首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Peroxiredoxin 1 (PRDX1) is a ubiquitously expressed antioxidant with vital roles in basal metabolic functions. In addition PRDX1 is involved in cell differentiation and proliferation, apoptosis and innate immunity. In this study, we have characterized PRDX1 from the tammar wallaby (Macropus eugenii). Tammar PRDX1 has high conservation of functional residues and motifs, and demonstrates a close homology with eutherian and vertebrate orthologues. Stimulation of adult tammar leukocytes with lipopolysaccharide and lipoteichoic acid suggests a role for PRDX1 in innate immune defences. PRDX1 expression in the organs of tammar pouch young was mildly elevated early in life possibly reflecting its role in basal metabolic processes. Later increases in PRDX1 expression correlated with functional maturation of several immune organs or with preparation for increased oxidative stress of emergence. The findings of the study are reflections of the complex integrated roles that PRDX1 has in regulation of oxidative stress, apoptosis, cell differentiation and proliferation, and innate immunity.  相似文献   

3.

Background

To overcome the increasing resistance of pathogens to existing antibiotics the 10×''20 Initiative declared the urgent need for a global commitment to develop 10 new antimicrobial drugs by the year 2020. Naturally occurring animal antibiotics are an obvious place to start. The recently sequenced genomes of mammals that are divergent from human and mouse, including the tammar wallaby and the platypus, provide an opportunity to discover novel antimicrobials. Marsupials and monotremes are ideal potential sources of new antimicrobials because they give birth to underdeveloped immunologically naïve young that develop outside the sterile confines of a uterus in harsh pathogen-laden environments. While their adaptive immune system develops innate immune factors produced either by the mother or by the young must play a key role in protecting the immune-compromised young. In this study we focus on the cathelicidins, a key family of antimicrobial peptide genes.

Principal Finding

We identified 14 cathelicidin genes in the tammar wallaby genome and 8 in the platypus genome. The tammar genes were expressed in the mammary gland during early lactation before the adaptive immune system of the young develops, as well as in the skin of the pouch young. Both platypus and tammar peptides were effective in killing a broad range of bacterial pathogens. One potent peptide, expressed in the early stages of tammar lactation, effectively killed multidrug-resistant clinical isolates of Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii.

Conclusions and Significance

Marsupial and monotreme young are protected by antimicrobial peptides that are potent, broad spectrum and salt resistant. The genomes of our distant relatives may hold the key for the development of novel drugs to combat multidrug-resistant pathogens.  相似文献   

4.
Antimicrobial peptides (AMPs) as part of host defense systems has been widely recognized in most organisms. Cathelicidin is an important family of AMPs acting as multifunctional effector molecules in innate immunity and exists in organisms with cathelicidin-like precursor. Andrias davidianus (A. davidianus) is a unique species in China and the biggest amphibians in the world. With the rapid growth of A. davidianus aquaculture, pathogens of bacteria, virus and fungus were reported, however little is known about antimicrobial peptides derived from A. davidianus. To investigate antimicrobial peptides of cathelicidin-like in A. davidianus, cathelicidin-like precursor gene cloning and bioinformatic analysis was carried out. The results showed that 1106 bp full-length cDNA of cathelicidin-like precursor was obtained, which was including a 35 bp 5' terminal UTR, a 546 bp open reading frame (ORF) and a 525 bp 5' terminal UTR. The cathelicidin-like precursor amino acid (AA) sequence of A. davidianus comprised N-terminal signal peptide (21 AA), highly conserved cathelin domain and C-terminal mature peptide. The cathelicidin-like precursor gene nucleotide sequence showed low identify with other cathelicidin-like sequences, while AA sequence displayed relatively higher similarity with cathelicidin-like isolated from other species. Phylogenetic tree indicated cathelicidinlike precursor of A. davidianus was firstly clade with Tylototrition verrucosus, which also belonged to Caudata, Amphibian. The precursor gene expression was detected by RT-qPCR. The result displayed this gene was abundant expression in A. davidianus skin. According the specificity proteases cleavage and characteristic of cathelicidin, five putative mature cathelicidin were predicted. This study confirms the presence of cathelicidin in A. davidianus. Their results not only reveal innate immune system of A. davidianus but also enlarge the AMP knowledge of urodele amphibians.  相似文献   

