首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hypothesis was tested, through structural and functional studies, that interstitial cells of Cajal receive and can respond to direct innervation from nerves containing the vasoactive intestinal polypeptide neuromediator. The submucosal network of interstitial cells of Cajal has been postulated to provide pacemaking activity for the circular muscle and to be involved in neurotransmission from nonadrenergic, noncholinergic nerves for which vasoactive intestinal polypeptide is a putative mediator. The distribution of vasoactive intestinal polypeptide and substance P immunoreactive material in nerve profiles of the enteric nervous system of the canine colon was examined. In addition, electrophysiological studies were done on the interstitial cells bordering the submucosal side of the circular muscle layer after they were electrically isolated using heptanol. The vasoactive intestinal polypeptide immunoreactivity, located exclusively in nerve large granular vesicles, was found throughout the enteric nervous system (myenteric plexus, submucous plexus, and circular muscle--submucosa interface). The highest proportion (38% compared with 22-24%) of profiles of large granular vesicles with vasoactive intestinal polypeptide immunoreactivity was found in nerve profiles of the circular muscle--submucosa interface. In contrast, substance P immunoreactivity was found in nerve profiles of myenteric plexus (33% of large granular vesicles were positive) but not associated with submucosal interstitial cell nerve network. The vasoactive intestinal polypeptide hyperpolarized interstitial cells by 9 mV when electrically isolated by 1 mM heptanol and markedly reduced (about 50%) their input membrane resistance. We conclude that the distribution of vasoactive intestinal polypeptide immunoreactivity and its action are consistent with a postulated role of the interstitial cells as a major site of neurally mediated inhibition of colonic pacemaker activity.  相似文献   

2.
Partially purified nerve varicosities prepared from canine small intestinal myenteric, deep muscular and submucosal plexuses were found to contain, by radioimmunoassay, gastrin-releasing polypeptide (GRP), substance P, Leu-enkephalin, Met-enkephalin, vasoactive intestinal polypeptide (VIP) and neurokinin A, but did not contain detectable amounts of neurokinin B. In all three plexus preparations, VIP was present in the highest concentration. In contrast to other species, GRP and the enkephalins were found to be present in relatively high concentrations in the submucosal plexus and GRP was present in low concentrations in the deep muscular plexus. Equal concentrations of substance P and neurokinin A were found in the myenteric and deep muscular plexus preparations but greater concentrations of substance P relative to neurokinin A were found in the submucosal plexus preparations. On reverse phase HPLC, a major peak of immunoreactivity occurred at the retention times of standard preparations for all six neuropeptides measured. Significant heterogeneity was found for GRP- and VIP-like immunoreactivity, especially in the submucosal plexus preparations. These partially purified canine small intestine nerve varicosity preparations may prove of value in studying release mechanisms for, and the posttranslational processing of, neuropeptides.  相似文献   

3.
We investigated the distribution of FMRF amide-like immunoreactivity in the small intestine of the guinea pig. Immunoreactive nerve fibers were found mainly in the myenteric and submucous plexuses and in the inner circular muscle layer. The labeled processes contained variable proportions of small clear vesicles 30-40 nm in diameter and large granular vesicles 80-120 nm in diameter. The large granular vesicles showed heavy immunoreactivity. The antisera against FMRF amide crossreact with peptides belonging to the pancreatic polypeptide family; it has therefore been suggested that the FMRF amide immunoreactivity demonstrated in the small intestine is caused by a peptide that is biosynthetically related to, but not necessarily a member of, the pancreatic polypeptide family.  相似文献   

