首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Nm23–NDPKs besides contributing to the maintenance of the cellular nucleoside triphosphate pool, exert regulatory properties in a variety of cellular events including proliferation, invasiveness, development, differentiation, and gene regulation. This review focuses on recently discovered protein–protein interactions involving the Nm23 proteins. The findings herein summarized provide new and intriguing suggestions for a more extensive understanding of the biological functions of the Nm23 proteins.  相似文献   

5.
Fan Z  Beresford PJ  Oh DY  Zhang D  Lieberman J 《Cell》2003,112(5):659-672
Granzyme A (GzmA) induces a caspase-independent cell death pathway characterized by single-stranded DNA nicks and other features of apoptosis. A GzmA-activated DNase (GAAD) is in an ER associated complex containing pp32 and the GzmA substrates SET, HMG-2, and Ape1. We show that GAAD is NM23-H1, a nucleoside diphosphate kinase implicated in suppression of tumor metastasis, and its specific inhibitor (IGAAD) is SET. NM23-H1 binds to SET and is released from inhibition by GzmA cleavage of SET. After GzmA loading or CTL attack, SET and NM23-H1 translocate to the nucleus and SET is degraded, allowing NM23-H1 to nick chromosomal DNA. GzmA-treated cells with silenced NM23-H1 expression are resistant to GzmA-mediated DNA damage and cytolysis, while cells overexpressing NM23-H1 are more sensitive.  相似文献   

6.
In humans, NM23-H1 is a metastasis suppressor whose expression is reduced in metastatic melanoma and breast carcinoma cells, and which possesses the ability to inhibit metastatic growth without significant impact on the transformed phenotype. NM23-H1 exhibits three enzymatic activities in vitro, each with potential to maintain genomic stability, a 3'-5' exonuclease and two kinases, nucleoside diphosphate kinase (NDPK), and protein histidine kinase. Herein we have investigated the potential contributions of NM23 proteins to DNA repair in the yeast, Saccharomyces cerevisiae, which contains a single NM23 homolog, YNK1. Ablation of YNK1 delayed repair of UV- and etoposide-induced nuclear DNA damage by 3-6h. However, YNK1 had no impact upon the kinetics of MMS-induced DNA repair. Furthermore, YNK1 was not required for repair of mitochondrial DNA damage. To determine whether the nuclear DNA repair deficit manifested as an increase in mutation frequency, the CAN1 forward assay was employed. An YNK1 deletion was associated with increased mutation rates following treatment with either UV (2.6x) or MMS (1.6 x). Mutation spectral analysis further revealed significantly increased rates of base substitution and frameshift mutations following UV treatment in the ynk1Delta strain. This study indicates a novel role for YNK1 in DNA repair in yeast, and suggests an anti-mutator function that may contribute to the metastasis suppressor function of NM23-H1 in humans.  相似文献   

7.
8.
The Bcl-2 family members are evolutionally conserved and crucial regulators of apoptosis. Diva (Boo), an ortholog of Bcl2L10 or Bcl-B, is a member of the Bcl-2 family that has contradictory functions in apoptosis. To understand the signaling mechanisms of Diva, we searched for proteins that interact with Diva using the yeast two-hybrid system. We identified a nucleoside diphosphate kinase isoform, NM23-H2. Here, we show that Diva bound to NM23-H2 in cells in which the transmembrane domain of Diva was required, and both proteins were colocalized in cytoplasm. Of interest, Diva protein level was significantly down-regulated by NM23-H2 as knock down of NM23-H2 restored Diva expression. Overexpression of NM23-H2 induced apoptosis, and the depletion of NM23-H2 led to the increase of Diva's apoptotic activity. Thus, these results indicate the existence of a previously undiscovered mechanism by which NM23-H2 involves in the regulation of Diva-mediated apoptosis.  相似文献   

9.
A full-length amphioxus (Branchiostoma belcheri tsingtauense) NM23-Bbt2, NM23-H2 homologue, cDNA was isolated from the cDNA library and sequenced. The obtained amphioxus NM23-Bbt2 cDNA contains an open reading frame coding for 171 amino acids. Sequence analysis showed that the amphioxus NM23-Bbt2 was highly conserved with that of other species, and all of them contained highly conserved motifs that play important roles in the function of NM23. RT-PCR revealed that NM23-Bbt2 is expressed in the neuronal tissues and is expressed in all stages during the embryogenesis. Nucleoside kinases are thought to have a critical role in regulatory processes such as signal transduction, proliferation, and differentiation. Taken together, these results suggest that nucleoside diphosphate kinases have an important role to play in embryogenic development in amphioxus. Phylogenetic analysis showed that the amphioxus group 1 NDPKs (Bf1-4) may be precursors of the human group 1 NDPKs, NM23-Bf5, NM23-Bf6, NM23-Bf7 and NM23-Bf8 may be precursors of NM23-H5, NM23-H6, NM23-H7 and M23-H8, respectively. Our finding of nine NM23 genes in Branchiostoma floride, the precursor of vertebrates, strongly suggests that the ancestral gene corresponding to each of vertebrates NM23 genes generated before the appearance of vertebrates. Comparison of the gene structures of NM23-H2 homologue from invertebrates to vertebrates suggests that the locations of three of the four introns are conserved in amphioxus and vertebrates.  相似文献   

