首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hydrophobins are small, amphiphilic proteins secreted by filamentous fungi. Their functionality arises from a patch of hydrophobic residues on the protein surface. Spontaneous self-assembly of hydrophobins leads to the formation of an amphiphilic layer that remarkably reduces the surface tension of water. We have determined by x-ray diffraction two new crystal structures of Trichoderma reesei hydrophobin HFBII in the presence of a detergent. The monoclinic crystal structure (2.2A resolution, R = 22, R(free) = 28) is composed of layers of hydrophobin molecules where the hydrophobic surface areas of the molecules are aligned within the layer. Viewed perpendicular to the aligned hydrophobic surface areas, the molecules in the layer pack together to form six-membered rings, thus leaving small pores in the layer. Similar packing has been observed in the atomic force microscopy images of the self-assembled layers of class II hydrophobin, indicating that the crystal structure resembles that of natural hydrophobin film. The orthorhombic crystal structure (1.0 A resolution, R = 13, R(free) = 15) is composed of fiber-like arrays of protein molecules. Rodlet structures have been observed on amphiphilic layers formed by class I hydrophobins; fibrils of class II hydrophobins appear by vigorous shaking. We propose that the structure of the fibrils and/or rodlets is similar to that observed in the crystal structure.  相似文献   

3.
Kim S  Ahn IP  Rho HS  Lee YH 《Molecular microbiology》2005,57(5):1224-1237
Fungal hydrophobins are implicated in cell morphogenesis and pathogenicity in several plant pathogenic fungi including the rice blast fungus Magnaporthe grisea. A cDNA clone encoding a hydrophobin (magnaporin, MHP1) was isolated from a cDNA library constructed from rice leaves infected by M. grisea. The MHP1 codes for a typical fungal hydrophobin of 102 amino acids containing eight cysteine residues spaced in a conserved pattern. Hydropathy analysis of amino acids revealed that MHP1 belongs to the class II group of hydrophobins. The amino acid sequence of MHP1 exhibited about 20% similarity to MPG1, an M. grisea class I hydrophobin. Expression of MHP1 was highly induced during plant colonization and conidiation, but could hardly be detected during mycelial growth. Transformants in which MHP1 was inactivated by targeted gene replacement showed a detergent wettable phenotype, but were not altered in wettability with water. mhp1 mutants also exhibited pleiotropic effects on fungal morphogenesis, including reduction in conidiation, conidial germination, appressorium development and infectious growth in host cells. Furthermore, conidia of mhp1 mutants were defective in their cellular organelles and rapidly lose viability. As a result, mhp1 mutants exhibited a reduced ability to infect and colonize a susceptible rice cultivar. These phenotypes were recovered by re-introduction of an intact copy of MHP1. Taken together, these results indicate that MHP1 has essential roles in surface hydrophobicity and infection-related fungal development, and is required for pathogenicity of M. grisea.  相似文献   

4.
C. fulvum, a fungal tomato pathogen, has previously been shown to express a complex family of hydrophobin genes including four class I hydrophobins and one class II hydrophobin. Here we describe a gene for HCf-6, a sixth member of the hydrophobin family and the second class II gene. The protein is predicted to consist of a signal sequence, an N-terminus rich in glycine and asparagine and a C-terminal hydrophobic domain which bears the hall-marks of hydrophobins. In contrast to the previously described class II hydrophobin HCf-5, HCf-6 is expressed in mycelium growing in pure culture and mRNA levels do not increase during sporulation. It is down-regulated by carbon starvation but not by depletion of nitrogen in the growth medium.  相似文献   

5.
Hydrophobins are a large group of low-molecular weight proteins. These proteins are highly surface-active and can form amphipathic membranes by self-assembling at hydrophobic–hydrophilic interfaces. Based on physical properties and hydropathy profiles, hydrophobins are divided into two classes. Upon the analysis of amino acid sequences and higher structures, some models suggest that the Cys3–Cys4 loop regions in class I and II hydrophobins can exhibit remarkable difference in their alignment and conformation, and have a critical role in the rodlets structure formation. To examine the requirement for the Cys3–Cys4 loop in class I hydrophobins, we used protein fusion technology to obtain a mutant protein HGFI-AR by replacing the amino acids between Cys3 and Cys4 of the class I hydrophobin HGFI from Grifola frondosa with those ones between Cys3 and Cys4 of the class II hydrophobin HFBI from Trichoderma reesei. The gene of the mutant protein HGFI-AR was successfully expressed in Pichia pastoris. Water contact angle (WCA) and X-ray photoelectron spectroscopy (XPS) measurements demonstrated that the purified HGFI-AR could form amphipathic membranes by self-assembling at mica and hydrophobic polystyrene surfaces. This property enabled them to alter the surface wettabilities of polystyrene and mica and change the elemental composition of siliconized glass. In comparison to recombinant class I hydrophobin HGFI (rHGFI), the membranes formed on hydrophobic surfaces by HGFI-AR were not robust enough to resist 1 % hot SDS washing. Atomic force microscopy (AFM) measurements indicated that unlike rHGFI, no rodlet structure was observed on the mutant protein HGFI-AR coated mica surface. In addition, when compared to rHGFI, no secondary structural change was detected by Circular Dichroism (CD) spectroscopy after HGFI-AR self-assembled at the water–air interface. HGFI-AR could not either be deemed responsible for the fluorescence intensity increase of Thioflavin T (THT) and the Congo Red (CR) absorption spectra shift (after the THT(CR)/HGFI-AR mixed aqueous solution was drastically vortexed). Remarkably, replacement of the Cys3–Cys4 loop could impair the rodlet formation of the class I hydrophobin HGFI. So, it could be speculated that the Cys3–Cys4 loop plays an important role in conformation and functionality, when the class I hydrophobin HGFI self-assembles at hydrophobic–hydrophilic interfaces.  相似文献   

