首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Concerns about the use of genetically appropriate material in restoration often focus on questions of local adaptation. Many reciprocal transplant studies have demonstrated local adaptation in native plant species, but very few have examined how interspecific competition affects the expression of adaptive variation. Our study examined regional scales of adaptation between foothill and coastal populations of two California native bunchgrasses (Elymus glaucus and Nassella pulchra). By combining competitive manipulations with reciprocal transplants, we examined the importance of the vegetation at a site as a selective factor in the process of local adaptation. By monitoring survival and reproduction of reciprocally transplanted populations over the course of 3 years, we also studied the effect of life history stage on the expression of local adaptation. For most of the fitness components we measured, local adaptation was detected and interspecific competition consistently amplified its expression. Expression of local adaptation was especially apparent in the more inbreeding species E. glaucus and suggests that with weaker gene flow, selection may be more effective in creating ecotypes within this species. Local adaptation was detected at all life history stages but was most strongly expressed in traits associated with adult reproduction and the viability of seeds produced by the transplants. Taken together, our results indicate that the importance of local adaptation will become more apparent in the later stages of a restoration project as the plants at a site begin to reproduce and as they experience greater interspecific competition from the maturing vegetation at the site.  相似文献   

2.
    
The use of local seed sources for revegetation is accepted practice to reduce the potential that propagules will be poorly adapted to site conditions. However, data are often lacking to determine the distance within which seed sources represent local genotypes. Short‐term reciprocal transplant studies represent a class of tools to detect local adaptation of target species. We conducted a reciprocal transplant of Nassella pulchra between two central California locations to test for adaptation to local environmental conditions over a 3‐year period. Experimental plots at one location were split between grazed and ungrazed sites to evaluate the potential influence of livestock grazing on the detection or magnitude of local adaptation. During each year of the study, evidence of a home‐site advantage depended on the location, traits studied, and population. At the end of the 3‐year study period, however, we detected consistent evidence of a home‐site advantage for seedling biomass among grazed sites at one location and ungrazed plots at the other location. In effect, local adaptation was only apparent in the final year of the study. Short‐term reciprocal transplant studies are an effective tool to guide the selection of seed sources most likely to germinate and to become established at a restoration site, but such studies cannot rule out local adaptation, which may not be immediately detectable.  相似文献   

3.
    
Polyploid organisms often have different geographic ranges than their diploid relatives. However, it is unclear whether this divergence is maintained by adaptation or results from historical differences in colonization. Here, we conducted a reciprocal transplant experiment with diploid and autotetraploid Chamerion angustifolium to test for adaptation at the ploidy and population level. In the Rocky Mountains, pure diploid populations occur at high elevations and pure autotetraploid populations occur at low elevations with mixed ploidy populations between. We planted 3134 seedlings in 2004 and 3890 juveniles (bolting) in 2005 among nine plots, three in each of the diploid, mixed ploidy, and tetraploid zones, and monitored survival until 2008. For both seedlings and juvenile plants, elevation significantly influenced survival. The juvenile plants also showed a significant ploidy by elevation interaction, indicating that diploids and tetraploids survived best at their native elevations. In contrast, we found no evidence of local adaptation to plot within elevation. This suggests that the current distribution of diploids and tetraploids across elevations is the result of adaptation and that genome duplication may have facilitated the invasion of lower elevation habitats by limiting the movement of maladapted alleles from diploid populations at higher elevations.  相似文献   

4.
不同地理种源紫茎泽兰的生态适应性比较   总被引:2,自引:0,他引:2  
采用交互移植法,对移栽在6种不同生境中的5个不同种源紫茎泽兰幼苗的存活率、株高、分枝数、生物量、单株花序数、产种量和种子萌发率进行了为期1年的对比研究.结果表明:各种源紫茎泽兰的幼苗生长和繁殖特性对样地环境条件变化均表现出很强的可塑性.试验样地因素对幼苗株高、分枝数、生物量、单株花序数和产种量的影响均达到极显著水平(P<0.001).随着样地纬度和海拔的升高,各种源的幼苗株高、分枝数量、单株生物量、每株花序数量和单株产种量均呈下降趋势,且各样地间的差异均达到显著水平(P<0.05).但种源因素对幼苗株高、分枝数、生物量、单株花序数和产种量的影响均不显著(P>0.05).除单株产种量外,种源与试验样地的交互作用对上述各指标的影响均不显著.在各样地内,当地种源幼苗的存活率、生长能力和繁殖能力均未表现出显著的优势.说明紫茎泽兰在我国西南地区入侵成功主要依靠其较高的表型可塑性,而局域适应的作用相对较小.  相似文献   

