首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aminoacylated (charged) transfer RNA isoacceptors read different messenger RNA codons for the same amino acid. The concentration of an isoacceptor and its charged fraction are principal determinants of the translation rate of its codons. A recent theoretical model predicts that amino-acid starvation results in 'selective charging' where the charging levels of some tRNA isoacceptors will be low and those of others will remain high. Here, we developed a microarray for the analysis of charged fractions of tRNAs and measured charging for all Escherichia coli tRNAs before and during leucine, threonine or arginine starvation. Before starvation, most tRNAs were fully charged. During starvation, the isoacceptors in the leucine, threonine or arginine families showed selective charging when cells were starved for their cognate amino acid, directly confirming the theoretical prediction. Codons read by isoacceptors that retain high charging can be used for efficient translation of genes that are essential during amino-acid starvation. Selective charging can explain anomalous patterns of codon usage in the genes for different families of proteins.  相似文献   

2.
Six tRNA(Leu) isoacceptors from yellow lupin seeds were purified, sequenced, and their readthrough properties over the UAG stop codon were tested using TMV RNA as a messenger. The tested tRNAs(Leu) did not show amber suppressor activity. The partial structure of tRNA(Gln), a minor species in yellow lupin, was also determined. Comparison of the nucleotide sequence of all known isoacceptors of tRNA(Tyr), tRNA(Gln) and tRNA(Leu) from plants, mammals and ciliates enabled us to find general structural requirements for tRNA to be a UAG suppressor. From the partial sequence of lupin tRNA(Gln) we suggest that it will have readthrough properties.  相似文献   

3.
4.
Sequence of a new tRNA(Leu)(U*AA) from brewer's yeast.   总被引:3,自引:0,他引:3  
The nucleotide sequence of a new tRNA(Leu)(anticodon U*AA) from Saccharomyces cerevisiae which could recognize exclusively the UUA codon has been determined. Its primary structure is: pGGAGGGUUGm2GCac4CGAGDGmGDCDAAGGCm2(2)GGCAGACmUU*AAm1GA++ + psi CUGUUGGACGGUUGUCCGm5CGCGAGT psi CGm1A(orA)ACCUCGCAUCCUUCACCA. This tRNA has a large extraloop and contains 15 modified nucleotides. So far it is the third isoacceptor tRNA for leucine in yeast. It has 61% homology with tRNA(Leu)(anticodon m5CAA) and 63% homology with tRNA(Leu)(anticodon UAG), the two other known yeast tRNAs(Leu).  相似文献   

5.
We have sequenced the tRNA genes of mtDNA from patients with chronic progressive external ophthalmoplegia (CPEO) without detectable mtDNA deletions. Four point mutations were identified, located within highly conserved regions of mitochondrial tRNA genes, namely tRNA(Leu)(UAG), tRNA(Ser)(GCU), tRNA(Gly) and tRNA(Lys). One of these mutations (tRNA(Leu)(UAG)) was found in four patients with different forms of mitochondrial myopathy. An accumulation of three different tRNA point mutations (tRNA(Leu)(UAG)), tRNA(Ser)(GCU) and tRNA(Gly) was observed in a single patient, suggesting that mitochondrial tRNA genes represent hotspots for point mutations causing neuromuscular diseases.  相似文献   

6.
Readthrough of the nonsense codons UAG, UAA, and UGA is seen in Escherichia coli strains lacking tRNA suppressors. Earlier results indicate that UGA is miscoded by tRNA(Trp). It has also been shown that tRNA(Tyr) and tRNA(Gln) are involved in UAG and UAA decoding in several eukaryotic viruses as well as in yeast. Here we have investigated which amino acid(s) is inserted in response to the nonsense codons UAG and UAA in E. coli. To do this, the stop codon in question was introduced into the staphylococcal protein A gene. Protein A binds to IgG, which facilitates purification of the readthrough product. We have shown that the stop codons UAG and UAA direct insertion of glutamine, indicating that tRNA(Gln) can read the two codons. We have also confirmed that tryptophan is inserted in response to UGA, suggesting that it is read by tRNA(Trp).  相似文献   

7.
Continuing our investigation of the tRNA genes and gene products in Mycoplasma mycoides, we report the sequence of the gene for tRNALeu (CAA) as well as partial primary structures of the following tRNAs: Leu (CAA), Leu (UAG), Arg (UCU), Thr (AGU) and Ile (CAU). It is suggested that in M. mycoides, at least some of the family codon boxes are read by only one tRNA each, using an unconventional method which does not discriminate between the nucleotides in the third codon position. M. mycoides is the first free-living organism known to use an unconventional method of this kind.  相似文献   