5.
Mu  Lixian  Zhou  Lei  Yang  Juanjuan  Zhuang  Li  Tang  Jing  Liu  Tong  Wu  Jing  Yang  Hailong 《Amino acids》2017,49(9):1571-1585

As of February 2017, approximately 7639 amphibian species have been described in the AmphibiaWeb database. However, only 20 cathelicidin-like antimicrobial peptides have been identified to date from 10 amphibian species. Half of these peptides were identified from genome sequences and have not yet been functionally characterized. In this study, a novel cathelicidin-like peptide designated cathelicidin-PP was purified from the skin of tree frog Polypedates puerensis. Cathelicidin-PP is a 32 residue peptide of sequence ASENGKCNLLCLVKKKLRAVGNVIKTVVGKIA. Circular dichroism spectroscopy indicated that cathelicidin-PP mainly adopts a β-sheet structure in membrane-mimetic solutions. Cathelicidin-PP exhibits potent antimicrobial activity against bacteria and fungi, especially Gram-negative bacteria. Meanwhile, it shows low cytotoxicity toward mammalian cells. Scanning electron microscopy analysis indicated that cathelicidin-PP kills bacteria through the disruption of the bacterial cell membrane integrity. Furthermore, cathelicidin-PP exerts significant anti-inflammatory functions by inhibiting the lipopolysaccharide (LPS)-mediated generation of nitric oxide and pro-inflammatory cytokines, tumor necrosis factor-α, interleukin-1β, and interleukin-6. The MAPKs (ERK, JNK, and p38) and NF-κB signaling pathways are involved in the anti-inflammatory effect. Cathelicidin-PP caused partial neutralization of LPS in a dose-dependent manner. Quantitative PCR indicated that infection of tree frogs with bacteria causes increased expression of cathelicidin-PP in immune-related tissues. Taken together, cathelicidin-PP is the first identified cathelicidin-like peptide from tree frogs. Our findings demonstrate that in addition to direct bactericidal capacity, cathelicidin-PP also possesses immunomodulatory properties, including partial neutralization of LPS, and inhibiting the production of inflammatory cytokines.

  相似文献   

6.
7.
8.
The increasing resistance of pathogens to antibiotics causes a huge clinical burden that places great demands on academic researchers and the pharmaceutical industry for resolution. Antimicrobial peptides, part of native host defense, have emerged as novel potential antibiotic alternatives. Among the different classes of antimicrobial peptides, proline-rich antimicrobial peptides, predominantly sourced from insects, have been extensively investigated to study their specific modes of action. In this review, we focus on recent developments in these peptides. They show a variety of modes of actions, including mechanism shift at high concentration, non-lytic mechanisms, as well as possessing different intracellular targets and lipopolysaccharide binding activity. Furthermore, proline-rich antimicrobial peptides display the ability to not only modulate the immune system via cytokine activity or angiogenesis but also possess properties of penetrating cell membranes and crossing the blood brain barrier suggesting a role as potential novel carriers. Ongoing studies of these peptides will likely lead to the development of more potent antimicrobial peptides that may serve as important additions to the armoury of agents against bacterial infection and drug delivery.  相似文献   