5.
Substantial genetic differentiation is frequently observed among populations of cyclically parthenogenetic zooplankton despite their high dispersal capabilities and potential for gene flow. Local adaptation has been invoked to explain population genetic differentiation despite high dispersal, but several neutral models that account for basic life history features also predict high genetic differentiation. Here, we study genetic differentiation among four populations of Daphnia pulex in east central Illinois. As with other studies of Daphnia, we demonstrate substantial population genetic differentiation despite close geographic proximity (<50 km; mean θ = 0.22). However, we explicitly tested and failed to find evidence for, the hypothesis that local adaptation to food resources occurs in these populations. Recognizing that local adaptation can occur in traits unrelated to resources, we estimated contemporary migration rates (m) and tested for admixture to evaluate the hypothesis that observed genetic differentiation is consistent with local adaptation to other untested ecological factors. Using Bayesian assignment methods, we detected migrants in three of the four study populations including substantial evidence for successful reproduction by immigrants in one pond, allowing us to reject the hypothesis that local adaptation limits gene flow for at least this population. Thus, we suggest that local adaptation does not explain genetic differentiation among these Daphnia populations and that other factors related to extinction/colonization dynamics, a long approach to equilibrium FST or substantial genetic drift due to a low number of individuals hatching from the egg bank each season may explain genetic differentiation.  相似文献   

6.
Abstract

Coevolution has been defined as the reciprocal genetic change in interacting species owing to natural selection imposed by each on the other. The process of coevolution between plants and the surrounding biota – including viruses, fungi, bacteria, nematodes, insects, and mammals – is considered by many biologists to have generated much of the earth's biological diversity. While much of the discussion on plant coevolution focuses on single plant–enemy interactions, a wide array of other micro and macro coevolutive processes co-occur in the same individual plant, posing the question whether we should talk about plant coevolutions. In this review article, I begin by briefly discussing the framework of coevolution theory and explore the complexities of studying coevolution in natural conditions. Then I analyze the difference between plants, microbes and animal coevolution, by exploring the above- and below-ground behaviors.  相似文献   

7.
    
Because the range boundary is the locale beyond which a taxon fails to persist, it provides a unique opportunity for studying the limits on adaptive evolution. Adaptive constraints on range expansion are perplexing in view of widespread ecotypic differentiation by habitat and region within a species' range (regional adaptation) and rapid evolutionary response to novel environments. In this study of two parapatric subspecies, Clarkia xantiana ssp. xantiana and C. x. ssp. parviflora, we compared the fitness of population transplants within their native region, in a non-native region within the native range, and in the non-native range to assess whether range expansion might be limited by a greater intensity of selection on colonists of a new range versus a new region within the range. The combined range of the two subspecies spans a west-to-east gradient of declining precipitation in the Sierra Nevada of California, with ssp. xantiana in the west being replaced by ssp. parviflora in the east. Both subspecies had significantly higher fitness in the native range (range adaptation), whereas regional adaptation was weak and was found only in the predominantly outcrossing ssp. xantiana but was absent in the inbreeding ssp. parvifilora. Because selection intensity on transplants was much stronger in the non-native range relative to non-native regions, there is a larger adaptive barrier to range versus regional expansion. Three of five sequential fitness components accounted for regional and range adaptation, but only one of them, survivorship from germination to flowering, contributed to both. Flower number contributed to regional adaptation in ssp. xantiana and fruit set (number of fruits per flower) to range adaptation. Differential survivorship of the two taxa or regional populations of ssp. xantiana in non-native environments was attributable, in part, to biotic interactions, including competition, herbivory, and pollination. For example, low fruit set in ssp. xantiana in the east was likely due to the absence of its principal specialist bee pollinators in ssp. parviflora's range. Thus, convergence on self-fertilization may be necessary for ssp. xantiana to invade ssp. parviflora's range, but the evolution of outcrossing would not be required for ssp. parviflora to invade ssp. xantiana's range.  相似文献   

8.
    
