首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Absolute enrichment: gene set enrichment analysis for homeostatic systems   总被引:1,自引:0,他引:1  
The Gene Set Enrichment Analysis (GSEA) identifies sets of genes that are differentially regulated in one direction. Many homeostatic systems will include one limb that is upregulated in response to a downregulation of another limb and vice versa. Such patterns are poorly captured by the standard formulation of GSEA. We describe a technique to identify groups of genes (which sometimes can be pathways) that include both up- and down-regulated components. This approach lends insights into the feedback mechanisms that may operate, especially when integrated with protein interaction databases.  相似文献   

2.

Background  

Analysis of microarray and other high-throughput data on the basis of gene sets, rather than individual genes, is becoming more important in genomic studies. Correspondingly, a large number of statistical approaches for detecting gene set enrichment have been proposed, but both the interrelations and the relative performance of the various methods are still very much unclear.  相似文献   

3.
4.
5.
A test-statistic typically employed in the gene set enrichment analysis (GSEA) prevents this method from being genuinely multivariate. In particular, this statistic is insensitive to changes in the correlation structure of the gene sets of interest. The present paper considers the utility of an alternative test-statistic in designing the confirmatory component of the GSEA. This statistic is based on a pertinent distance between joint distributions of expression levels of genes included in the set of interest. The null distribution of the proposed test-statistic, known as the multivariate N-statistic, is obtained by permuting group labels. Our simulation studies and analysis of biological data confirm the conjecture that the N-statistic is a much better choice for multivariate significance testing within the framework of the GSEA. We also discuss some other aspects of the GSEA paradigm and suggest new avenues for future research.  相似文献   

6.
Extensions to gene set enrichment   总被引:2,自引:0,他引:2  
MOTIVATION: Gene Set Enrichment Analysis (GSEA) has been developed recently to capture changes in the expression of pre-defined sets of genes. We propose number of extensions to GSEA, including the use of different statistics to describe the association between genes and phenotypes of interest. We make use of dimension reduction procedures, such as principle component analysis, to identify gene sets with correlated expression. We also address issues that arise when gene sets overlap. RESULTS: Our proposals extend the range of applicability of GSEA and allow for adjustments based on other covariates. We have provided a well-defined procedure to address interpretation issues that can raise when gene sets have substantial overlap. We have shown how standard dimension reduction methods, such as PCA, can be used to help further interpret GSEA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

7.

Background  

Many methods have been developed to test the enrichment of genes related to certain phenotypes or cell states in gene sets. These approaches usually combine gene expression data with functionally related gene sets as defined in databases such as GeneOntology (GO), KEGG, or BioCarta. The results based on gene set analysis are generally more biologically interpretable, accurate and robust than the results based on individual gene analysis. However, while most available methods for gene set enrichment analysis test the enrichment of the entire gene set, it is more likely that only a subset of the genes in the gene set may be related to the phenotypes of interest.  相似文献   

8.
9.
10.
The power of genome-wide SNP association studies is limited, among others, by the large number of false positive test results. To provide a remedy, we combined SNP association analysis with the pathway-driven gene set enrichment analysis (GSEA), recently developed to facilitate handling of genome-wide gene expression data. The resulting GSEA-SNP method rests on the assumption that SNPs underlying a disease phenotype are enriched in genes constituting a signaling pathway or those with a common regulation. Besides improving power for association mapping, GSEA-SNP may facilitate the identification of disease-associated SNPs and pathways, as well as the understanding of the underlying biological mechanisms. GSEA-SNP may also help to identify markers with weak effects, undetectable in association studies without pathway consideration. The program is freely available and can be downloaded from our website.  相似文献   

11.

Background

Sets of genes that are known to be associated with each other can be used to interpret microarray data. This gene set approach to microarray data analysis can illustrate patterns of gene expression which may be more informative than analyzing the expression of individual genes. Various statistical approaches exist for the analysis of gene sets. There are three main classes of these methods: over-representation analysis, functional class scoring, and pathway topology based methods.

Methods

We propose weighted hypergeometric and weighted chi-squared methods in order to assign a rank to the degree to which each gene participates in the enrichment. Each gene is assigned a weight determined by the absolute value of its log fold change, which is then raised to a certain power. The power value can be adjusted as needed. Datasets from the Gene Expression Omnibus are used to test the method. The significantly enriched pathways are validated through searching the literature in order to determine their relevance to the dataset.