8.
Recently, a model of the flux of amino acids through transfer RNAs (tRNAs) and into protein has been developed. The model predicts that the charging level of different isoacceptors carrying the same amino acid respond very differently to variation in supply of the amino acid or of the rate of charging. It has also been shown that ribosome bypassing is specifically stimulated at 'hungry' codons calling for an aminoacyl-tRNA in short supply. We have constructed two reporters of bypassing, which differ only in the identity of the serine codon subjected to starvation. The stimulation of bypassing as a function of starvation differed greatly between the two serine codons, in good agreement with the quantitative predictions of the model.  相似文献   

9.
Ribosomes from 8-day-regenerating rat skeletal muscle have been shown to be more active in poly(U)-directed polyphenylalanine synthesis than ribosomes from control muscle. This difference persists after salt washing of the ribosomes and does not appear to be due to the presence of ribonuclease associated with the control ribosome population. Ribosomes from control muscle were also less active than those from regenerates in the nonenzymatic binding of phenylalanyl-tRNA to ribosomes and in the peptidyltransferase reaction. Three glutamyl-tRNA isoacceptors have been isolated from 8-day-regenerating rat skeletal muscle by preparative RPC-5 chromatography of total tRNA charged with [3H]glutamic acid. The two major isoacceptors observed, tRNAgluI and tRNAgluIII, respond to the glutamic acid codons GAG and GAA, respectively. A third, minor glutamyl isoacceptor, tRNAgluII, also responds to the codon GAA. When the three isoacceptors were tested for function in a polysomal cell-free protein synthesizing system, it was found that their relative levels of utilization were essentially identical to their relative abundances. Thus, the tRNA which increases in relative amount after the induction of regeneration, tRNAgluII, is not preferentially utilized for overall muscle protein synthesis.  相似文献   

10.
Expression of the RNA replicase domain of tobacco mosaic virus (TMV) and certain protein-coding regions in other plant viruses, is mediated by translational readthrough of a leaky UAG stop codon. It has been proposed that normal tobacco tyrosine tRNAs are able to read the UAG codon of TMV by non-conventional base-pairing but recent findings that stop codons can also be bypassed as a result of extended translocational shifts (tRNA hopping) have encouraged a re-examination. In light of the alternatives, we investigated the sequences flanking the leaky UAG codon using an in vivo assay in which bypass of the stop codon is coupled to the transient expression of beta-glucuronidase (GUS) reporter genes in tobacco protoplasts. Analysis of GUS constructions in which codons flanking the stop were altered allowed definition of the minimal sequence required for read through as UAG-CAA-UUA. The effects of all possible single-base mutations in the codons flanking the stop indicated that 3' contexts of the form CAR-YYA confer leakiness and that the 3' context permits read through of UAA and UGA stop codons as well as UAG. Our studies demonstrate a major role for the 3' context in the read through process and do not support a model in which teh UAG is bypassed exclusively as a result of anticodon-codon interactions. No evidence for tRNA hopping was obtained. The 3' context apparently represents a unique sequence element that affects translation termination.  相似文献   

11.
Du X  Wang ED 《Biochemistry》2002,41(34):10623-10628
Leucyl-tRNA synthetase (LeuRS), one of the class Ia aminoacyl-tRNA synthetases, joins Leu to tRNA(Leu) and excludes noncognate amino acids in protein synthesis. In this study, Escherichia coli LeuRS mutants at amino acid E292, which was located in the connective polypeptide 1 insertion region, were synthesized. Although mutated LeuRS showed little change in structure compared with wild-type LeuRS, the mutants were impaired in activity to varying extents. It was also showed that mutations did not affect the adenylation reaction. However, mutated LeuRS can mischarge tRNA(Leu) isoacceptors tRN or tRN with isoleucine to different extents. Isoleucylation of tRN was more than that of tRN. The mutant LeuRS-E292S, which was picked out as an example for the investigation of the relationship between tRNA(Leu) isoacceptors and editing function, can discriminate the Watson-Crick base pair of the first base pair of tRNA(Leu) from the wobble base pair. The tRNA(Leu) with the Watson-Crick base pair may result in more isoleucylated product than that with the wobble base pair. The same phenomenon happened to another mutant, LeuRS-A293D. It seems that the flexibility of the first base pair affects the editing reaction of LeuRS. The results indicate that the flexibility of the first base pair of tRNA(Leu) may probably affect the mischarged 3'-end of tRNA(Leu) shuttling from synthetic site to editing site and that the transferred acceptor arm of tRNA(Leu) may interact with LeuRS in the region around E292.  相似文献   