9.
昆虫天然免疫反应分子机制研究进展   总被引:4,自引:0,他引:4  
张明明  初源  赵章武  安春菊 《昆虫学报》2012,55(10):1221-1229
昆虫体内缺乏高等脊椎动物所具有的获得性免疫系统, 只能依赖发达的天然免疫系统抵抗细菌、 真菌、 病毒等外源病原物的侵染。本文概括了昆虫天然免疫反应发生和作用的分子机制相关进展, 重点阐述了重要免疫相关因子在昆虫天然免疫反应中的功能和作用机制。昆虫天然免疫反应分为体液免疫和细胞免疫两种, 二者共同作用完成对病原物的吞噬 (phagocytosis)、 集结 (nodulation)、 包囊 (encapsulation)、 凝结 (coagulation)和黑化(melanization)等。当昆虫受到外界病原物的侵染时, 首先通过体内的模式识别蛋白(pattern recognition proteins/receptor, PRPs)识别并结合病原物表面特有的模式分子(pathogen-associated molecular pattern, PAMPs), 继而一系列包括丝氨酸蛋白酶和丝氨酸蛋白酶抑制剂在内的级联激活反应被激活和调控, 产生抗菌肽、 黑色素等免疫效应分子, 清除或杀灭外源物。抗菌肽是一类小分子量的阳离子肽, 具有广谱抗菌活性, 针对不同类型的病原物, 抗菌肽的产生机制也不尽相同。昆虫体内存在着两种信号转导途径调节抗菌肽的产生: 一是由真菌和大部分革兰氏阳性菌激活的Toll途径; 二是由革兰氏阴性菌激活的Imd途径(immune deficiency pathway)。这两个途径通过激活不同转录因子调控不同抗菌肽基因的表达参与昆虫体内的天然免疫反应。  相似文献   

10.
抗菌肽是生物体内产生的一种具有生物活性的小分子多肽,具有广谱抗细菌、抗病毒、抗真菌甚至抗癌作用。SMAP-29是来源于绵羊骨髓细胞,包含29个氨基酸的Cathelicidin类α-螺旋结构抗菌肽。SMAP-29具有多种生物活性,包括抗革兰氏阳/阴性菌、抗真菌、抗病毒、抗寄生虫、抗螺旋体、抗衣原体和中和内毒素活性,并且具有作用机制独特、快速杀灭细菌的特点。以下综述了SMAP-29抗菌肽家族的基因和蛋白结构、结构与活性关系、作用机制、生物功能、基因重组表达,重点阐述了SMAP-29结构、分子设计的必要性和基于  相似文献   

11.
12.
Some antimicrobial peptides (AMPs) have been described to exert immunomodulatory effects, which may contribute to their in vivo antibacterial activity. Very recently, we could show that novel oncocin and apidaecin derivatives are potently antibacterially active in vivo. Therefore, we studied oncocin and apidaecin derivatives for their effects on murine dendritic cells (DC) and macrophages and compared them with well‐known immunomodulatory activities of murine cathelicidin‐related antimicrobial peptide (CRAMP). To characterize the immunomodulatory activity of the peptides on key cells of the innate immune system, we stimulated murine DC and macrophages with the oncocin and apidaecin derivatives alone, or in combination with lipopolysaccharide (LPS). We analyzed the secretion of pro‐inflammatory cytokines, the expression of surface activation markers, and the chemotactic activity of the AMPs. In contrast to LPS, none of the oncocin and apidaecin derivatives alone has an influence on cytokine or surface marker expression by DC and macrophages. Furthermore, the tested oncocin and apidaecin derivatives do not modulate the immune response after LPS stimulation, whereas CRAMP shows a reduction of the LPS‐mediated immune response as expected. All peptides tested are not chemotactic for DC. Together, lack of in vitro immunomodulatory effects by oncocin and apidaecin derivatives on key cells of the innate murine immune system suggests that their potent in vivo antibacterial activity relies on a direct antibacterial effect. This will simplify further pharmaceutical investigation and development of insect peptides as therapeutic compounds against bacterial infections. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Cathelicidins are small, cationic, antimicrobial peptides found in humans and other species, including farm animals (cattle, horses, pigs, sheep, goats, chickens, rabbits and in some species of fish). These proteolytically activated peptides are part of the innate immune system of many vertebrates. These peptides show a broad spectrum of antimicrobial activity against bacteria, enveloped viruses and fungi. Apart from exerting direct antimicrobial effects, cathelicidins can also trigger specific defense responses in the host. Their roles in various pathophysiological conditions have been studied in mice and humans, but there are limited information about their expression sites and activities in livestock. The aim of the present review is to summarize current information about these antimicrobial peptides in farm animals, highlighting peptide expression sites, activities, and future applications for human and veterinary medicine.  相似文献   