Understanding the evolution and demography of invasive populations may be key for successful management. In this study, we test whether or not populations of the non-native, hybrid-derived California wild radish have regionally adapted to divergent climates over their 150-year history in California and determine if population demographic dynamics might warrant different region-specific strategies for control. Using a reciprocal transplant approach, we found evidence for genetically based differences both between and among northern, coastal and southern, inland populations of wild radish. Individual fitness was analyzed using a relatively new statistical method called ‘aster modeling’ which integrates temporally sequential fitness measurements. In their respective home environments, fitness differences strongly favored southern populations and only slightly favored northern populations. Demographic rates of transition and sensitivities also differed between regions of origin, suggesting that the most effective approach for reducing overall population growth rate would be to target different life-history stages in each region.  相似文献   

9.
Understanding the genetic basis of local adaptation requires insight in the fitness effects of individual loci under natural field conditions. While rapid progress is made in the search for genes that control differences between plant populations, it is typically unknown whether the genes under study are in fact key targets of habitat-specific natural selection. Using a quantitative trait loci (QTL) approach, we show that a QTL associated with flowering-time variation between two locally adapted wild barley populations is an important determinant of fitness in one, but not in the other population's native habitat. The QTL mapped to the same position as a habitat-specific QTL for field fitness that affected plant reproductive output in only one of the parental habitats, indicating that the genomic region is under differential selection between the native habitats. Consistent with the QTL results, phenotypic selection of flowering time differed between the two environments, whereas other traits (growth rate and seed weight) were under selection but experienced no habitat-specific differential selection. This implies the flowering-time QTL as a driver of adaptive population divergence. Our results from phenotypic selection and QTL analysis are consistent with local adaptation without genetic trade-offs in performance across environments, i.e. without alleles or traits having opposing fitness effects in contrasting environments.  相似文献   

10.
    
Speciation proceeds when gene exchange is prevented between populations. Determining the different barriers preventing gene flow can therefore give insights into the factors driving and maintaining species boundaries. These reproductive barriers may result from intrinsic genetic incompatibilities between populations, from extrinsic environmental differences between populations, or a combination of both mechanisms. We investigated the potential barriers to gene exchange between three adjacent ecotypes of an Australian wildflower to determine the strength of individual barriers and the degree of overall isolation between populations. We found almost complete isolation between the three populations mainly due to premating extrinsic barriers. Intrinsic genetic barriers were weak and variable among populations. There were asymmetries in some intrinsic barriers due to the origin of cytoplasm in hybrids. Overall, these results suggest that reproductive isolation between these three populations is almost complete despite the absence of geographic barriers, and that the main drivers of this isolation are ecologically based, consistent with the mechanisms underlying ecological speciation.  相似文献   

11.
Selection for local adaptation results in genetic differentiation in ecologically important traits. In a perennial, outcrossing model plant Arabidopsis lyrata, several differentiated phenotypic traits contribute to local adaptation, as demonstrated by fitness advantage of the local population at each site in reciprocal transplant experiments. Here we compared fitness components, hierarchical total fitness and differentiation in putatively ecologically important traits of plants from two diverged parental populations from different continents in the native climate conditions of the populations in Norway and in North Carolina (NC, U.S.A.). Survival and number of fruits per inflorescence indicated local advantage at both sites and aster life‐history models provided additional evidence for local adaptation also at the level of hierarchical total fitness. Populations were also differentiated in flowering start date and floral display. We also included reciprocal experimental F1 and F2 hybrids to examine the genetic basis of adaptation. Surprisingly, the F2 hybrids showed heterosis at the study site in Norway, likely because of a combination of beneficial dominance effects from different traits. At the NC site, hybrid fitness was mostly intermediate relative to the parental populations. Local cytoplasmic origin was associated with higher fitness, indicating that cytoplasmic genomes also may contribute to the evolution of local adaptation.  相似文献   

12.
    
How the balance between selection, migration, and drift influences the evolution of local adaptation has been under intense theoretical scrutiny. Yet, empirical studies that relate estimates of local adaptation to quantification of gene flow and effective population sizes have been rare. Here, we conducted a reciprocal transplant trial, a common garden trial, and a whole‐genome‐based demography analysis to examine these effects among Arabidopsis lyrata populations from two altitudinal gradients in Norway. Demography simulations indicated that populations within the two gradients are connected by gene flow (0.1 < 4Nem < 11) and have small effective population sizes (Ne < 6000), suggesting that both migration and drift can counteract local selection. However, the three‐year field experiments showed evidence of local adaptation at the level of hierarchical multiyear fitness, attesting to the strength of differential selection. In the lowland habitat, local superiority was associated with greater fecundity, while viability accounted for fitness differences in the alpine habitat. We also demonstrate that flowering time differentiation has contributed to adaptive divergence between these locally adapted populations. Our results show that despite the estimated potential of gene flow and drift to hinder differentiation, selection among these A. lyrata populations has resulted in local adaptation.  相似文献   