12.
Three glutamine tRNA isoacceptors are known in Tetrahymena thermophila. One of these has the anticodon UmUG which reads the two normal glutamine codons CAA and CAG, whereas the two others with CUA and UmUA anticodons recognize UAG and UAA, respectively, which serve as termination codons in other organisms. We have employed these tRNA(Gln)-isoacceptors as tools for studying unconventional base interactions in a mRNA- and tRNA-dependent wheat germ extract. We demonstrate here (i) that tRNA(Gln)UmUG suppresses the UAA as well as the UAG stop codon, involving a single G:U wobble pair at the third anticodon position and two simultaneous wobble base pairings at the first and third position, respectively, and (ii) that tRNA(Gln)CUA, in addition to its cognate codon UAG, reads the UAA stop codon which necessitates a C:A mispairing in the first anticodon position. These unorthodox base interactions take place in a codon context which favours readthrough in tobacco mosaic virus (TMV) or tobacco rattle virus (TRV) RNA, but are not observed in a context that terminates zein and globin protein synthesis. Furthermore, our data reveal that wobble or mispairing in the middle position of anticodon-codon interactions is precluded in either context. The suppressor activities of tRNAs(Gln) are compared with those of other known naturally occurring suppressor tRNAs, i.e., tRNA(Tyr)G psi A and tRNA(Trp)CmCA. Our results indicate that a 'leaky' context is neither restricted to a single stop codon nor to a distinct tRNA species.  相似文献   

13.
Transfer RNA (tRNA) molecules play vital roles during protein synthesis. Their acceptor arms are aminoacylated with specific amino acid residues while their anticodons delimit codon specificity. The history of these two functions has been generally linked in evolutionary studies of the genetic code. However, these functions could have been differentially recruited as evolutionary signatures were left embedded in tRNA molecules. Here we built phylogenies derived from the sequence and structure of tRNA, we forced taxa into monophyletic groups using constraint analyses, tested competing evolutionary hypotheses, and generated timelines of amino acid charging and codon discovery. Charging of Sec, Tyr, Ser and Leu appeared ancient, while specificities related to Asn, Met, and Arg were derived. The timelines also uncovered an early role of the second and then first codon bases, identified codons for Ala and Pro as the most ancient, and revealed important evolutionary take-overs related to the loss of the long variable arm in tRNA. The lack of correlation between ancestries of amino acid charging and encoding indicated that the separate discoveries of these functions reflected independent histories of recruitment. These histories were probably curbed by co-options and important take-overs during early diversification of the living world.  相似文献   

14.
An in vitro system to assay translational readthrough of the UAG termination codon at the murine leukemia virus (MuLV) gag-pol junction was developed by using rabbit reticulocyte lysates programmed by SP6-generated Moloney MuLV gag-pol mRNA. Under conditions in which the suppressor activity of the lysate was dependent on addition of tRNA, it could be shown that readthrough synthesis was stimulated to approximately the same extent by equivalent amounts of tRNA from MuLV-infected and uninfected NIH 3T3 cells. Analysis of glutamine tRNA, which mediates suppression in vivo, showed that the level of glutamine acceptor activity and the chromatographic profile of glutamine isoacceptors were unchanged following virus infection. On the basis of these results, we conclude that the suppressor tRNA occurs normally within the tRNA population of uninfected cells and need not be induced in response to virus infection.  相似文献   

15.
The entire mitochondrial genome was sequenced in a prostriate tick, Ixodes hexagonus, and a metastriate tick, Rhipicephalus sanguineus. Both genomes encode 22 tRNAs, 13 proteins, and two ribosomal RNAs. Prostriate ticks are basal members of Ixodidae and have the same gene order as Limulus polyphemus. In contrast, in R. sanguineus, a block of genes encoding NADH dehydrogenase subunit 1 (ND1), tRNA(Leu)(UUR), tRNA(Leu)(CUN), 16S rDNA, tRNA(Val), 12S rDNA, the control region, and the tRNA(Ile) and tRNA(Gln) have translocated to a position between the tRNA(Glu) and tRNA(Phe) genes. The tRNA(Cys) gene has translocated between the control region and the tRNA(Met) gene, and the tRNA(Leu)(CUN) gene has translocated between the tRNA(Ser)(UCN) gene and the control region. Furthermore, the control region is duplicated, and both copies undergo concerted evolution. Primers that flank these rearrangements confirm that this gene order is conserved in all metastriate ticks examined. Correspondence analysis of amino acid and codon use in the two ticks and in nine other arthropod mitochondrial genomes indicate a strong bias in R. sanguineus towards amino acids encoded by AT-rich codons.   相似文献   

