首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Transfected linear DNA molecules are substrates for double-strand break (DSB) repair in mammalian cells. The DSB repair process can involve recombination between the transfected DNA molecules, between the transfected molecules and chromosomal DNA, or both. In order to determine whether these different types of repair events are linked, we devised assays enabling us to follow the fate of linear extrachromosomal DNA molecules involved in both interplasmid and chromosome-plasmid recombination, in the presence or absence of a pre-defined chromosomal DSB. Plasmid-based vectors were designed that could either recombine via interplasmid recombination or chromosome-plasmid recombination to produce a functional beta-galactosidase (betagal) fusion gene. By measuring the frequency of betagal+ cells at 36 h post-transfection versus the frequency of betagal+ clones after 14 days, we found that the number of cells containing extrachromosomal recombinant DNA molecules at 36 h (i.e., betagal+), either through interplasmid or chromosome-plasmid recombination, was nearly the same as the number of cells integrating these recombinant molecules. Furthermore, when a predefined DSB was created at a chromosomal site, the extrachromosomal recombinant DNA molecules were shown to integrate preferentially at that site by Southern and fiber-FISH (fluorescence in situ hybridization) analysis. Together these data indicate that the initial recombination event can potentiate or commit extrachromosomal DNA to integration in the genome at the site of a chromosomal DSB. The efficiency at which extrachromosomal recombinant molecules are used as substrates in chromosomal DSB repair suggests extrachromosomal DSB repair can be coupled to the repair of chromosomal DSBs in mammalian cells.  相似文献   

2.
Experiments with cultured pea roots were conducted to determine (i) whether extrachromosomal DNA was produced by cells in the late S phase or in the G2 phase of the cell cycle, (ii) whether the maturation of nascent DNA replicated by these cells achieved chromosomal size, (iii) when extrachromosomal DNA was removed from the chromosomal duplex, and (iv) the replication of nascent chains by the extrachromosomal DNA after its release from the chromosomal duplex. Autoradiography and cytophotometry of cells of carbohydrate-starved root tips revealed that extrachromosomal DNA was produced by a small fraction of cells accumulated in the late S phase after they had replicated about 80% of their DNA. Velocity sedimentation of nascent chromosomal DNA in alkaline sucrose gradients indicated that the DNA of cells in the late S phase failed to achieve chromosomal size. After reaching sizes of 70 X 10(6) to 140 X 10(6) daltons, some of the nascent chromosomal molecules were broken, presumably releasing extrachromosomal DNA several hours later. Sedimentation of selectively extracted extrachromosomal DNA either from dividing cells or from those in the late S phase showed that it replicated two nascent chains, one of 3 X 10(6) daltons and another of 7 X 10(6) daltons. Larger molecules of extrachromosomal DNA were detectable after cells were labeled for 24 h. These two observations were compatible with the idea that the extrachromosomal DNA was first replicated as an integral part of the chromosomal duplex, was cut from the duplex, and then, once free of the chromosome, replicated two smaller chains of 3 X 10(6) and 7 X 10(6) daltons.  相似文献   

3.
Recombination between chromosomal and extrachromosomal DNA sequences was analyzed by investigation of the recombinational rescue of a 1,018-base-pair (bp) segment of the T-antigen gene of simian virus 40 from the chromosome of monkey COS cells to two different, extrachromosomally replicating, simian virus 40 DNA molecules lacking this 1,018-bp sequence. The ratio of rescued to unrecombined virus was as high as 10(-3). The rescued molecules, detected optimally 5 to 9 days after transfection of COS cells, had completely recovered the 1,018-bp DNA segment from the chromosome. The recombination event is proposed to occur either by double reciprocal recombination or by gene conversion between the chromosomal T-antigen gene and the extrachromosomal molecules missing the 1,018-bp sequence.  相似文献   

4.
Tunicamycin-resistant variants of Leishmania mexicana were found to contain elevated activity of N-acetylglucosamine-1-phosphate transferase and amplified DNA (Kink, J. A., and Chang, K.-P. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 1253-1257). Complete digestion of their DNA with restriction endonucleases produced discrete ethidium bromide-staining bands after agarose gel electrophoresis. All four BamHI fragments of the amplified DNA were cloned separately into pBR322 and found to share no substantial sequence homology. DNA complementary to each of the cloned fragments is 64-128-fold more abundant in the variants than in the wild type cells. The amplified DNA appears to originate from a single chromosomal region of 63 kilobases. Individual copies of the 63 kilobases are each circularized at the newly formed junction site producing multiple extrachromosomal supercoiled molecules in the drug-resistant cells. There is overproduction of RNA ranging in size from 1.9 to 6.6 kilobases complementary to the amplified DNA in these cells.  相似文献   

