most deformation. Strain Sp245 (isolated from surface sterile roots of wheat) and strain Sp7 (isolated from the rhizosphere of a forage grass) were compared with regard to their effects on root hair deformation, their attachment to roots, and their effects on the growth of four wheat cultivars. The amount of deformation caused by the two strains in the four cultivars increased in the following order: cv. Tobari, cv. Tonari, cv. BH1146, cv. Lagoa. Strain Sp245 attached to the roots of all cultivars in low numbers, and attachment did not increase with time (up to 48 h). Strain Sp7 attached in higher numbers, and attachment increased with time. Inoculation of the four cultivars of wheat had pronounced effects on root mass measured at maturity. The magnitude of the effects in the four cultivars increased in the following order: Tobari, Tonari, BH1146, Lagoa; these effects were progressively more positive for strain Sp245 and progressively more negative for strain Sp7. Concentrations of N in wheat did not vary substantially between cultivars or strains. Concentrations of K and P did not vary substantially between cultivars but did vary between strains, Sp245 effecting increases and Sp7 effecting decreases.  相似文献   

14.
Azosprilla were collected in wheat fields from subtropical and temperate soils of central Nepal at various elevations. Different wheat cultivars responded positively and significantly in grain yield, grain N-yield, and total N-yield in plant shoots to the inoculation with Nepalese isolate Azospirillum 10SW. Nepalese wheat cv. Seto responded significantly better with Azospirillum 10SW than with the Brasilian isolate A. lipoferum Sp 108 st, a strain which was found highly efficient in earlier experiments with German wheat cultivars, especially cv. Turbo. Yield of Turbo was increased by inoculations of both Azospirillum strains too, but it showed no significant differences depending from the inoculum used. The higher efficacy of combining Azospirillum 10SW and Seto, both collected from the same locality, indicates the possibility of improved associations using traditional cultivars and local bacteria. ei]{gnR O D}{fnDixon}  相似文献   

15.
Azospirillum species are free-living nitrogen-fixing bacteria commonly found in soil and in association with roots of different plant species. For their capacity to stimulate growth they are known as plant growth-promoting bacteria (PGPB). In this work, we demonstrate the natural occurrence and colonization of different parts of strawberry plants by Azospirillum brasilense in the cropping area of Tucumán, Argentina. Although bacteria isolations were carried out from two strawberry cultivars, e.g., Camarosa and Pájaro, attempts were successful only with the cultivar Camarosa. Whereas different strains of Azospirillum were isolated from the root surface and inner tissues of roots and stolons of the cultivar Camarosa, we have not obtained Azospirillum isolates from the cultivar Pájaro. After microbiological and molecular characterization (ARDRA) we determined that the isolates belonged to the species A. brasilense. All isolates showed to have the capacity to fix nitrogen, to produce siderophores and indoles. Local isolates exhibited different yields of indoles production when growing in N-free NFb semisolid media supplemented or not with tryptophan (0.1 mg ml−1). This is the first report on the natural occurrence of A. brasilense in strawberry plants, especially colonizing inner tissues of stolons, as well as roots. The local isolates showed three important characteristics within the PGPB group: N2-fixation, siderophores, and indoles production.  相似文献   

16.
In order to evaluate the suitability ofAzospirillum spp. as a crop inoculant in temperate regions, the natural occurrence, distribution and survival ofAzospirillum after seed inoculation in Belgian agricultural soils was studied.Azospirillum was present in most of the fields examined, but concentrations never exceeded 1000 cfu per g soil or per g roots. Under field conditions none of the known species was found to be localized inside the roots of barley, wheat, rye, maize or grasses. Also, the distribution ofA. brasilense SpBr 14 within the root system of hydroponic-grown wheat was studied by immunofluorescence. From the rhizosphere samples of the field crops investigated, a number of microaërophilic, diazotrophic bacteria were isolated and identified asA. lipoferum, found only on maize and grass roots, andA. brasilense, present under all crops. In contrast toA. brasilense, A. lipoferum was able to use different amino-acids and some derivatives as sole carbon and nitrogen sources. Use of a peat-based seed inoculant resulted in the establishment of theAzospirillum spp. in the rhizosphere of field-grown winter barley and winter wheat. The established population survived during winter without appreciable change in numbers, but there was no indication of active growth during spring or summer.  相似文献   