14.
15.
Major histocompatibility complex (MHC) class I molecules are transmembrane glycoproteins that present antigenic peptides to CD8+ T cells and are subsequently important for the initiation of an immune response. In this study novel MHC class I sequences from the tammar wallaby (Macropus eugenii) have been characterized. Analysis and comparative modeling of these and existing marsupial molecules reveals potential functional polymorphisms within peptide-binding grooves, MHC assembly motifs and the T cell receptor recognition interface. In addition, we show that a previously identified marsupial-specific insertion is within a region, which is known as a putative NK cell receptor (Ly49A) binding site in the mouse, suggesting that this site may be functionally active in marsupials. Further, the analysis highlighted differences in structural and sequence based grouping of marsupial MHC class I molecules.  相似文献   

16.
As resistance increases against fungal antibiotics, antimicrobial peptides are receiving attention as possible replacements. The dermal glands of frogs secrete, among other things, antimicrobial peptides. As part of the innate immune system, stressors may affect the production of antimicrobial peptides by dermal glands. The dermal secretions of some salamanders have been examined for their toxic secretions, but little attention has been given to salamander antimicrobial peptides. This study examines the skin from the tail region for the production of antimicrobial peptides in the terrestrial salamander, Plethodon cinereus. Fractions of tail extracts were isolated using cation-exchange chromatography and reverse-phase HPLC. An HPLC fraction eluting at 15.75 min (HPLC run: 30 min, 30-80% acetonitrile/water gradient, Aquapore RP-300 C18 column) showed activity against Staphylococcus aureus but not against Escherichia coli. The antibacterial activity gradually increased over a 4-hr incubation time up to about 85% inhibition of bacterial growth. Lysis of guinea pig red blood cells also increased gradually over a 1-hr time period. J. Exp. Zool. 287:340-345, 2000.  相似文献   

17.
18.
抗菌肽(antim icrobial peptides)是一类具有抗菌活性短肽的总称,广泛分布于原核生物与包括人类在内的真核生物体内,是宿主免疫防御系统中的重要组成部分。研究表明,抗菌肽除具有抗病毒、抗细菌、抗真菌作用外,还具有抗肿瘤作用。现从抗菌肽的结构特点与抗菌机制出发,对其构效关系及表达策略进行综述。  相似文献   

19.
Previous studies have implicated antimicrobial peptides in the host defense of the mammalian intestinal and respiratory tract. The aim of the present study has been to characterize further the expression of these molecules in non-epithelial cells of the human pulmonary and digestive systems by detailed immunohistochemical analysis of the small and large bowel and of the large airways and lung parenchyma. Additionally, cells obtained from bronchoalveolar lavage were analyzed by fluorescent activated cell sorting and immunostaining of cytospin preparations. hBD-1, hBD-2, and LL-37 were detected in lymphocytes and macrophages in the large airways, lung parenchyma, duodenum, and colon. Lymphocytes positive for the peptides revealed a staining pattern and distribution that largely matched that of CD3-positive and CD8-positive T-cells. Macrophages with positive staining for the antimicrobial peptides also stained positively for CD68 and CD74. In view of the morphology of the LL-37-positive and hBD-2-positive mucosal lymphocytes, they are probably also B-cells. Thus, antimicrobial peptides of the defensin and cathelicidin families are present in a variety of non-epithelial cells of mucosal organs. These findings confirm that antimicrobial peptides have multiple functions in the biology of the mucosa of these organs. This work was supported by grants from the Deutsche Forschungsgemeinschaft (Ba 1641/5–1 and Ba 1641/6–1)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号