首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
It was previously reported that the N-terminal domain of Azospirillum brasilense NifA was a negative regulator of the NifA activity and that the P(II) protein prevented this inhibition under nitrogen fixing conditions. Here, we show that a mutation of a single Tyr residue at position 18 of the N-terminal domain of NifA led to an active NifA protein that did not require P(II) for activation under nitrogen fixation conditions.  相似文献   

4.
5.
6.
7.
8.
9.
The nifA gene has been identified between the fixX and nifB genes in the clover microsymbiont Rhizobium leguminosarum biovar trifolii (R.I. bv. trifolii) strain ANU843. Expression of the nifA gene is induced in the symbiotic state and site-directed mutagenesis experiments indicate that nifA expression is essential for symbiotic nitrogen fixation. Interestingly, the predicted R.I. bv. trifolii NifA protein lacks an N-terminal domain that is present in the homologous proteins from R.I. bv. viciae, Rhizobium meliloti, Bradyrhizobium japonicum, Klebsiella pneumoniae and all other documented NifA proteins. This indicates that this N-terminal domain is not essential for NifA function in R.I. bv. trifolii.  相似文献   

10.
Azospirillum brasilense NifA, which is synthesized under all physiological conditions, exists in an active or inactive from depending on the availability of ammonia. The activity also depends on the presence of PII, as NifA is inactive in a glnB mutant. To investigate further the mechanism that regulates NifA activity, several deletions of the nifA coding sequence covering the amino-terminal domain of NifA were constructed. The ability of these truncated NifA proteins to activate the nifH promoter in the absence or presence of ammonia was assayed in A. brasilense wild-type and mutant strains. Our results suggest that the N-terminal domain is not essential for NifA activity. This domain plays an inhibitory role which prevents NifA activity in the presence of ammonia. The truncated proteins were also able to restore nif gene expression to a glnB mutant, suggesting that PII is required to activate NifA by preventing the inhibitory effect of its N-terminal domain under conditions of nitrogen fixation. Low levels of nitrogenase activity in the presence of ammonia were also observed when the truncated gene was introduced into a strain devoid of the ADP-ribosylation control of nitrogenase. We propose a model for the regulation of NifA activity in A. brasilense.  相似文献   

11.
12.
13.
14.
15.
The nifA gene is an important regulatory gene and its product, NifA protein, regulates the expression of many nif genes involved in the nitrogen fixation process. We introduced multiple copies of the constitutively expressed Sinorhizobium meliloti (Sm) or Enterobacter cloacae (Ec) nifA gene into both the nifA mutant strain SmY and the wild-type strain Sm1021. Root nodules produced by SmY containing a constitutively expressed Sm nifA gene were capable of fixing nitrogen, while nodules produced by SmY containing the Ec nifA gene remained unable to fix nitrogen, as is the case for SmY itself. However, transfer of an additional Sm nifA gene into Sm1021 improved the nitrogen-fixing efficiency of root nodules to a greater extent than that observed upon transfer of the Ec nifA gene into Sm1021. Comparative analysis of amino acid sequences between Sm NifA and Ec NifA showed that the N-terminal domain was the least similar, but this domain is indispensable for complementation of the Fix- phenotype of SmY by Sm NifA. We conclude that more than one domain is involved in determining functional differences between Sm NifA and Ec NifA.  相似文献   

16.
Overexpression and purification are procedures used to allow functional and structural characterization of proteins. Many overexpressed proteins are partially or completely insoluble, and can not be easily purified. The NifA protein is an enhancer-binding protein involved in activating the expression of nif and some fix genes. The NifA protein from many organisms is usually insoluble when over-expressed, and therefore difficult to work with in vitro. In this work we have overexpressed the central + C-terminal and the central domains of the Herbaspirrilum seropedicae NifA protein in an Escherichia coli background. Expression was induced with either IPTG or lactose. The data showed that induction with lactose promoted a significantly higher percentage of these proteins in the soluble fraction than with IPTG. This probably reflects a slower kinetics of induction by lactose.  相似文献   

17.
18.
19.
Regulation of NifA activity in Azospirillum brasilense depends on GlnB (a PII protein), and it was previously reported that the target of GlnB activity is the N-terminal domain of NifA. Furthermore, mutation of the Tyr residue at position 18 in the N-terminal domain resulted in a NifA protein that did not require GlnB for activity under nitrogen fixation conditions. We report here that a NifA double mutant in which the Tyr residues at positions 18 and 53 of NifA N-were simultaneously replaced by Phe (NifA-Y1853F) displays high nitrogenase activity, which is still regulatable by ammonia, but not by GlnB. The yeast two-hybrid technique was used to investigate whether GlnB can physically interact with wild-type and mutant NifA proteins. GlnB was found to interact directly with the N-terminal GAF domain of wild-type NifA, but not with its central or C-terminal domain. GlnB could still bind to the single NifA mutants Y18F and Y53F. In contrast, no interaction was detected between GlnB and the double mutant NifA-Y18/53F or between GlnB and NifA-Y43.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号