6.
7.
8.
Hydrophobins are small (length, about 100 ± 25 amino acids), cysteine-rich, hydrophobic proteins that are present in large amounts in fungal cell walls, where they form part of the outermost layer (rodlet layer); sometimes, they can also be secreted into the medium. Different hydrophobins are associated with different developmental stages of a fungus, and their biological functions include protection of the hyphae against desiccation and attack by either bacterial or fungal parasites, hyphal adherence, and the lowering of surface tension of the culture medium to permit aerial growth of the hyphae. We identified and isolated a hydrophobin (fruit body hydrophobin 1 [Fbh1]) present in fruit bodies but absent in both monokaryotic and dikaryotic mycelia of the edible mushroom Pleurotus ostreatus. In order to study the temporal and spatial expression of the fbh1 gene, we determined the N-terminal amino acid sequence of Fbh1. We also synthesized and cloned the double-stranded cDNA corresponding to the full-length mRNA of Fbh1 to use it as a probe in both Northern blot and in situ hybridization experiments. Fbh1 mRNA is detectable in specific parts of the fruit body, and it is absent in other developmental stages.  相似文献   

9.
A DNA clone encoding a cathepsin D inhibitor CathInh was isolated from a potato genomic library using a CathInh cDNA as hybridization probe. The amino acid sequence of the coding region is nearly identical with a CathInh cDNA and CathInh proteins previously isolated from a tuber-specific cDNA library and from tubers, respectively. Analysis of GUS activity resulting from expression of chimeric CathInh promoter-GUS genes in transgenic potato plants revealed expression exclusively confined to potato tubers. No GUS activity could be detected in any other organ of the transgenic plants either constitutively or after wounding or treatment with abscisic and jasmonic acid (JA). Interestingly, part of the promoter region of the CathInh gene, essential for GUS activity in tubers, shows striking similarity to promoter regions of tuber-specific class I patatin genes.  相似文献   

10.
M J Kershaw  G Wakley    N J Talbot 《The EMBO journal》1998,17(14):3838-3849
The functional relationship between fungal hydrophobins was studied by complementation analysis of an mpg1(-) gene disruption mutant in Magnaporthe grisea. MPG1 encodes a hydrophobin required for full pathogenicity of the fungus, efficient elaboration of its infection structures and conidial rodlet protein production. Seven heterologous hydrophobin genes were selected which play distinct roles in conidiogenesis, fruit body development, aerial hyphae formation and infection structure elaboration in diverse fungal species. Each hydrophobin was introduced into an mpg1(-) mutant by transformation. Only one hydrophobin gene, SC1 from Schizophyllum commune, was able partially to complement mpg1(-) mutant phenotypes when regulated by its own promoter. In contrast, six of the transformants expressing hydrophobin genes controlled by the MPG1 promoter (SC1 and SC4 from S.commune, rodA and dewA from Aspergillus nidulans, EAS from Neurospora crassa and ssgA from Metarhizium anisopliae) could partially complement each of the diverse functions of MPG1. Complementation was always associated with partial restoration of a rodlet protein layer, characteristic of the particular hydrophobin being expressed, and with hydrophobin surface assembly during infection structure formation. This provides the first genetic evidence that diverse hydrophobin-encoding genes encode functionally related proteins and suggests that, although very diverse in amino acid sequence, the hydrophobins constitute a closely related group of morphogenetic proteins.  相似文献   

