首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dominant nana (na) mutation mapped to the top arm of Arabidopsis thalianachromosome 1 blocks cell proliferation in apical meristem (AM) of the inflorescence at its early development and suppresses the subsequent elongation by internode cells. Thenamutation reduces the sensitivity of cells of the inflorescence to gibberellin (GA) and paclobutrazole (PBZ) and prevents dormant and immature seeds from restoring the germinating ability in response to exogenous GA. On the other hand, exogenous GA and PBZ affects the onset of flowering, hypocotyl length, and leaf color; i.e., thena mutant displays an alteration of only several, rather than all, GA-dependent processes. Based on the results obtained, the product of the NA gene was assumed to play a role in the negative regulation of GA signaling and to act later than the products of the known GAI and SPY genes.  相似文献   

2.
A recessive gibberellin (GA)-insensitive dwarf mutant of rice, gibberellin-insensitive dwarf1 (gid1), has been identified, which shows a severe dwarf phenotype and contains high concentrations of endogenous GA. To elucidate the function of gid1, proteins regulated downstream of gid1 were analysed using a proteomic approach. Proteins extracted from suspension-cultured cells of gid1 and its wild type were separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Of a total of 962 proteins identified from the suspension-cultured cells, 16 were increased and 14 were decreased in gid1 compared with its wild type. Among the proteins hyper-accumulated in gid1 were osmotin, triosephosphate isomerase, probenazole inducible protein (PBZ1) and pathogenesis-related protein 10. Of these four genes, only the expression of PBZ1 was increased by exogenous GA3 application. Expression of this gene was also enhanced in shoots of the wild type by cold stress or by rice blast fungus infection. Under normal growth conditions, there was more PBZ1 protein in gid1 than in the wild type. In addition, gid1 showed increased tolerance to cold stress and resistance to blast fungus infection. The entcopalyl diphosphate synthase (OsCPS) genes, which encode enzymes at the branch point between GA and phytoalexin biosynthesis, were expressed differentially in gid1 relative to the wild type. Specifically, OsCPS1, which encodes an enzyme in the GA biosynthesis pathway, was down-regulated and OsCPS2 and OsCPS4, which encode enzymes in phytoalexin biosynthesis, were up-regulated in gid1. These results suggest that the expression of PBZ1 is regulated by GA signalling and stress stimuli, and that gid1 is involved in tolerance to cold stress and resistance to blast fungus.  相似文献   

3.
Dwarf mutants of pea (Pisum sativum), with impaired gibberellin (GA) biosynthesis in the shoot, were studied to determine whether the roots of these genotypes had altered elongation and GA levels. Mutations na, lh-2, and ls-1 reduced GA levels in root tips and taproot elongation, although in lh-2 and ls-1 roots the reduction in elongation was small (less than 15%). The na mutation reduced taproot length by about 50%. The roots of na plants elongated in response to applied GA(1) and recombining na with mutation sln (which blocks GA catabolism) increased GA(1) levels in root tips and completely restored normal root development. In shoots, Mendel's le-1 mutation impairs the 3beta-hydroxylation of GA(20) to the bioactive GA(1), resulting in dwarfism. However, GA(1) and GA(20) levels were normal in le-1 roots, as was root development. The null mutation le-2 also did not reduce root GA levels or elongation. The results support the theory that GAs are important for normal root elongation in pea, and indicate that a 3beta-hydroxylase gene other than LE operates in pea roots.  相似文献   