5.
Dramatic and consistent changes of mitochondria or kinetoplast DNA (kDNA) were observed in certain variants of Leishmania amazonensis (A variants) selected in vitro for arsenite-resistance. This was found initially by comparing different lots of wild-type cells and their respective A variants resistant to 30 microM arsenite. The kDNAs isolated from these two groups had different restriction patterns and hybridized poorly to each other, whereas those from different lots within each of the two groups were identical. Hybridization data showed an overall identity of less than 10(-3) between total kDNAs of the two groups. This difference was further examined in three independent series of variants, which were selected from three different clones for resistance to graded concentrations of arsenite (5-50 microM). In all three series, their kDNAs were found to change abruptly in an identical pattern at a late step of the selection process, i.e., A variants resistant to 15 microM or 30 microM arsenite. There was no apparent loss of kDNA in the process. Most of the changes observed appear to involve a shift in either the dominance or the copy number of different minicircle subclasses. Surprisingly, the kDNAs of tunicamycin-resistant variants (T variants) were also found to undergo similar changes. Genetic changes previously described in both A and T variants are limited to their nuclei. Namely, different chromosomal regions are amplified to produce large DNA circles which are responsible for the drug-resistant phenotypes. Interestingly, other arsenite-resistant clones without such chromosomal DNA amplification (A' variants) had kDNA of the wild-type pattern. The profound changes of kDNA observed are unprecedented. We propose the term "transkinetoplastidy" for this phenomenon to distinguish it from dyskinetoplastidy or the loss of kDNA described previously in trypanosomatid protozoa. This phenomenon is discussed with respect to the possible mechanisms of its generation, regulation and relation to the drug-resistant phenotypes.  相似文献   

6.
ABSTRACT. Dramatic and consistent changes of mitochondrial or kinetoplast DNA (kDNA) were observed in certain variants of Leishmania amazonensis (A variants) selected in vitro for arsenite-resistance. This was found initially by comparing different lots of wild-type cells and their respective A variants resistant to 30 μM arsenite. The kDNAs isolated from these two groups had different restriction patterns and hybridized poorly to each other, whereas those from different lots within each of the two groups were identical. Hybridization data showed an overall identity of less than 10?3 between total kDNAs of the two groups. This difference was further examined in three independent series of variants, which were selected from three different clones for resistance to graded concentrations of arsenite (5–30 μM). In all three series, their kDNAs were found to change abruptly in an identical pattern at a late step of the selection process, i.e. A variants resistant to 15 μM or 30 μM arsenite. There was no apparent loss of kDNA in the process. Most of the changes observed appear to involve a shift in either the dominance or the copy number of different minicircle subclasses. Surprisingly, the kDNAs of tunicamycin-resistant variants (T variants) were also found to undergo similar changes. Genetic changes previously described in both A and T variants are limited to their nuclei. Namely, different chromosomal regions are amplified to produce large DNA circles which are responsible for the drug-resistant phenotypes. Interestingly, other arsenite-resistant clones without such chromosomal DNA amplification (A'variants) had kDNA of the wild-type pattern. The profound changes of kDNA observed are unprecedented. We propose the term “transkinetoplastidy” for this phenomenon to distinguish it from dyskinetoplastidy or the loss of kDNA described previously in trypanosomatid protozoa. This phenomenon is discussed with respect to the possible mechanisms of its generation, regulation and relation to the drug-resistant phenotypes.  相似文献   

7.
The protozoan parasite Leishmania often responds to drug pressure by amplifying part of its genome. At least two loci derived from the same 800 kb chromosome were amplified either as extrachromosomal circles or linear fragments after sodium arsenite selection. A 50 kb linear amplicon was detected in six independent arsenite mutants and revertants grown in absence of arsenite rapidly lost the amplicon and part of their resistance. The circular extrachromosomal amplicons, all derived from the H locus of Leishmania, were characterized more extensively. In all cases, direct repeated sequences appeared to be involved in the formation of circular amplicons. Most amplicons were generated after homologous recombination between two linked P-glycoprotein genes. This recombination event was, in two cases, associated with the loss of one allele of the chromosomal copy. A novel rearrangement point was found in a mutant where the amplicon was created by recombination between two 541 bp direct repeats surrounding the P-glycoprotein gene present at the H locus. It is also at one of these repeats that an H circle with large inverted duplications was formed. We propose that the presence of repeated sequences in the H locus facilitates the amplification of the drug resistance genes concentrated in this locus.  相似文献   

