首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelin-converting enzyme (ECE)-1 is a metalloenzyme with four subisoforms, which differ only in their amino-terminal domain. ECE-1a and c are the most common isoforms and are found at the plasma membrane and in the Golgi complex, whereas ECE-1b displays lysosomal localization. We have recently shown that ECE-1a but not ECE-1b also colocalizes with nuclear membrane markers, and that maintenance of cells in high glucose (25 mM) promotes relocalization of ECE-1a from the membrane to the intracellular compartment. To investigate the mechanisms involved in this process, we conducted a search for potential phosphorylation sites, which yielded a different number of putative sites for protein kinase (PK)-C and PKA in the amino-terminal region. Stimulation of Chinese hamster ovary (CHO) cells expressing a green fluorescent protein (GFP)-tagged human ECE-1a or ECE-1b with 100 nM phorbol myristate acetate (PMA) resulted in phosphorylation of ECE-1a, as determined by immunoprecipitation with an antibody to GFP followed by immunoblotting with an antibody to phosphoserine. Stimulation of cells with PMA also promoted intracellular relocalization, as seen in cells grown under high-glucose conditions. Incubation of cells grown in 25 mM glucose with the PKC inhibitor, calphostin C (100 nM), partially prevented the relocalization of ECE-1a from the plasma membrane to intracellular compartments. Stimulation of cells with 100 nM forskolin caused phosphorylation of ECE-1b and not ECE-1a, which is consistent with the lack of a putative PKA site in the ECE-1a amino-terminal sequence. Although phosphorylation is not required for ECE-1 enzymatic activity, these results suggest that ECE-1 isoforms are phosphorylated and that phosphorylation might play an important role in the regulation of intracellular trafficking of ECE-1 subisoforms.  相似文献   

2.
Through directed screening of compounds prepared as metalloprotease inhibitors a compound, CGS 30084, that had potent endothelin converting enzyme-1 (ECE-1) in vitro inhibitory activity (IC50 = 77 nM) was identified. Herein we report the synthesis and optimization of ECE-1 inhibitory activity of additional analogues from this lead. Compound 3c, the thioacetate methyl ester derivative of compound 4c, was found to be a long acting inhibitor of ECE-1 activity in rats after oral administration.  相似文献   

3.
Endothelin converting enzyme-1 (ECE-1) is a type II membrane protein that is important for the proteolytic activation of big endothelin-1 to endothelin-1. Although the highly conserved zinc-binding motif is known to be located in the extracellular domain, the role(s) of the N-terminal and membrane-spanning signal anchor domains in the biosynthesis and function of ECE-1 isoforms, ECE-1a, ECE-1b, and ECE-1c, remain undetermined. In this study, we provide evidence that the deletion of the cytoplasmic N-terminal tail (residues 1-55) of ECE-1a results in the cleavage of a potential signal peptide located in the signal anchor domain leading to the partial secretion of the recombinant enzyme into the media. However, the truncation of N-terminal and/or signal anchor domain does not affect the activity of ECE-1a. Therefore, our results demonstrate that the hydrophobic signal anchor domain alone is not sufficient for the membrane anchoring of ECE-1a and that the N-terminal domain of ECE-1a is important for membrane targeting as well as the intracellular localization of the enzyme.  相似文献   

4.
A cDNA clone encoding a human endothelin receptor was isolated from a placenta cDNA library. The deduced amino acid sequence of the clone is 94% identical to the bovine endothelin ETA receptor and represents the human homologue. The human endothelin ETA receptor gene was localized to chromosome 4 by analysis of its segregation pattern in rodent-human hybrids.  相似文献   

5.
6.
Endothelin-1 (ET- 1) is a potent vasoconstrictor. Its biosynthesis is catalyzed by endothelin converting enzyme (ECE). In contrast, atrial natriuretic peptide (ANP) is a potent vasorelaxant and diuretic, and it is mainly degraded by neutral endopeptidase 24.11 (NEP). Therefore, compounds that can suppress the production of ET-1 by inhibiting ECE while simultaneously potentiating the levels of ANP by inhibiting NEP may be novel agents for the treatment of cardiovascular and renal dysfunction. CGS 34043 is one such compound, which inhibited the activities of ECE-1a and NEP with IC50 values of 5.8 and 110 nM, respectively. In vivo, it inhibited the pressor response induced by big ET-1, the precursor of ET-1, dose-dependently in rats, and the inhibition was sustained for at least 2 hr. In addition, CGS 34043 increased plasma ANP by 150% up to 4 hr after an intravenous dose of 10 mg/kg in conscious rats infused with ANP. However, this compound had no effect on the angiotensin I-induced pressor response. These results demonstrate that CGS 34043 is a potent and long-lasting dual inhibitor of ECE-1 and NEP. Consequently, it may be beneficial for the treatment of diseases in which an overproduction of ET-1 and/or enhanced degradation of ANP plays a pathogenic role. The activity of CGS 34753, an orally active prodrug of CGS 34043, is also described.  相似文献   