4.
? Gibberellin (GA) deficiency resulting from the na mutation in pea (Pisum sativum) causes a reduction in nodulation. Nodules that do form are aberrant, having poorly developed meristems and a lack of enlarged cells. Studies using additional GA-biosynthesis double mutants indicate that this results from severe GA deficiency of the roots rather than simply dwarf shoot stature. ? Double mutants isolated from crosses between na and three supernodulating pea mutants exhibit a supernodulation phenotype, but the nodule structures are aberrant. This suggests that severely reduced GA concentrations are not entirely inhibitory to nodule initiation, but that higher GA concentrations are required for proper nodule development. ? na mutants evolve more than double the amount of ethylene produced by wild-type plants, indicating that low GA concentrations can promote ethylene production. The excess ethylene may contribute to the reduced nodulation of na plants, as application of an ethylene biosynthesis inhibitor increased na nodule numbers. However, these nodules were still aberrant in structure. ? Constitutive GA signalling mutants also form significantly fewer nodules than wild-type plants. This suggests that there is an optimum degree of GA signalling required for nodule formation and that the GA signal, and not the concentration of bioactive GA per se, is important for nodulation.  相似文献   

5.
The study on Stevia callus has the potential to advance the knowledge of antioxidant mechanisms involved in unorganized cells response to drought stress. The effects of polyethylene glycol (PEG; 0 and 4% w/v) in combination with paclobutrazol (PBZ; 0 and 2 mg l?1) and gibberellin (GA; 0 and 2 mg l?1) were studied on Stevia rebaudiana callus. PEG treatment led to an oxidative stress, as indicated by increased H2O2 content whose accumulation was prevented with PBZ and GA treatments. All treatments of PEG, PBZ and GA increased the total antioxidant capacity, with the highest antioxidant power in PBZ and GA treatments without PEG. The activity of superoxide dismutase, catalase and ascorbate peroxidase significantly increased in PEG treatment alone or in combination with PBZ and GA. All treatments of PEG, PBZ and GA significantly increased proteins, amino acids and proline contents, with the highest increase in presence of PBZ in medium culture. In contrary to proline, the activity of pyrroline-5-carboxylate synthetase and proline dehydrogenase did not change in response to any of the treatments. Collectively, our results demonstrated that PBZ and GA increased reactive oxygen species scavenging and osmolytes in PEG-treated calli more than PEG treatment alone to alleviate negative effects of PEG on Stevia calli. These findings will enable us to design effective genetic engineering strategies in callus culture to generate some somaclonal variation that may be useful in enhancing drought resistance in Stevia.  相似文献   

6.
A greenhouse experiment was designed to study the responses of Stevia rebaudiana herb to paclobutrazol (PBZ) and gibberellin (GA) treatments. GA and PBZ treatments caused no significant impact on photosynthesis pigments while they increased carbohydrates, amino acids and protein metabolites. Stevia showed a potent antioxidant activity through scavenging DPPH, NO·; O 2 ·? and OH· radicals which was highlighted in GA and PBZ treatments. The enzymatic and non-enzymatic antioxidant system of Stevia plant showed a significant increase in response to PBZ and GA treatments. PBZ treatment decreased plant growth while GA treatment had no significant effect on it. Collectively, both GA and PBZ treatments effectively increased metabolites and antioxidant property of Stevia herb.  相似文献   

7.
8.
The growth retardant paclobutrazol (PBZ) inhibited stem internode growth of in vitro cloned potato plants. The extent of growth inhibition caused by10-9 M PBZ in Murashige and Skoog medium was genotype-specific, varying between 10 - 60% of the stem growth of untreated controls in ten cultivars examined. An increase in percentage of de novo bud regenerating stem internode segments (SIS) as well as in the total number of buds per explant was observed in SIS taken from PBZ pretreated plants. PBZ applied directly into the regenerative media had no stimulatory effect on there generation process. We assume that the enhancing effect of PBZ on regeneration may be attributed to its interaction with cytokinin metabolism. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
In small rooted peach and nectarine plants grown in a hydroponic system, low paclobutrazol (PBZ) levels applied to the roots suppressed shoot and root development, but to a different degree. A much stronger retarding effect was observed on the shoot, with a very limited effect on roots, resulting in a reduced shoot:root ratio. The effect of the inhibitor on the roots was a rapid increase in root diameter, with increased root branching upon recovery from the inhibiting effect. Root thickening, a typical response to PBZ, was detected also in nectarines when only the top was treated with the inhibitor, indicating a basal movement of PBZ, thus contradicting the accepted notion that its translocation is only acropetal. Root thickening was the earliest detected morphological response to PBZ, being observed already 3 days after exposure to the retardant. The return to a normal diameter was abrupt. Uniconazol (UNI) had a much stronger retarding effect on peach plants than did similar concentrations of PBZ. Reduced top growth resulted in a reduction in water consumption.Abbreviations PBZ paclobutrazol - UNI uniconazol - GA Gibberellin - GBI gibberellin biosynthesis inhibitor - ABA abscisic acid This research was supported by Grant no. 1-779-84 from the US-Israel Binational Agricultural Research and Development Fund (BARD).Contribution from the Agricultural research organization, The Volcani Center, Bet Dagan, Israel. No. 1506-E, 1994 series.  相似文献   