13.
  总被引:1,自引:0,他引:1  
Predicting the response of species to environmental changes is a great and on‐going challenge for ecologists, and this requires a more in‐depth understanding of the importance of biotic interactions and the population structuration in the landscape. Using a reciprocal transplantation experiment, we tested the response of five species to an elevational gradient. This was combined to a neighbour removal treatment to test the importance of local adaptation and biotic interactions. The trait studied was performance measured as survival and biomass. Species response varied along the elevational gradient, but with no consistent pattern. Performance of species was influenced by environmental conditions occurring locally at each site, as well as by positive or negative effects of the surrounding vegetation. Indeed, we observed a shift from competition for biomass to facilitation for survival as a response to the increase in environmental stress occurring in the different sites. Unlike previous studies pointing out an increase of stress along the elevation gradient, our results supported a stress gradient related to water availability, which was not strictly parallel to the elevational gradient. For three of our species, we observed a greater biomass production for the population coming from the site where the species was dominant (central population) compared to population sampled at the limit of the distribution (marginal population). Nevertheless, we did not observe any pattern of local adaptation that could indicate adaptation of populations to a particular habitat. Altogether, our results highlighted the great ability of plant species to cope with environmental changes, with no local adaptation and great variability in response to local conditions. Our study confirms the importance of taking into account biotic interactions and population structure occurring at local scale in the prediction of communities’ responses to global environmental changes.  相似文献   

14.
    
Temperature and its impact on fitness are fundamental for understanding range shifts and population dynamics under climate change. Geographic climate heterogeneity, behavioral and physiological plasticity, and thermal adaptation to local climates make predicting the responses of species to climate change complex. Using larvae from seven geographically distinct wild populations in the eastern United States of the non‐native forest pest Lymantria dispar dispar (L.), we conducted a simulated reciprocal transplant experiment in environmental chambers using six custom temperature regimes representing contemporary conditions near the southern and northern extremes of the US invasion front and projections under two climate change scenarios for the year 2050. Larval growth and development rates increased with climate warming compared with current thermal regimes and tended to be greater for individuals originally sourced from southern rather than northern populations. Although increases in growth and development rates with warming varied somewhat by region of the source population, there was not strong evidence of local adaptation, southern populations tended to outperform those from northern populations in all thermal regimes. Our study demonstrates the utility of simulating thermal regimes under climate change in environmental chambers and emphasizes how the impacts from future increases in temperature can vary based on geographic differences in climate‐related performance among populations.  相似文献   

15.
One of the key questions in ecosystem restoration is the choice of the seed material for restoring plant communities. The most common strategy is to use local seed sources, based on the argument that many plants are locally adapted and thus local seed sources should provide the best restoration success. However, the evidence for local adaptation is inconsistent, and some of these inconsistencies may be due to different experimental approaches that have been used to test for local adaptation. We illustrate how conclusions about local adaptation depend on the experimental design and in particular on the method of data analysis. We used data from a multispecies reciprocal transplant experiment and analyzed them in three different ways: (1) comparing local vs. foreign plants within species and sites, corresponding to tests of the “local is best” paradigm in ecological restoration, (2) comparing sympatric vs. allopatric populations across sites but within species, and (3) comparing sympatric and allopatric populations across multiple species. These approaches reflect different experimental designs: While a local vs. foreign comparison can be done even in small experiments with a single species and site, the other two approaches require a reciprocal transplant experiment with one or multiple species, respectively. The three different analyses led to contrasting results. While the local/foreign approach indicated lack of local adaptation or even maladaptation, the more general sympatric/allopatric approach rather suggested local adaptation, and the most general cross‐species sympatric/allopatric test provided significant evidence for local adaptation. The analyses demonstrate how the design of experiments and methods of data analysis impact conclusions on the presence or absence of local adaptation. While small‐scale, single‐species experiments may be useful for identifying the appropriate seed material for a specific restoration project, general patterns can only be detected in reciprocal transplant experiments with multiple species and sites.  相似文献   