4.
In order to establish a possible role of vasoactive intestinal polypeptide (VIP) and serotonin as (neuro)transmitters involved in the regulation of fish intestinal epithelium, we studied the presence of VIP and serotonin at the ultrastructural level in the intestinal mucosa of tilapia and goldfish. A low percentage of varicosities near the basal membrane of the tilapia intestinal epithelium was found to label for VIP or for serotonin, whereas in the goldfish, this percentage was much higher. The varicosities usually contained large granular and small clear vesicles. Immunogold labeling indicated that serotonin and VIP were localized in the large granular vesicles. Unlabeled large granular vesicles and small clear vesicles were usually also present in varicosities with serotonin- or VIP-labeled vesicles. In the goldfish, the serotonin-labeled varicosities were close to the epithelial cells, and direct contacts between serotonin-labeled nerve fibres and epithelial cells could sometimes be visualized. However, synaptic membrane specializations were never observed. In tilapia, the distance between the VIP- or serotonin-labeled varicosities and the epithelial cells was large (more than 2 7m).  相似文献   

5.
The distribution of intrinsic enteric neurons and extrinsic autonomic and sensory neurons in the large intestine of the toad, Bufo marinus, was examined using immunohistochemistry and glyoxylic acid-induced fluoresecence. Three populations of extrinsic nerves were found: unipolar neurons with morphology and location typical of parasympathetic postganglionic neurons containing immunoreactivity to galanin, somatostatin and 5-hydroxytryptamine were present in longitudinally running nerve trunks in the posterior large intestine and projected to the muscle layers and myenteric plexus throughout the large intestine. Sympathetic adrenergic fibres supplied a dense innervation to the circular muscle layer, myenteric plexus and blood vessels. Axons containing colocalized calcitonin gene-related peptide immunoractivity and substance P immunoreactivity distributed to all layers of the large intestine and are thought to be axons of primary afferent neurons. Five populations of enteric neurons were found. These contained immunoreactivity to vasoactive intestinal peptide, which distributed to all layers of the large intestine; galanin/vasoactive intestinal peptide, which projected to the submucosa and mucosa; calcitonin gene-related peptide/vasoactive intestinal peptide, which supplied the circular muscle, submucosa and mucosa; galanin, which projected to the submucosa and mucosa; and enkephalin, which supplied the circular muscle layer.  相似文献   

6.
Antibodies against choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT) were used to determine whether neurons that have previously been identified as intrinsic primary afferent neurons in the guinea-pig small intestine have a cholinergic phenotype. Cell bodies of primary afferent neurons in the myenteric plexus were identified by their calbindin immunoreactivity and those in the submucous plexus by immunoreactivity for substance P. High proportions of both were immunoreactive for ChAT, viz. 98% of myenteric calbindin neurons and 99% of submucosal substance P neurons. ChAT immunoreactivity also occurred in all nerve cell bodies immunoreactive for calretinin and substance P in the myenteric plexus, but in only 16% of nerve cells immunoreactive for nitric oxide synthase. VAChT immunoreactivity was in the majority of calbindin-immunoreactive varicosities in the myenteric ganglia, submucous ganglia and mucosa and also in the majority of the varicosities of neurons that were immunoreactive for calretinin and somatostatin and that had been previously established as being cholinergic. We conclude that the intrinsic primary afferent neurons are cholinergic and that they may release transmitter from their sensory endings in the mucosa.  相似文献   

7.
Summary Neuromedin U immunoreactivity was located histochemically in the guinea-pig small intestine. Projections of immunoreactive neurons were determined by analysing patterns of degeneration following nerve lesions. The co-localization of neuromedin U immunoreactivity with immunoreactivity for substance P, neuropeptide Y, vasoactive intestinal peptide and calbindin was also investigated. Neuromedin U immunoreactivity was found in nerve cells in the myenteric and submucous plexuses and in nerve fibres in these ganglionated plexuses, around submucous arterioles and in the mucosa. Reactive fibres did not supply the muscle layers. Most reactive nerve cells in the myenteric ganglia had Dogiel type-II morphology and in many there was co-localization of calbindin, although some Dogiel type-II neuromedin U neurons were calbindin negative. Lesion studies suggest that these myenteric neurons project circumferentially to local myenteric ganglia. Projections from myenteric neurons also run anally in the myenteric plexus, while other projections extend to submucous ganglia, and still further projections run from the intestine to provide terminals in the coeliac ganglia. In the submucous ganglia neuromedin U was co-localized in three populations of nerve cells: (i) those with vasoactive intestinal peptide immunoreactivity, (ii) neurons containing neuropeptide Y, and (iii) neurons containing substance P. Each of these populations sends nerve fibres to the mucosa. Neuromedin U immunoreactivity is thus located in a variety of neurons serving different functions in the intestine and therefore probably does not have a single role in intestinal physiology.  相似文献   