10.
Two greenhouse experiments were conducted to study the effect of two plant growth retardants, Chlorocholine chloride (CCC) and Paclobutrazol (PBZ), on growth, Steviol glycosides (SVglys) content and antioxidant capacity in Stevia (Stevia rebaudiana Bertoni). Five concentrations of CCC (0, 250, 500, 750 and 1,000 ppm) and PBZ (0, 6, 12, 18 and 24 ppm) with three replications were applied to Stevia plants as treatments based on completely randomized design. CCC was sprayed on Stevia shoots, but PBZ was applied as a drench. The obtained results showed that CCC reduced plant height but improved leaf and stem dry weight, especially with 750 ppm concentration. Total SVgly content and consequently SVglys yield were significantly reduced by CCC application, and 1,000 ppm of CCC concentration was more effective than other treatments. PBZ had no effect on Stevia height while it significantly enhanced stem and dry weight at 12 ppm. Moreover, PBZ remarkably increased total SVglys contents, SVglys yield, and Rebaudioside A/Stevioside ratio. Total antioxidant capacity significantly varied with CCC and PBZ and the highest activity was obtained with 1,000 and 12 ppm of CCC and PBZ, respectively. The results of these experiments indicated that, although CCC and PBZ are plant growth retardants and act as anti-gibberellins, only CCC reduced plant height and SVglys production in Stevia. On the contrary, PBZ at 12 ppm concentration, improved Stevia growth, SVglys production, and antioxidant capacity.  相似文献   

11.
The tomato ( Solanum lycopersicum L.) slender mutant procera ( pro ) was analysed for its relationship with gibberellin (GA) by combining it with GA deficiency due to the gib-1 mutation. The sensitivity to GA biosynthesis inhibitors and the GA content were measured in the pro gib-1 double mutant. In the gib-1 mutant background, the pro mutation strongly reduced the GA requirement for seed germination and stem growth and almost fully restored the morphological leaf defects of the gib-1 mutant. An end-of-day far-red light treatment, when applied to the various genotypes, indicated that GAs are required for a response to this treatment, but that it act independently of the Pro gene product.  相似文献   

12.
Plants ofChrysanthemum cv. Lillian Hoek were treated with a paclobutrazol (PBZ) soil drench and histologically examined after 3 months. PBZ application resulted in thicker leaves, reduced stem diameter, and roots with an increased diameter and an unusual segmented appearance. Increased leaf thickness was partly due to an additional layer of palisade mesophyll, although individual palisade cells were shorter, of smaller diameter, and more tightly packed. Spongy mesophyll depth was also greater and the individual cells were more rounded and the volume of intercellular space was reduced. The narrower stems had an increased development of secondary xylem, but had a marked reduction in the number of sclerenchyma bundle caps. Increased root diameter was due to an increase in the number of rows and diameter of cortical cells. In PBZ-treated plants, root cortical cell length was 50–70% less than in untreated plants, and this reduction appeared to be associated with the segmentation of the roots. PBZ inhibited secondary vascular development in the roots. This study is similar to other relevant studies in recording thicker leaves and roots with PBZ application; however, many of the underlying anatomical changes described above have not been previously reported.  相似文献   