11.
Hydrophobins are morphogenetic, small secreted hydrophobic fungal proteins produced in response to changing development and environmental conditions. These proteins are important in the interaction between certain fungi and their hosts. In mutualistic ectomycorrhizal fungi several hydrophobins form a subclass of mycorrhizal-induced small secreted proteins that are likely to be critical in the formation of the symbiotic interface with host root cells. In this study, two genomes of the ectomycorrhizal basidiomycete Laccaria bicolor strains S238N-H82 (from North America) and 81306 (from Europe) were surveyed to construct a comprehensive genome-wide inventory of hydrophobins and to explore their characteristics and roles during host colonization. The S238N-H82 L. bicolor hydrophobin gene family is composed of 12 genes while the 81306 strain encodes nine hydrophobins, all corresponding to class I hydrophobins. The three extra hydrophobin genes encoded by the S238N-H82 genome likely arose via gene duplication and are bordered by transposon rich regions. Expression profiles of the hydrophobin genes of L. bicolor varied greatly depending on life stage (e.g. free living mycelium vs. root colonization) and on the host root environment. We conclude from this study that the complex diversity and range of expression profiles of the Laccaria hydrophobin multi-gene family have likely been a selective advantage for this mutualist in colonizing a wide range of host plants.  相似文献   

12.
Class I fungal hydrophobins are small surface‐active proteins that self‐assemble to form amphipathic monolayers composed of amyloid‐like rodlets. The monolayers are extremely robust and can adsorb onto both hydrophobic and hydrophilic surfaces to reverse their wettability. This adherence is particularly strong for hydrophobic materials. In this report, we show that the class I hydrophobins EAS and HYD3 can self‐assemble to form a single‐molecule thick coating on a range of nanomaterials, including single‐walled carbon nanotubes (SWCNTs), graphene sheets, highly oriented pyrolytic graphite, and mica. Moreover, coating by class I hydrophobin results in a stable, dispersed preparation of SWCNTs in aqueous solutions. No cytotoxicity is detected when hydrophobin or hydrophobin‐coated SWCNTs are incubated with Caco‐2 cells in vitro. In addition, we are able to specifically introduce covalently linked chemical moieties to the hydrophilic side of the rodlet monolayer. Hence, class I hydrophobins provide a simple and effective strategy for controlling the surfaces of a range of materials at a molecular level and exhibit strong potential for biomedical applications. © 2012 Wiley Periodicals, Inc.  相似文献   

13.

Background

Hydrophobins are a family of small secreted proteins with a characteristic pattern of eight cysteine residues found exclusively in filamentous fungi. They have originally been divided into two classes based on their physical properties and hydropathy patterns, and are involved in the attachment of hyphae to hydrophobic structures, the formation of aerial structures and appear to be involved in pathogenicity.

Findings

Analysis of nine genome sequences from seven Aspergilli revealed fifty hydrophobins, where each species displayed between two to eight hydrophobins. Twenty of the identified hydrophobins have not previously been described from these species. Apart from the cysteines, very little amino acid sequence homology was observed. Twenty-three of the identified hydrophobins could be classified as class I hydrophobins based on their conserved cysteine spacing pattern and hydropathy pattern. However twenty-six of the identified hydrophobins were intermediate forms. Notably, a single hydrophobin, ATEG_04730, from Aspergillus terreus displayed class II cysteine spacing and had a class II hydropathy pattern.

Conclusion

Fifty hydrophobins were identified in Aspergillus, all containing the characteristic eight cysteine pattern. Aspergillus terreus exhibited both class I and class II hydrophobins. This is the first report of an Aspergillus species with the potential to express both class I and class II hydrophobins. Many of the identified hydrophobins could not directly be allocated to either class I or class II.
  相似文献   

14.
Class I hydrophobins are fungal proteins that self-assemble into robust amphipathic rodlet monolayers on the surface of aerial structures such as spores and fruiting bodies. These layers share many structural characteristics with amyloid fibrils and belong to the growing family of functional amyloid-like materials produced by microorganisms. Although the three-dimensional structure of the soluble monomeric form of a class I hydrophobin has been determined, little is known about the molecular structure of the rodlets or their assembly mechanism. Several models have been proposed, some of which suggest that the Cys3-Cys4 loop has a critical role in the initiation of assembly or in the polymeric structure. In order to provide insight into the relationship between hydrophobin sequence and rodlet assembly, we investigated the role of the Cys3-Cys4 loop in EAS, a class I hydrophobin from Neurospora crassa. Remarkably, deletion of up to 15 residues from this 25-residue loop does not impair rodlet formation or reduce the surface activity of the protein, and the physicochemical properties of rodlets formed by this mutant are indistinguishable from those of its full-length counterpart. In addition, the core structure of the truncation mutant is essentially unchanged. Molecular dynamics simulations carried out on the full-length protein and this truncation mutant binding to an air-water interface show that, although it is hydrophobic, the loop does not play a role in positioning the protein at the surface. These results demonstrate that the Cys3-Cys4 loop does not have an integral role in the formation or structure of the rodlets and that the major determinant of the unique properties of these proteins is the amphipathic core structure, which is likely to be preserved in all hydrophobins despite the high degree of sequence variation across the family.  相似文献   