7.
The rhythmic heart beat is coordinated by electrical impulses transmitted from Purkinje fibers of the cardiac conduction system. During embryogenesis, the impulse-conducting cells differentiate from cardiac myocytes in direct association with the developing endocardium and coronary arteries, but not with the venous system. This conversion of myocytes into Purkinje fibers requires a paracrine interaction with blood vessels in vivo, and can be induced in vitro by exposing embryonic myocytes to endothelin-1 (ET-1), an endothelial cell-associated paracrine factor. These results suggest that an endothelial cell-derived signal is capable of inducing juxtaposed myocytes to differentiate into Purkinje fibers. It remains unexplained how Purkinje fiber recruitment is restricted to subendocardial and periarterial sites but not those juxtaposed to veins. Here we show that while the ET-receptor is expressed throughout the embryonic myocardium, introduction of the ET-1 precursor (preproET-1) in the embryonic myocardium is not sufficient to induce myocytes to differentiate into conducting cells. ET converting enzyme-1 (ECE-1), however, is expressed preferentially in endothelial cells of the endocardium and coronary arteries where Purkinje fiber recruitment takes place. Retroviral-mediated coexpression of both preproET-1 and ECE-1 in the embryonic myocardium induces myocytes to express Purkinje fiber markers ectopically and precociously. These results suggest that expression of ECE-1 plays a key role in defining an active site of ET signaling in the heart, thereby determining the timing and location of Purkinje fiber differentiation within the embryonic myocardium.  相似文献   

8.
Human spermidine synthase gene: structure and chromosomal localization   总被引:3,自引:0,他引:3  
The human spermidine synthase (EC 2.5.1.16) gene was isolated from a genomic library constructed with DNA obtained from a human immunoglobulin G (IgG) myeloma cell line. Subsequent sequence analyses revealed that the gene comprised of 5,818 nucleotides from the cap site to the last A of the putative polyadenylation signal with 8 exons and 7 intervening sequences. The 5'-flanking region of the gene was extremely GC rich, lacking any TATA box but containing CCAAT consensus sequences. No perfect consensus sequence for the cAMP-responsive element for the AP-1 binding site was found, yet the gene contained seven AP-2 binding site consensus sequences. The putative polyadenylation signal was an unusual AATACA instead of AATAAA. Polymerase chain reaction analysis with DNA obtained from human x hamster somatic cell hybrids indicated that human spermidine synthase genomic sequences segregate with human chromosome 1. Transfection of the genomic clone into Chinese hamster ovary cells displaying a low endogenous spermidine synthase activity revealed that the gene was transiently expressed and hence in all likelihood represents a functional gene.  相似文献   

9.
A cDNA encoding the human bone sialoprotein was isolated from a lambda Zap expression library (made from cultured human bone cell poly(A)+ RNA) using radiolabeled rat bone sialoprotein cDNA (Oldberg, A., and Heinegard, D. (1988) J. Biol. Chem. 263, 19430-19432) as a probe. A 5' 1-kilobase EcoRI fragment of the purified 3-kilobase clone was sequenced and found to contain the entire protein-encoding region. The deduced protein sequence revealed a 317-amino acid protein (34,982 Da) containing a 16-amino acid hydrophobic signal sequence and a 33,352-Da protein destined to undergo extensive post-translational modifications before being secreted from the cell. A comparison of the human and rat protein sequences showed extensive (greater than 70%) amino acid identities including the Arg-Gly-Asp (RGD) tripeptide thought to confer the cell attachment activity observed previously for this protein. Also conserved were three regions rich in acidic amino acids and three regions rich in tyrosine. While all three tyrosine-rich regions appear to be composed of a nominal repeat structure, only the two carboxyl-terminal regions that flank the RGD sequence fit all three of the requirements for extensive tyrosine sulfation. Interestingly, human bone sialoprotein, whose final secreted product is approximately 50% carbohydrate, contains no cystines. Northern analysis showed that while bone cells are the major source of bone sialoprotein message production, other tissues may contain trace amounts of this message. Southern hybridization of DNA from human-rodent somatic cell hybrids that have segregated human chromosomes indicated that the gene is located on human chromosome 4. The human bone sialoprotein gene is a single copy gene unlikely to exceed 11.1 kilobases in length. No restriction fragment length polymorphisms were observed with 12 different restriction enzymes in 10 normal individuals.  相似文献   

10.
Four members of the endothelin family of vasoactive and mitogenic peptides have been identified: human endothelins 1, 2, and 3 (ET1, ET2, and ET3, respectively) and mouse vasoactive intestinal contractor (VIC). To characterize the mRNA encoding ET2, a 192-bp fragment of the ET2 gene, amplified by the polymerase chain reaction from human genomic DNA, was used to screen cell lines and tissues for ET2 gene expression. ET2 mRNA was detected in a cell line (HTB119) derived from a human lung small cell carcinoma, and an ET2 cDNA was cloned from a cDNA library prepared from HTB119 mRNA. DNA prepared from human-mouse somatic hybrid cell lines was used to assign the gene encoding ET2 (EDN2) to the 1p21----1pter region of chromosome 1, demonstrating that EDN2 is not linked to genes encoding ET1 (EDN1; chromosome 6) and ET3 (EDN3; chromosome 20). Southern blot hybridization revealed a single gene in human and rat genomes that hybridized with the ET2 gene fragment, and the rat gene was cloned. The endothelin peptide encoded by the rat gene differed from ET2 at 1 of 21 residues and was identical to mouse VIC. We conclude that VIC is the mouse and rat analogue of the human ET2 gene.  相似文献   