13.
Pluripotency manifests during mammalian development through formation of the epiblast, founder tissue of the embryo proper. Rodent pluripotent stem cells can be considered as two distinct states: na?ve and primed. Na?ve pluripotent stem cell lines are distinguished from primed cells by self-renewal in response to LIF signaling and MEK/GSK3 inhibition (LIF/2i conditions) and two active X chromosomes in female cells. In rodent cells, the na?ve pluripotent state may be accessed through at least three routes: explantation of the inner cell mass, somatic cell reprogramming by ectopic Oct4, Sox2, Klf4, and C-myc, and direct reversion of primed post-implantation-associated epiblast stem cells (EpiSCs). In contrast to their rodent counterparts, human embryonic stem cells and induced pluripotent stem cells more closely resemble rodent primed EpiSCs. A critical question is whether na?ve human pluripotent stem cells with bona fide features of both a pluripotent state and na?ve-specific features can be obtained. In this review, we outline current understanding of the differences between these pluripotent states in mice, new perspectives on the origins of na?ve pluripotency in rodents, and recent attempts to apply the rodent paradigm to capture na?ve pluripotency in human cells. Unraveling how to stably induce na?ve pluripotency in human cells will influence the full realization of human pluripotent stem cell biology and medicine.  相似文献   

14.
胚胎干细胞是一种能够维持自我更新、具有无限扩增能力的多能性干细胞。灵长类多能干细胞(iPSCs)根据其发育能力、细胞形态、基因表达谱以及表观遗传学的差异分为初始态多能干细胞(pPSCs)和原始态多能干细胞(nPSCs)。nPSCs因其容易进行基因工程处理以及体内外再生出功能组织器官等优势而在临床潜在应用上备受关注,因而有效维持ESCs的原始状态对其用于基础及临床研究具有重要意义。nPSCs的线粒体活性和自我更新能力高于pPSCs,且这两种多能性干细胞在DNA甲基化等方面都存在明显差别,DNA甲基化在nPSCs的转化及代谢中起到重要的作用。本文综述了DNA甲基化对ESCs的作用,特别是维持原始态的作用。  相似文献   

15.
16.
The gibberellin (GA)-deficient dwarf na mutant in pea (Pisum sativum) has severely reduced internode elongation, reduced root growth, and decreased leaflet size. However, the seeds develop normally. Two genes, PsKAO1 and PsKAO2, encoding cytochrome P450 monooxygenases of the subfamily CYP88A were isolated. Both PsKAO1 and PsKAO2 had ent-kaurenoic acid oxidase (KAO) activity, catalyzing the three steps of the GA biosynthetic pathway from ent-kaurenoic acid to GA(12) when expressed in yeast (Saccharomyces cerevisiae). In addition to the intermediates ent-7alpha-hydroxykaurenoic acid and GA(12)-aldehyde, some additional products of the pea KAO activity were detected, including ent-6alpha,7alpha-dihydroxykaurenoic acid and 7beta-hydroxykaurenolide. The NA gene encodes PsKAO1, because in two independent mutant alleles, na-1 and na-2, PsKAO1 had altered sequences and the five-base deletion in PsKAO1 associated with the na-1 allele cosegregated with the dwarf na phenotype. PsKAO1 was expressed in the stem, apical bud, leaf, pod, and root, organs in which GA levels have previously been shown to be reduced in na plants. PsKAO2 was expressed only in seeds and this may explain the normal seed development and normal GA biosynthesis in seeds of na plants.  相似文献   