15.
Filamentous fungi utilize small amphiphilic proteins called hydrophobins in their adaptation to the environment. The hydrophobins are used to form coatings on various fungal structures, lower the surface tension of water, and to mediate surface attachment. Hydrophobins function through self-assembly at interfaces, for example, at the air-water interface, and at fungal cellular structures. Despite their high tendency to self assemble at interfaces, hydrophobins can be very soluble in water. To understand the mechanism of hydrophobin self-assembly, in this work, we have studied the behavior of two Trichoderma reesei hydrophobins, HFBI and HFBII in aqueous solution. The main methods used were F?rster resonance energy transfer (FRET) and size exclusion chromatography. A genetically engineered HFBI variant, NCys-HFBI, was utilized for the site-specific labeling of dyes for the FRET experiments. We observed the multimerization of HFBI in a concentration-dependent manner. A change from monomers to tetramers was seen when the hydrophobin concentration was increased. Interaction studies between HFBI and HFBII suggested that at low concentrations homodimers are preferred, and at higher concentrations, the heterotetramers of HFBI and HFBII are formed. In conclusion, the results support the model where hydrophobins in aqueous solutions form multimers by hydrophobic interactions. In contrast to micelles formed by detergents, the hydrophobin multimers are defined in size and involve specific protein-protein interactions.  相似文献   

16.
Fungal hydrophobins are secreted proteins that self-assemble at hydrophobic:hydrophilic interfaces. They are essential for a variety of processes in the fungal life cycle, including mediating interactions with surfaces and infection of hosts. The fungus Magnaporthe oryzae, the causative agent of rice blast, relies on the unique properties of hydrophobins to infect cultivated rice as well as over 50 different grass species. The hydrophobin MPG1 is highly expressed during rice blast pathogenesis and has been implicated during host infection. Here we report the backbone and sidechain assignments for the class I hydrophobin MPG1 from the rice blast fungus Magnaporthe oryzae.  相似文献   

17.
Karlsson M  Stenlid J  Olson A 《Mycologia》2007,99(2):227-231
Two hydrophobin genes (HAH1 and HAH2) have been identified in a Heterobasidion annosum infection-stage cDNA-library. Comparisons of their nucleotide and amino acid sequences show similarity to the coh1 hydrophobin from Coprinopsis cinerea and the sc3 hydrophobin from Schizophyllum commune. Both HAH1 and HAH2 display the amino acid consensus pattern of class I hydrophobins, including the spacing of eight conserved cysteine residues. Real-time quantitative RT-PCR showed high expression of both genes in aerial hyphae but low expression in submerged hyphae and during in vitro infection of pine seedlings. Segregation analysis of HAH1 and HAH2 in a defined cross of Heterobasidion annosum localised HAH1 to linkage group 3 but did not positioned HAH2 in the genetic linkage map. Sequence characteristics and expression patterns of HAH1 and HAH2 suggest a role in aerial growth of mycelia, but not during pathogenesis.  相似文献   

18.
Hydrophobins are among the most surface active molecules and self-assemble at any hydrophilic-hydrophobic interface into an amphipathic film. These small secreted proteins of about 100 amino acids can be used to make hydrophilic surfaces hydrophobic and hydrophobic surfaces hydrophilic. Although differences in the biophysical properties of hydrophobins have not yet been related to differences in primary structure it has been established that the N-terminal part, at least partly, determines wettability of the hydrophilic side of the assemblage, while the eight conserved cysteine residues that form four disulphide bridges prevent self-assembly of the hydrophobin in the absence of a hydrophilic-hydrophobic interface. Three conformations of class I hydrophobins have been identified: the monomeric state, which is soluble in water, the alpha-helical state, which is the result of self-assembly at a hydrophobic solid, and the beta-sheet state, which is formed during self-assembly at the water-air interface. Experimental evidence strongly indicates that the alpha-helical state is an intermediate and that the beta-sheet state is the end form of assembly. The latter state has a typical ultrastructure of a mosaic of 10 nm wide rodlets, which have been shown to resemble the amyloid fibrils.  相似文献   

19.
20.
Six hydrophobin genes (HCf-1 to -6) have thus far been identified in the tomato pathogen Cladosporium fulvum. HCf-1 to -4 are Class I hydrophobins and HCf-5 and -6 are Class II hydrophobins. In this paper we describe the isolation of deletion mutants that lack HCf-1, HCf-2, or both these genes. Global down-regulation of the expression of Class I hydrophobins is achieved by homology-dependent gene silencing. Analysis of the mutant strains shows that HCf-1 confers hydrophilic character to the conidia and this facilitates the dissemination of conidia on the surface of water droplets. Other Class I hydrophobins, such as HCf-3 or HCf-4, may be involved in the development and germination of conidia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号