8.
Velocity sedimentation in an alkaline sucrose gradient of newly replicated chromosomal DNA revealed the presence of extrachromosomal DNA that was not replicated by differentiating cells in the elongation zone. The extrachromosomal DNA had a number average molecular weight of 12 X 10(6) to 15 X 10(6) and a weight average molecular weight of 25 X 10(6), corresponding to about 26 X 10(6) and 50 X 10(6) daltons, respectively, of double-stranded DNA. The molecules were stable, lasting at least 72 h after being formed. Concurrent measurements by velocity sedimentation, autoradiography, and cytophotometry of isolated nuclei indicated that the extrachromosomal molecules were associated with root-tip cells that stopped dividing and differentiated from G2 phase but not with those that stopped dividing and differentiated from G1 phase.  相似文献   

9.
Extrachromosomal circular DNA molecules are prevalent in cancer cells and harbor amplified genes, such as oncogenes and drug resistance genes, that can provide a selective growth advantage to cancer cells. These circular DNA structures include double minute chromosomes (dmin), which can be detected with light microscopy following Giemsa staining, and submicroscopic circular DNA structures referred to as episomes. In this study, we investigated the fate of dmin and episomes in multidrug-resistant human epidermoid KB-V1 cells undergoing cisplatin-induced apoptosis – a mode of cell death initially characterized by the fragmentation of chromosomal DNA, while the nuclear membrane remains intact. The circular DNA structures carry amplified copies of the multidrug resistance gene (MDR1). During cisplatin-induced apoptotic cell death, episomes and dmin, as well as native chromosomes, were degraded into high molecular weight DNA fragments of approximately 50 kb in length. DNA fragments in this size range appear to result from the preferential cleavage of matrix-associated regions in chromatin with the subsequent release of 20–30 nm loop domains of chromatin from the nuclear scaffold. Scanning electron microscopy studies were performed and confirmed the presence of 30 nm filaments in a higher-order DNA packing of MDR1-containing dmin and episomes. These combined data provide strong evidence that the higher-order DNA packing of episomes, as well as dmin, is similar to that of native chromosomes and underscore the potential for extrachromosomal DNA amplicons to study the structural and functional organization of chromatin. We discuss the implications of extrachromosomal DNA matrix associated regions competing with native chromosomal DNA for binding to the nuclear matrix in tumor cells. Received: 18 August 1998; in revised form: 6 December 1998 / Accepted: 21 January 1999  相似文献   

10.
Spiroplasmavirus SVTS2, isolated from Spiroplasma melliferum TS2, produces plaques when inoculated onto lawns of Spiroplasma citri M200H, a derivative of the type strain Maroc R8A2. S. citri strains MR2 and MR3, originally selected as colonies growing within plaques on a lawn of M200H inoculated with SVTS2, were resistant to SVTS2. Genomic DNA fingerprints and electrophoretic protein profiles of M200H, MR2, and MR3 were similar, but three proteins present in M200H were missing or significantly reduced in both resistant lines. None of these three polypeptides reacted with antiserum against S. citri membrane proteins, indicating that they probably are not surface-located virus receptors. Electroporation with SVTS2 DNA produced 1.5 x 10(sup5) transfectants per (mu)g of DNA in M200H but none in MR2 or MR3, suggesting that resistance may result from inhibition of viral replication. The digestion patterns of the extrachromosomal double-stranded (ds) DNA of these lines were similar. Three TaqI fragments of MR2 extrachromosomal DNA that were not present in M200H extrachromosomal DNA hybridized strongly to an SVTS2 probe, and two of these fragments plus an additional one hybridized with the MR3 extrachromosomal DNA, indicating that a fragment of SVTS2 DNA was present in the extrachromosomal ds DNA of MR2 and MR3 but not of M200H. When the restricted genomes of all three lines were probed with SVTS2 DNA, strong hybridization to two EcoRI fragments of chromosomal MR2 and MR3 DNA but not M200H DNA indicated that SVTS2 DNA had integrated into the genomes of MR2 and MR3 but not of M200H. When MR3 extrachromosomal ds DNA containing a 2.1-kb SVTS2 DNA fragment was transfected into M200H, the transformed spiroplasmas were resistant to SVTS2. These results suggest that SVTS2 DNA fragments, possibly integrated into the chromosomal or extrachromosomal DNA of a previously susceptible spiroplasma, may function as viral incompatibility elements, providing resistance to superinfection by SVTS2.  相似文献   