11.
12.
13.
Gene structure and chromosomal localization of mouse cyclin G2 (Ccng2)   总被引:18,自引:0,他引:18  
Cyclins are essential activators of cyclin-dependent kinases (Cdk) which, in turn, play pivotal roles in controlling transition through cell-cycle checkpoints. Cyclin G2 is a recently discovered second member of the G-type cyclins. The two members of the G-type cyclins, cyclin G1 and cyclin G2, share high structural similarity but their function remains to be defined. Here we characterize the structure of the mouse cyclin G2 gene by first cloning and sequencing the full-length mouse cyclin G2 cDNA. The cyclin G2 cDNA was used to isolate the cyclin G2 gene from a BAC library and to establish that the gene was transcribed from eight exons spanning a total of 8604 bp. The cyclin G2 gene was mapped by fluorescence in situ hybridization (FISH) to mouse chromosome 5E3.3.–F1.3. This region is syntenic to a region on human chromosome 4. The expression of cyclins G1 and G2 was examined in various tissues, but no correlation between expression patterns of the two genes was observed. However, during hepatic ontogenesis the cyclin G2 expression level decreased with age, whereas cyclin G1 expression increased. Transient expression of cyclin G2-green fluorescent protein (GFP) fusion protein in NIH3T3 cells showed that cyclin G2 is essentially a cytoplasmic protein, in contrast to the largely nuclear localization of cyclin G1. Our data suggest that, despite the close structural similarity between mouse cyclins G1 and G2, these proteins most likely perform distinct functions.  相似文献   

14.
15.
The human cts18.1 gene has high homology with the cytohesin gene family. By PCR analysis of a human monochromosomal somatic cell hybrid DNA panel, the cts18.1 gene was localized to chromosome 19. Diversity values of synonymous and nonsynonymous substitutions indicate that negative selection has occurred in the pleckstrin-homology (PH) domain of the cytohesin gene family. The phylogenetic tree calculated by the neighbor-joining method suggests that cts18.1 and cytohesin-2 genes are more closely related to each other than either of them is to the CLM-2 gene in the analysis of cDNA of the PH domain.  相似文献   

16.
17.
Using a specific and sensitive radioimmunoassay (RIA) for the carboxyl terminal tail of endothelin (ET) (His16-Trp21), we have confirmed the presence of the converting activity from synthetic human big ET-1 to ET-1 in the homogenate of cultured bovine aortic endothelial cells. The optimal pHs for the converting activities were found at pH 3.0 and pH 7.0. The activity at pH 3.0 was completely inhibited by pepstatin A, whereas the activity at pH 7.0 was not affected by known various protease inhibitors except EDTA and EGTA. When the products from big ET-1 were analyzed on an ODS and a CN columns, only ET-1 was detected at pH 7.0, but various ET-like immunoreactivities other than ET-1 were detected at pH 3.0. These findings strongly suggest that mature ET-1 is formed from big ET-1 in the endothelial cells by a metal-dependent neutral protease.  相似文献   

18.
A cDNA library from the mink pituitary was screened using as probe a synthetic oligodeoxyribonucleotide, 5'-TTCATGACCTCCGA-3', corresponding to the endorphin region of bovine proopiomelanocortin (POMC) cDNA. As a result, several clones containing inserts complementary to POMC mRNA were identified. The sequence of one of the fragments (585 bp, 65% of the total length of mRNA) was determined. A high degree of homology (over 80%) among the primary structures of sequences from mink, man, and bovine cDNA POMC was established. With the cloned mink cDNA fragment as probe, the DNAs from mink-Chinese hamster hybrid clones were studied. The results of segregation analysis of mink POMC sequences and mink chromosomes in the mink-Chinese hamster panel allowed us to assign the POMC gene to mink chromosome 11.  相似文献   

19.
20.
Four androgen receptor (AR) specific monoclonal antibodies were used for the immunohistochemical localization of AR in the human prostate tissue. The prostate tissue consisted of alveoli embedded in fibromuscular stroma and lined with a single layer of columnar secretory epithelial cells. The immunoreactive ARs were found predominantly in the nuclei of epithelial cell, suggesting ARs, like estrogen receptors and progesterone receptors, are mainly nuclear proteins. Northern blot hybridization showed that AR mRNA is about 9 kilobases (kb) and relative abundant in the androgen-sensitive organs, such as ventral prostate, dorsolateral prostate and seminal vesicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号