17.
Cellular fatty acid composition of 14 strains from the four species of Azospirillum was determined by gas chromatographic analysis. All strains of Azospirillum lipoferum and Azospirillum brasilense were similar in fatty acid data, thus not revealing an expected distinction between the two long established species. Strains of both Azospirillum halopraeferens and Azospirillum amazonense, however, differed significantly from this first group of strains.  相似文献   

18.
Azospirillum brasilense cells deprived of capsular exopolysaccharides completely lost their ability to bind wheat germ agglutinin (WGA) and much of their ability to attach to wheat seedling roots. The decapsulation of bacterial cells by washing them with a NaCl solution led to an increase in the relative hydrophobicity of the cell surface. The pretreatment of wheat seedling roots with N-acetyl-D-glucosamine (GlcNAc) or the GlcNAc-containing polysaccharide complexes stripped from Azospirillum cells reduced their attachment to the roots. Under the experimental conditions used (3-h incubation of wheat seedling roots with exponential-phase azospirilla), bacterial adsorption is mainly driven by the specific mechanisms attachment of the cells to the roots, whose operation is due to the capsular polysaccharide components and the WGA present on the wheat seedling roots.  相似文献   

19.
W. Zimmer  K. Roeben  H. Bothe 《Planta》1988,176(3):333-342
Experiments were performed to identify the substances that are excreted by the soil bacterium Azospirillum brasilense Sp7 and that were reported to stimulate the formation of lateral roots and of root hairs of grasses. Azospirillum forms indole-3 acetic acid (IAA) but only in the late stationary growth phase or when tryptophan is present in the medium, but not in continuous cultures or in the logarithmic growth phase of batch cultures. Formation of IAA by Azospirillum requires aerobic conditions. Nitrite can replace IAA in several phytohormone assay, and is even more active than IAA in a test with wheat root segments in which the increase of wet weight is determined. Higher amounts of nitrite are necessary for activity in other classical auxin assays. Nitrite shows 40–60% of the activity of IAA in the straight-growth test of Avena coleoptiles and in the formation of C2H4 by pea epicotyl segments. Like IAA, nitrite is inactive in promoting C2H4 formation by ripe apple tissues. Since nitrite alone can hardly exert phytohormonal effects, it is postulated that nitrite reacts with a substance in the cells and that a product formed by this reaction functions as auxin. Such a substance could be ascorbate. Exogenously added ascorbate enhances the rate of nitrite-dependent C2H4 formation by pea epicotyl sections and the nitrite-dependent increase in the wet weight of wheat root segments. Nitrite is formed by nitrate respiration of Azospirillum. The findings that nitrite can have phytohormonal effects offers an alternative explanation of the promotion of the growth of roots and the enhancement of mineral uptake of grasses by Azospirillum. Indole-acetic acid completely and nitrite partly substitute for an inoculation with Azospirillum in an assay where the increase of the dry weight of intact wheat roots is determined after an incubation for 10 d. Nitrite and IAA are, therefore, possibly the only factors causing an enhancement of the growth of roots of grasses.Abbreviations HPLC high-performance liquid chromatography - IAA indole-3-acetic acid  相似文献   

20.
The structural identity of the repeated unit in O-specific polysaccharides (OPSs) present in the outer membrane of strain SR75 of the bacterium Azospirillum brasilense, isolated from wheat rhizosphere in Saratov oblast, and the previously studied OPSs of A. brasilense strain Sp245, isolated from surfacesterilized wheat roots in Brazil, has been demonstrated. Plasmid profiles, DNA restriction, and hybridization assays suggested that A. brasilense strains SR75 and Sp245 have different genomic structures. It was shown that homologous lps loci of both strains were localized in their plasmid DNA. This fact allows us to state that, despite their different origin, the development of the strains studied was convergent. Presumably, the habitation of these bacteria in similar ecological niches influenced this process in many respects. __________ Translated from Mikrobiologiya, Vol. 74, No. 5, 2005, pp. 626–632. Original Russian Text Copyright ? 2005 by Fedonenko, Borisov, O. Konnova, Zdorovenko, Katsy, S. Konnova, Ignatov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号