11.
Using fluorescence in situ hybridization and Southern blot analysis, we show that three clonally derived cell lines transformed with bovine papillomavirus (BPV), including ID13, the cell line commonly employed for BPV replication studies, are heterogeneous populations having extensive cell-to-cell variation in both the distribution and amount of BPV DNA. Different subclones of ID13 were found to differ in the form and amount of BPV DNA they contain. Most subclones showed no detectable BPV sequences; some contained either extrachromosomal BPV molecules distributed throughout the nucleus or BPV sequences integrated at discrete chromosomal sites, while others contained both integrated and plasmid forms. The results of density gradient analysis of BPV DNA from individual homogeneous subclones showed replication of the extrachromosomal BPV plasmids in a random-choice mode. In all cell lines studied, the presence after one round of chromosomal DNA replication of unreplicated BPV DNA and of BPV DNA having two postreplicative strands was independent of the presence of high-BPV-copy-number ("jackpot") cells. Our results substantiate the earlier conclusion that extrachromosomal BPV molecules replicate randomly and not according to a once-per-cell-cycle mechanism.  相似文献   

12.
The sporulating wild-type strain of Streptomyces reticuli, which produces a melanin pigment and the macrolide leucomycin, contains plasmid DNA of 48 to 49 megadaltons. Plasmidless variants had an altered secondary metabolism and a changed antibiotic resistance pattern. By using a new colony hybridization technique developed for streptomycetes, it could be shown that plasmidless variants could be transformed with the wild-type plasmid DNA, which, however, is quickly lost from regenerated mycelium. In contrast to the wild-type strain, the plasmidless variants contain amplified nucleotide sequences within the chromosomal DNA. The number and size of these sequences vary with the strain tested. Hybridization studies revealed that the reiterated sequences are neither amplified ribosomal nor plasmid genes, but are present in small concentrations within the wild-type chromosome. Some of them share extensive homologies with each other and are located at different positions within the chromosome. It is assumed that alterations in secondary metabolism are due to changes within both the chromosomal and the extrachromosomal DNAs of S. reticuli.  相似文献   

13.
Extrachromosomal circular DNA molecules of chromosomal origin have been detected in many organisms and are thought to reflect genomic plasticity in eukaryotic cells. Here we report a developmentally regulated formation of extrachromosomal circular DNA that occurs de novo in preblastula Xenopus embryos. This specific DNA population is not detected in the male or female germ cells and is dramatically reduced in later developmental stages and in adult tissues. The activity responsible for the de novo production of extrachromosomal circles is maternally inherited, is stored in the unfertilized egg, and requires genomic DNA as a template. The formation of circular molecules does not require genomic DNA replication but both processes can occur simultaneously in the early development. The production of extrachromosomal circular DNA does not proceed at random since multimers of the tandemly repeated sequence satellite 1 were over-represented in the circle population, while other sequences (such as ribosomal DNA and JCC31 repeated sequence) were not detected. This phenomenon reveals an unexpected plasticity of the embryonic genome which is restricted to the early developmental stage.  相似文献   

14.
Current methods for characterizing extrachromosomal nuclear DNA in mammalian cells do not permit single-cell analysis, are often semi-quantitative and frequently biased toward the detection of circular species. To overcome these limitations, we developed Halo-FISH to visualize and quantitatively analyze extrachromosomal DNA in single cells. We demonstrate Halo-FISH by using it to analyze extrachromosomal telomere-repeat (ECTR) in human cells that use the Alternative Lengthening of Telomeres (ALT) pathway(s) to maintain telomere lengths. We find that GM847 and VA13 ALT cells average ∼80 detectable G/C-strand ECTR DNA molecules/nucleus, while U2OS ALT cells average ∼18 molecules/nucleus. In comparison, human primary and telomerase-positive cells contain <5 ECTR DNA molecules/nucleus. ECTR DNA in ALT cells exhibit striking cell-to-cell variations in number (<20 to >300), range widely in length (<1 to >200 kb) and are composed of primarily G- or C-strand telomere-repeat DNA. Halo-FISH enables, for the first time, the simultaneous analysis of ECTR DNA and chromosomal telomeres in a single cell. We find that ECTR DNA comprises ∼15% of telomere-repeat DNA in GM847 and VA13 cells, but <4% in U2OS cells. In addition to its use in ALT cell analysis, Halo-FISH can facilitate the study of a wide variety of extrachromosomal DNA in mammalian cells.  相似文献   