10.
11.
12.
13.
The concentration of neuromelanin (NM) in substantia nigra pars compacta (SNPC) has been measured in male and female normal subjects at different ages in the range 1–97 years old and in SNPC of parkinsonian patients. A very similar age trend of NM concentration was found in both sexes. In the first year of life NM was not detectable, between 10 and 20 years the NM levels were 0.3–0.8 μg/mg of SNPC, between 20 and 50 years were 0.8–2.3 μg/mg SNPC and between 50 and 90 were 2.3–3.7 μg/mg of SNPC. In parkinsonian subjects, the NM levels were 1.2–1.5 μg/mg of SNPC, which is less than 50% with respect to the age-matched controls. These data demonstrate a continuous NM accumulation in SNPC neurons during aging, the presence of large amounts of NM in SNPC and severe depletion of NM in Parkinson’s disease.  相似文献   

14.
Yoon JH  Singh P  Lee DH  Qiu J  Cai S  O'Connor TR  Chen Y  Shen B  Pfeifer GP 《Biochemistry》2005,44(48):15774-15786
Nucleoside diphosphate kinases (NDKs), an evolutionarily conserved family of proteins, synthesize nucleoside triphosphates from nucleoside diphosphates and ATP. Here, we have characterized the kinase activity and DNA processing functions of eight human proteins that contain at least one domain homologous to Escherichia coli NDK. Not all human proteins with NDK-like domains exhibited NDK activity when expressed as recombinant proteins in E. coli. Human NDK1 (NM23-H1) has been reported to have 3' --> 5' exonuclease activity. In addition to human NDK1, we also find that human NDK5, NDK7, and NDK8 contain 3' --> 5' exonuclease activity. Site-directed mutagenesis, competition assays between wild-type and mutant NDK proteins, and NMR studies confirmed that the DNA-binding and 3' --> 5' exonuclease activity of human NDK1 is an intrinsic activity of the protein. Using double-stranded DNA substrates containing modified bases, human NDK1 efficiently excised nucleotides from the single-strand break produced by APE1 or Nth1. When human cells were treated with various DNA-damaging agents, human NDK1 translocated from the cytoplasm to the nucleus. These results suggest that, in addition to maintenance of nucleotide pool balance, the human NDK-like proteins may have previously unrecognized roles in DNA nucleolytic processing.  相似文献   

15.
16.
Phosphorylation is a ubiquitous protein post-translational modification that is intimately involved in most aspects of cellular regulation. Currently, most proteomic analyses are performed with phosphorylation searches for serine, threonine, and tyrosine modifications, as the phosphorylated residues of histidine and aspartic acid are acid labile and thus undetectable with most proteomic methodologies. Here, we present a novel buffer system to show histidine phosphorylation of NM23-H1, the product of the first identified putative human metastasis suppressor gene (NME1), which catalyzes the transfer of the γ-phosphate from nucleoside triphosphates to nucleoside diphosphates. On the basis of a pH titration of LC elution buffers and MS/MS identification, recombinant NM23-H1 subjected to autophosphorylation was shown to contain phosphorylated histidine at residue 118 at pH 5 and 6, with each level giving over 75% peptide coverage for identification. The solvent system presented permits the detection of all five possible phosphorylation moieties. Application of histidine and aspartic acid phosphorylation modifications to proteomic analyses will significantly advance the understanding of phosphorylation relay signaling in cellular regulation, including elucidation of the role of NM23-H1 in metastasis.  相似文献   

17.
The metastasis suppressor NM23-H1 possesses 3'-5' exonuclease activity   总被引:11,自引:0,他引:11  
NM23-H1 belongs to a family of eight gene products in humans that have been implicated in cellular differentiation and development, as well as oncogenesis and tumor metastasis. We have defined NM23-H1 biochemically as a 3'-5' exonuclease by virtue of its ability in stoichiometric amounts to excise single nucleotides in a stepwise manner from the 3' terminus of DNA. The activity is dependent upon the presence of Mg(2+), is most pronounced with single-stranded substrates or mismatched bases at the 3' terminus of double-stranded substrates, and is inhibited by both ATP and the incorporation of cordycepin, a 2'-deoxyadenosine analogue, into the 3'-terminal position. The 3'-5' exonuclease activity was assigned to NM23-H1 by virtue of: 1) precise coelution of enzymatic activity with wild-type and mutant forms of NM23-H1 protein during purification by hydroxylapatite and gel filtration column high performance liquid chromatography and 2) significantly diminished activity exhibited by purified recombinant mutant forms of the proteins. Lysine 12 appears to play an important role in the catalytic mechanism, as evidenced by the significant reduction in 3'-5' exonuclease activity resulting from a Lys(12) to glutamine substitution within the protein. 3'-5' Exonucleases are believed to play an important role in DNA repair, a logical candidate function underlying the putative antimetastatic and oncogenic activities of NM23-H1.  相似文献   

18.
19.
20.
nm23-h1 is a well-documented metastasis suppressor gene whose mechanism(s) of action have yet to be fully elucidated. The purpose of this report is to discuss recent advances in investigating the potential role of a novel 3′–5′ exonuclease activity identified recently in our laboratory, a biochemical function associated, in general, with DNA repair and replication. We have employed a site-directed mutagenesis approach to demonstrate that the 3′–5′ exonuclease activity of NM23-H1 is required for its metastasis suppressor function. Consistent with a role in DNA repair, we also observe that the single yeast NM23 homolog (YNK1) is required for the maintenance of genomic integrity and normal kinetics of DNA repair in response to exposure to ultraviolet radiation. These results and their implications for understanding the molecular mechanisms underlying NM23-H1 functions in cancer are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号