16.
The degree to which coral reef ecosystems will be impacted by global climate change depends on regional and local differences in corals’ susceptibility and resilience to environmental stressors. Here, we present data from a reciprocal transplant experiment using the common reef building coral Porites lobata between a highly fluctuating back reef environment that reaches stressful daily extremes, and a more stable, neighbouring forereef. Protein biomarker analyses assessing physiological contributions to stress resistance showed evidence for both fixed and environmental influence on biomarker response. Fixed influences were strongest for ubiquitin‐conjugated proteins with consistently higher levels found in back reef source colonies both pre and post‐transplant when compared with their forereef conspecifics. Additionally, genetic comparisons of back reef and forereef populations revealed significant population structure of both the nuclear ribosomal and mitochondrial genomes of the coral host (FST = 0.146 P < 0.0001, FST = 0.335 P < 0.0001 for rDNA and mtDNA, respectively), whereas algal endosymbiont populations were genetically indistinguishable between the two sites. We propose that the genotype of the coral host may drive limitations to the physiological responses of these corals when faced with new environmental conditions. This result is important in understanding genotypic and environmental interactions in the coral algal symbiosis and how corals may respond to future environmental changes.  相似文献   

17.
Local adaptation is considered to be the result of fitness trade‐offs for particular phenotypes across different habitats. However, it is unclear whether such phenotypic trade‐offs exist at the level of individual genetic loci. Local adaptation could arise from trade‐offs of alternative alleles at individual loci or by complementary sets of loci with different fitness effects of alleles in one habitat but selective neutrality in the alternative habitat. To evaluate the genome‐wide basis of local adaptation, we performed a field‐based quantitative trait locus (QTL) mapping experiment on recombinant inbred lines (RILs) created from coastal perennial and inland annual races of the yellow monkeyflower (Mimulus guttatus) grown reciprocally in native parental habitats. Overall, we detected 19 QTLs affecting one or more of 16 traits measured in two environments, most of small effect. We identified 15 additional QTL effects at two previously identified candidate QTLs [DIV ERGENCE (DIV)]. Significant QTL by environment interactions were detected at the DIV loci, which was largely attributable to genotypic differences at a single field site. We found no detectable evidence for trade‐offs for any one component of fitness, although DIV2 showed a trade‐off involving different fitness traits between sites, suggesting that local adaptation is largely controlled by non‐overlapping loci. This is surprising for an outcrosser, implying that reduced gene flow prevents the evolution of individuals adapted to multiple environments. We also determined that native genotypes were not uniformly adaptive, possibly reflecting fixed mutational load in one of the populations.  相似文献   

18.
    
  1. Many invasive species have rapidly adapted to different environments in their new ranges. This is surprising, as colonization is usually associated with reduced genetic variation. Heritable phenotypic variation with an epigenetic basis may explain this paradox.
  2. Here, we assessed the contribution of DNA methylation to local adaptation in native and naturalized non‐native ruderal plant species in Germany. We reciprocally transplanted offspring from natural populations of seven native and five non‐native plant species between the Konstanz region in the south and the Potsdam region in the north of Germany. Before the transplant, half of the seeds were treated with the demethylation agent zebularine. We recorded survival, flowering probability, and biomass production as fitness estimates.
  3. Contrary to our expectations, we found little evidence for local adaptation, both among the native and among the non‐native plant species. Zebularine treatment had mostly negative effects on overall plant performance, regardless of whether plants were local or not, and regardless of whether they were native or non‐native.
  4. Synthesis. We conclude that local adaptation, at least at the scale of our study, plays no major role in the success of non‐native and native ruderal plants. Consequently, we found no evidence yet for an epigenetic basis of local adaptation.
  相似文献   

19.
20.
    
Grasslands are undergoing tremendous degradation as a result of climate change, land use, and invasion by non‐native plants. However, understanding of the factors responsible for driving reestablishment of grassland plant communities is largely derived from short‐term studies. In order to develop an understanding of the factors responsible for longer term restoration outcomes in California annual grasslands, we surveyed 12 fields in Davis, CA, U.S.A., in 2015 that were seeded with native species mixtures starting in 2004. Using field surveys, we investigated how invasive plant richness and cover, native plant richness and cover, aboveground biomass, grazing, soil type, and restoration species identity might provide utility for explaining patterns of restoration success. We found a negative relationship between invasive cover and restoration cover, which was attributed to the slow establishment of seeded species and subsequent dominance by weeds. The relationship between invasive cover and restoration cover was modified by grazing, likely due to a change in the dominance of exotic forbs, which have a more similar growing season to restoration species, and therefore compete more strongly for late season moisture. Finally, we found that soil type was responsible for differences in the identity and abundance of invasive plants, subsequently affecting restoration cover. This work highlights the value of focusing resources on reducing invasive species cover, limiting grazing to periods of adequate moisture, and considering soil type for successful long‐term restoration in California annual grasslands. Moreover, observations of long‐term restoration outcomes can provide insight into the way mechanisms driving restoration outcomes might differ through time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号