Results

Although these methods detect fewer significantly enriched pathways, they can potentially produce more relevant results. Furthermore, we compare the results of different enrichment methods on a set of microarray studies all containing data from various rodent neuropathic pain models.

Discussion

Our method is able to produce more consistent results than other methods when evaluated on similar datasets. It can also potentially detect relevant pathways that are not identified by the standard methods. However, the lack of biological ground truth makes validating the method difficult.
  相似文献   

12.
数据整合逐渐成为生物数据分析的重要方向。随着高通量技术的广泛应用,基因组序列数据大量产生,而如何充分、高效地整合这些序列数据成为了一个难题。本文从序列角度出发设计了一套新的数据整合方法:序列群富集分析(SequenceSet Enrichment Analysis,SSEA),并用实验数据探讨了其潜在的应用价值,结果显示SSEA能更好的挖掘出序列数据中的复杂生物学信息。  相似文献   

13.

Background  

The analysis of high-throughput gene expression data with respect to sets of genes rather than individual genes has many advantages. A variety of methods have been developed for assessing the enrichment of sets of genes with respect to differential expression. In this paper we provide a comparative study of four of these methods: Fisher's exact test, Gene Set Enrichment Analysis (GSEA), Random-Sets (RS), and Gene List Analysis with Prediction Accuracy (GLAPA). The first three methods use associative statistics, while the fourth uses predictive statistics. We first compare all four methods on simulated data sets to verify that Fisher's exact test is markedly worse than the other three approaches. We then validate the other three methods on seven real data sets with known genetic perturbations and then compare the methods on two cancer data sets where our a priori knowledge is limited.  相似文献   

14.
Coleman  Annette W. 《Hydrobiologia》1996,321(1):29-34
Analysis of DNA can help to distinguish those morphological characters indicative of species difference from those representing retained traits or parallel evolution. This can be of great value in detecting recent invaders. The choice of which DNA characters to examine not only dictates the methodology to be used but must also be appropriate for the detection level sought. Restriction endonuclease fragment comparisons of plastid DNA have been used to assess Codium species; the results show C. fragile subsp. tomentosoides from east and west coast North America to be identical while sympatric endemic Codium species each display their own unique set of fragments. For species of other algae, plastid DNA fragment patterns are not necessarily identical across a morphological species, e.g. Pandorina morum. Such repetitive element probes as M13 and the use of RAPDs are more appropriate for analysis of populations within species. DNA base sequence comparisons of nuclear rDNA genes often yield too few variant bases between closely related species for reliable identifications. Analysis of the more variable Internal Transcribed Spacer (ITS) region, lying between the small and large ribosomal subunit genes in nuclear DNA, yields more extensive base pair variation between species and relatively little within species; it may be an alternative choice for endonuclease restriction fragment analysis or for sequencing.  相似文献   

15.

Background  

Recently we have witnessed a surge of interest in using genome-wide association studies (GWAS) to discover the genetic basis of complex diseases. Many genetic variations, mostly in the form of single nucleotide polymorphisms (SNPs), have been identified in a wide spectrum of diseases, including diabetes, cancer, and psychiatric diseases. A common theme arising from these studies is that the genetic variations discovered by GWAS can only explain a small fraction of the genetic risks associated with the complex diseases. New strategies and statistical approaches are needed to address this lack of explanation. One such approach is the pathway analysis, which considers the genetic variations underlying a biological pathway, rather than separately as in the traditional GWAS studies. A critical challenge in the pathway analysis is how to combine evidences of association over multiple SNPs within a gene and multiple genes within a pathway. Most current methods choose the most significant SNP from each gene as a representative, ignoring the joint action of multiple SNPs within a gene. This approach leads to preferential identification of genes with a greater number of SNPs.  相似文献   

16.
Small interfering RNAs (siRNAs) have become an indispensable tool for the investigation of gene functions. Most existing siRNA design tools were trained on datasets assembled from confined origins, incompatible with the diverse siRNA laboratory practice to which these tools will ultimately be applied. We have performed an updated analysis using the disjunctive rule merging (DRM) approach on a large and diverse dataset compiled from siRecords, and implemented the resulting rule sets in siDRM, a new online siRNA design tool. siDRM also implements a few high-sensitivity rule sets and fast rule sets, links to siRecords, and uses several filters to check unwanted detrimental effects, including innate immune responses, cell toxic effects and off-target activities in selecting siRNAs. A performance comparison using an independent dataset indicated that siDRM outperforms 19 existing siRNA design tools in identifying effective siRNAs.  相似文献   