16.
Escherichia coli strains mutated in the relA gene lack the ability to produce ppGpp during amino acid starvation. One consequence of this deficiency is a tenfold increase in misincorporation at starved codons compared to the wild-type. Previous work had shown that the charging levels of tRNAs were the same in Rel(+) and Rel(-) strains and reduced, at most, two- to fivefold in both strains during starvation. The present reinvestigation of the charging levels of tRNA(2)(Arg), tRNA(1)(Thr), tRNA(1)(Leu) and tRNA(His) during starvation of isogenic Rel(+) and Rel(-) strains showed that starvation reduced charging levels tenfold to 40-fold. This reduction corresponds much better with the decreased rate of protein synthesis during starvation than that reported earlier. The determination of the charging levels of tRNA(2)(Arg) and tRNA(1)(Thr) during starvation were accurate enough to demonstrate that charging levels were at least fivefold lower in the Rel(-) strain compared to the Rel(+) strain. Together with other data from the literature, these new data suggest a simple model in which mis-incorporation increases as the substrate availability decreases and that ppGpp has no direct effect on enhancing translational accuracy at the ribosome.  相似文献   

17.
18.
The mechanisms by which polyamines stimulate synthesis of the RNA polymerase sigma(38) subunit in Escherichia coli were studied. Polyamine stimulation was observed only in strains in which the 33rd codon of RpoS mRNA is a UAG termination codon instead of a CAG codon for glutamine in wild-type E. coli. Readthrough of the termination codon by Gln-tRNA(supE) was stimulated by polyamines. This stimulation was found to be caused by an increase in both the level of suppressor tRNA(supE) and the binding affinity of Gln-tRNA(supE) for ribosomes. The stimulatory effect was observed with a UAG termination codon but not with UGA and UAA codons. Readthrough of the UAG termination codon at the 270th amino acid position of RpoS mRNA was also stimulated by polyamines, indicating that polyamines stimulate readthrough of a UAG codon regardless of its location within the RpoS mRNA. When cell viability of an E. coli strain having a termination codon in the 33rd position of RpoS mRNA was compared using cells cultured with or without putrescine, it was higher in cells cultured with putrescine than in cells cultured without putrescine. The level of sigma(38) subunit in the cells cultured with putrescine was higher than that in cells cultured without putrescine on days 2, 4, and 8, but the level of sigma(70) subunit was almost the same in cells cultured with or without putrescine. These results confirm that elevated expression of the rpoS gene is important for cell viability at late stationary phase.  相似文献   

19.
Growth rate dependence of transfer RNA abundance in Escherichia coli.   总被引:13,自引:1,他引:13       下载免费PDF全文
We have tested the predictions of a model that accounts for the codon preferences of bacteria in terms of a growth maximization strategy. According to this model the tRNA species cognate to minor and major codons should be regulated differently under different growth conditions: the isoacceptors cognate to major codons should increase at fast growth rates while those cognate to minor codons should decrease at fast growth rates. We have used a quantitative Northern blotting technique to measure the abundance of the methionine and the leucine isoacceptor families over growth rates ranging from 0.5 to 2.1 doublings per hour. Five tRNA species that are cognate to major codons (tRNA(eMet), tRNA(1fMet), tRNA(2fMet), tRNA(1Leu) and tRNA(3Leu) increase both as a relative fraction of total tRNA and in absolute concentration with increasing growth rates. Three tRNA species that are cognate to minor codons (tRNA(2Leu), tRNA(4Leu) and tRNA(5Leu) decrease as a relative fraction of total RNA and in absolute concentration with increasing growth rates. These data suggest that the abundances of groups of tRNA species are regulated in different ways, and that they are not regulated simply according to isoacceptor specificity. In particular, the data support the growth optimization model for codon bias.  相似文献   

20.
Most Bacillus subtilis tRNA genes have been isolated from lambda libraries by use of probes that hybridize to tRNA or rRNA sequences. None of those genes map to the region of the sup-3 mutation. By cloning of the sup-3 allele, a cluster of seven tRNA genes (the trnS operon) that had not been isolated by other methods was identified. In principle, this approach could be used to isolate at least one more predicted tRNA-containing operon in this bacterium. The trnS operon was shown to contain tRNA genes for Asn (GUU), Ser (GCU), Glu (UUC), Gln (UUG), Lys (UUU), Leu (UAG), and Leu (GAG). The sup-3 mutation was found to be a T-to-A transversion that changes the anticodon of the lysine tRNA from 5'-UUU-3' to 5'-UUA-3'. This result agrees with previous work that determined that the sup-3 mutation causes lysine to be inserted at ochre nonsense mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号