15.
The 2300 base-pair transposon-like human element, THE-1, has been identified in the extrachromosomal circular DNA of the established human cell line HeLa as a relatively homogeneous population of covalently closed 1900 base-pair molecules. THE-1, which has been classified tentatively as a retroviral-like transposable element (a retrotransposon), is present in the extrachromosomal circular DNA of African green monkey (BSC-1) and human lymphoblastoid (Jurkat) cell lines. The 1900 base-pair extrachromosomal elements isolated and cloned from HeLa cells (1) appear to contain only THE-1-specific nucleotide sequences, (2) are circularized versions of the linear chromosomal sequence, and (3) are related predominantly to a single, or single type of, family member.  相似文献   

16.
17.
We describe the first example of unstable gene amplification consisting of linear extrachromosomal DNAs in drug-resistant eukaryotic cells. alpha-Difluoromethylornithine (DFMO)-resistant Leishmania donovani with an amplified ornithine decarboxylase (ODC) gene copy number contained two new extrachromosomal DNAs, both present in 10 to 20 copies. One of these was a 140-kb linear DNA (ODC140-L) on which all of the amplified copies of the odc gene were located. The second was a 70-kb circular DNA (ODC70-C) containing an inverted repeat but lacking the odc gene. Both ODC140-L and ODC70-C were derived from a preexisting wild-type chromosome, probably by a conservative amplification mechanism. Both elements were unstable in the absence of DFMO, and their disappearance coincided with a decrease in ODC activity and an increase in DFMO growth sensitivity. These results suggest the possibility that ODC70-C may play a role in DFMO resistance. These data expand the diversity of known amplification mechanisms in eukaryotes to include the simultaneous unstable amplification of both linear and circular DNAs. Further characterization of these molecules will provide insights into the molecular mechanisms underlying gene amplification, including the ability of linear amplified DNAs to acquire telomeres and the determinants of chromosomal stability.  相似文献   

18.
Extrachromosomal elements in the lower eukaryote Leishmania   总被引:15,自引:0,他引:15  
Extrachromosomal DNA elements have been identified in wild-type populations of the parasitic protozoan Leishmania. Elements from L. major and L. tropica were detected using orthogonal-field-alternation-gel electrophoresis. They are nonhomologous, supercoiled circular DNA molecules derived from different chromosomes in the Leishmania genome. Electron microscopy revealed that the elements have very similar physical properties; both are 80-kilobase supercoiled DNA molecules that contain large inverted repeat structures. The extrachromosomal DNAs are amplified in the Leishmania populations and show a fluctuation in copy number, from undetectable to around 20 copies per cell. After exposure of the L. tropica population to the drug methotrexate (MTX), a second amplified DNA was observed that is homologous to the extrachromosomal DNA found in L. major. Furthermore, wild-type Leishmania populations containing extrachromosomal DNA adapt more readily to MTX selection than populations with no amplified DNA. From these observations, there appears to be a relationship between the presence of extrachromosomal elements in wild-type Leishmania and the genesis and maintenance of MTX resistance in these organisms.  相似文献   

19.
Extrachromosomal deoxyribonucleic acid (DNA) from 24 different R factor-harboring Enterobacteriaceae was isolated and characterized by analytical ultracentrifugation and electron microscopy. The R factors represented 15 different patterns of transferable drug resistance found in enterobacteria from an enclosed geographic area. All of the strains contained extrachromosomal, circular DNA molecules within the range of 0.4 to 52 mum. More than one size class of circular DNA molecules was observed in the majority of the extrachromosomal DNA preparations. The buoyant density of the extrachromosomal DNA ranged from 1.700 to 1.720 g/cm3. The majority of the bacteria contained extrachromosomal DNAs of various densities. Three-fourths of the R factors were classified as fi+. The investigation illustrates the extensive variability in the physical characteristics of plasmid DNA from R factor-harboring strains.  相似文献   

20.
In most organisms, the nuclear ribosomal RNA (rRNA) genes are highly repetitive and arranged as tandem repeats on one or more chromosomes. In Entamoeba, however, these genes are located almost exclusively on extrachromosomal circular DNA molecules with no clear evidence so far of a chromosomal copy. Such an uncommon location of rRNA genes may be a direct consequence of cellular physiology, as suggested by studies with Saccharomyces cerevisiae mutants in which the rDNA is extrachromosomal. In this review, Sudha Bhattacharya, Indrani Som and Alok Bhattacharya summarize current knowledge on the structural organization and replication of the Entamoeba rDNA plasmids. Other than the rRNAs encoded by these molecules, no protein-coding genes (including ribosomal protein genes) are found on any of them. They are unique among plasmids in that they do not initiate replication from a fixed origin but use multiple sites dispersed throughout the molecule. Further studies should establish the unique biochemical features of Entamoeba that lead to extrachromosomal rDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号