17.
ABSTRACT: BACKGROUND: Gene-set enrichment analyses (GEA or GSEA) are commonly used for biological characterization of an experimental gene-set. This is done by finding known functional categories, such as pathways or Gene Ontology terms, that are over-represented in the experimental set; the assessment is based on an overlap statistic. Rich biological information in terms of gene interaction network is now widely available, but this topological information is not used by GEA, so there is a need for methods that exploit this type of information in high-throughput data analysis. RESULTS: We developed a method of network enrichment analysis (NEA) that extends the overlap statistic in GEA to network links between genes in the experimental set and those in the functional categories. For the crucial step in statistical inference, we developed a fast network randomization algorithm in order to obtain the distribution of any network statistic under the null hypothesis of no association between an experimental gene-set and a functional category. We illustrate the NEA method using gene and protein expression data from a lung cancer study. CONCLUSIONS: The results indicate that the NEA method is more powerful than the traditional GEA, primarily because the relationships between gene sets were more strongly captured by network connectivity rather than by simple overlaps.  相似文献   

18.
Prostate cancer is one of the most common male malignant neoplasms; however, its causes are not completely understood. A few recent studies have used gene expression profiling of prostate cancer to identify differentially expressed genes and possible relevant pathways. However, few studies have examined the genetic mechanics of prostate cancer at the pathway level to search for such pathways. We used gene set enrichment analysis and a meta-analysis of six independent studies after standardized microarray preprocessing, which increased concordance between these gene datasets. Based on gene set enrichment analysis, there were 12 down- and 25 up-regulated mixing pathways in more than two tissue datasets, while there were two down- and two up-regulated mixing pathways in three cell datasets. Based on the meta-analysis, there were 46 and nine common pathways in the tissue and cell datasets, respectively. Three up- and 10 down-regulated crossing pathways were detected with combined gene set enrichment analysis and meta-analysis. We found that genes with small changes are difficult to detect by classic univariate statistics; they can more easily be identified by pathway analysis. After standardized microarray preprocessing, we applied gene set enrichment analysis and a meta-analysis to increase the concordance in identifying biological mechanisms involved in prostate cancer. The gene pathways that we identified could provide insight concerning the development of prostate cancer.  相似文献   

19.
A central goal of biology is understanding and describing the molecular basis of plasticity: the sets of genes that are combinatorially selected by exogenous and endogenous environmental changes, and the relations among the genes. The most viable current approach to this problem consists of determining whether sets of genes are connected by some common theme, e.g. genes from the same pathway are overrepresented among those whose differential expression in response to a perturbation is most pronounced. There are many approaches to this problem, and the results they produce show a fair amount of dispersion, but they all fall within a common framework consisting of a few basic components. We critically review these components, suggest best practices for carrying out each step, and propose a voting method for meeting the challenge of assessing different methods on a large number of experimental data sets in the absence of a gold standard.  相似文献   

20.
MOTIVATION: Gene set analysis allows formal testing of subtle but coordinated changes in a group of genes, such as those defined by Gene Ontology (GO) or KEGG Pathway databases. We propose a new method for gene set analysis that is based on principal component analysis (PCA) of genes expression values in the gene set. PCA is an effective method for reducing high dimensionality and capture variations in gene expression values. However, one limitation with PCA is that the latent variable identified by the first PC may be unrelated to outcome. RESULTS: In the proposed supervised PCA (SPCA) model for gene set analysis, the PCs are estimated from a selected subset of genes that are associated with outcome. As outcome information is used in the gene selection step, this method is supervised, thus called the Supervised PCA model. Because of the gene selection step, test statistic in SPCA model can no longer be approximated well using t-distribution. We propose a two-component mixture distribution based on Gumbel exteme value distributions to account for the gene selection step. We show the proposed method compares favorably to currently available gene set analysis methods using simulated and real microarray data. SOFTWARE: The R code for the analysis used in this article are available upon request, we are currently working on implementing the proposed method in an R package.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号