17.
不同时期喷施多效唑对花生生理特性、产量和品质的影响   总被引:2,自引:0,他引:2  
为确定高产条件下不同花生品种的最佳化控时期,以小花生品种‘花育20’(HY20)和大花生品种‘花育25’(HY25)为试验材料,研究了多效唑(PBZ)不同喷施时期对花生根系活力、叶绿素含量、叶片保护酶和碳、氮代谢酶活性,以及荚果产量和籽仁品质的影响.结果表明:不同时期喷施PBZ均提高了2个品种花生在结荚期的叶绿素含量、根系活力,以及叶片超氧化物歧化酶、过氧化物酶、过氧化氢酶、蔗糖合成酶、蔗糖磷酸合成酶和磷酸烯醇式丙酮酸羧化酶活性,降低了丙二醛(MDA)含量以及硝酸还原酶、谷氨酰胺合成酶、谷氨酸脱氢酶和谷氨酸合成酶活性,且PBZ喷施时间越早效果越明显.在饱果期,HY25的各指标以主茎高25cm时喷施PBZ的效果最好,但HY20在主茎高25 cm时喷施PBZ的保护酶活性降低,化控时间过早导致植株早衰,叶绿素含量、根系活力以及碳代谢酶活性也略低于CK,HY20的指标以主茎高30 cm时喷施PBZ效果最好.适宜时期PBZ处理提高了2个品种的荚果产量和经济系数,提高了脂肪含量和油酸相对含量以及O/L值.高产条件下,HY25和HY20的最适多效唑处理时期分别为花生主茎高25和30 cm左右.  相似文献   

18.
Experiments were conducted to study the physiologicaleffect of the plant growth retardant paclobutrazol(PBZ) and its impact on the yield of tomato plants(cv. Precador). Seedlings were treated at the time of prickingout with soil and foliar applications of PBZ atconcentrations of 1.0 and 25.0 mg l-1respectively. The results established that:-- The reduced height and the increased thickness ofthe young plant stem, as well as the accelerated rootformation are a significant advantage of the PBZtreatment, contributing to the improvement of seedlingquality at planting.-- Soil treatment (1 mg l-1) and foliar treatment(25 mg l-1) with PBZ improves the photosyntheticactivity and water balance of tomato cv. Precador.-- PBZ accelerates fruit formation and increases earlyfruit yield.-- The concentrations of the retardant used and themode of its application ensure the production offruits without any residual retardant and harmless tohuman health from a phytosanitary point of view.  相似文献   

19.
Peng J  Harberd NP 《The Plant cell》1993,5(3):351-360
The gai mutation of Arabidopsis confers a dwarf phenotype resembling that of mutants defective in gibberellin (GA) biosynthesis. However, gai mutant plants differ from GA biosynthesis mutants because they fail to respond to exogenous GAs and accumulate endogenous GA species to higher (rather than lower) levels than found in wild-type controls. The gai mutation, therefore, identifies a gene that modulates the response of plant cells to GA. We have mapped gai with respect to visible and restriction fragment length polymorphism (RFLP) markers from chromosome 1. To observe the phenotype exhibited by individuals potentially lacking wild-type (GAI) function, we have also isolated novel irradiation-induced derivative alleles of gai. When homozygous, these alleles confer a revertant phenotype that is indistinguishable from the wild type. gai is a semidominant mutation that exerts its effects either because it is a gain-of-function mutation or because it is a loss-of-function or reduced-function mutation. The genetic and physiological properties of the derivative alleles are considered with reference to these alternative modes of dominance of gai. Because these alleles are potential deletion or rearrangement mutations, together with the closely linked RFLP markers identified in the linkage mapping experiments, they provide useful resources for the isolation of the gai locus via a map-based cloning approach.  相似文献   

20.
Genetic, physiological, and morphological studies of dwarf mutants of Arabidopsis thaliana (L.) Heynh. from the collection of the Department of Genetics and Breeding, Moscow State University, showed that the NA and LE genes are involved in regulating elongation of internode cells and sensitivity to various hormones. The na mutation suppressed stem growth only in the presence of the active LE gene. The absence of the LE activity (in the lele homozygote) restored stem growth of the na mutant to the level characteristic of the le-2 mutant, and a decrease in LE activity (in LEle heterozygote) almost completely suppressed the na phenotype. Phenotypic analysis of homozygous double mutants and heterozygotes obtained by crossing the na and le-2 mutants showed that the recessive le-2 allele has an epistatic effect on the semidominant na allele and that the genes possibly control consecutive steps of one biochemical pathway or one morphogenetic process. A hypothetical scheme was proposed for the interaction of the NA and LE gene products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号