8.
Summary Galanin immunoreactivity was observed in nerve cell bodies and nerve fibres, but not in enteroendocrine cells, in the small intestine of the guinea-pig. Nerve terminals were found in the myenteric plexus, in the circular muscle, in submucous ganglia, around submucous arterioles, and in the mucosa. Lesion studies showed that all terminals were intrinsic to the intestine; those in myenteric ganglia arose from cell bodies in more orally placed ganglia. Myenteric nerve cells were also the source of terminals in the circular muscle. Galanin (GAL) was located in a population of submucous nerve cell bodies that also showed immunoreactivity for vasoactive intestinal peptide (VIP) and in a separate population that was immunoreactive for neuropeptide Y (NPY). Processes of the GAL/VIP neurons supplied submucous arterioles and the mucosal epithelium. Processes of GAL/NPY neurons ran to the mucosa. It is concluded that galanin immunoreactivity occurs in several functionally distinct classes of enteric neurons, amongst which are neurons controlling (i) motility, (ii) intestinal blood flow, and (iii) mucosal water and electrolyte transport.  相似文献   

9.
Calbindin D28k, previously demonstrated in the mammalian central nervous system, has been localized to discrete neurons in the enteric nervous system of the rat. Calbindin D28k is present in cell bodies in both the myenteric and submucous plexi and in interganglionic nerve fibers in all regions of the gastrointestinal tract. Immunoreactive nerve fibers were also detected in the mucosal region, although none were observed in the pyloric sphincter, circular or longitudinal muscle layers. The highest concentration of immunoreactivity was present in the submucosal plexus and mucosa of the colon. Western blot analysis of the protein detected by the antiserum confirmed that it comigrated with purified calbindin D28k and the single immunoreactive band seen in extracts from rat brain. The colocalization of calbindin D28k with components of the peptidergic innervation was also investigated. Of the peptides studied the neurons containing both vasoactive intestinal polypeptide and neuropeptide Y in the submucous plexus were seen to exhibit calbindin D28k immunoreactivity. The neurons containing somatostatin, galanin and substance P did not demonstrate co-localization. In the stomach, calbindin D28k was detected within a small number of epithelial cells which were found to correspond to a sub-population of the somatostatin-immunoreactive endocrine cells.  相似文献   

10.
Summary Bombesin-like and gastrin-releasing peptide (GRP)-like immunoreactivities were localized in nerves of the guinea-pig small intestine and celiac ganglion with the use of antibodies raised against the synthetic peptides. The anti-bombesin serum (preincubated to avoid cross reactivity with substance P) and the anti-GRP serum revealed the same population of neurons. Preincubation of the antibombesin serum with bombesin abolished the immunoreactivity in nerves while absorption of the anti-GRP serum with either bombesin or the 14–27 C-terminal of GRP only reduced the immunoreactivity. The immunoreactivity was abolished by incubation with GRP 1–27.Immunoreactive nerves were found in the myenteric plexus, circular muscle, submucous plexus and in the celiac ganglion. Faintly reactive nerve cell bodies were found in the myenteric ganglia (3.2% of all neurons) but not in submucous ganglia. After all ascending and descending pathways in the myenteric plexus had been cut, reactive terminals disappeared in the myenteric plexus, circular muscle (including the deep muscular plexus) and the submucous plexus on the anal side. After the mesenteric nerves were cut no changes were observed in the intestinal wall but the reactive fibres in celiac ganglia disappeared. It is deduced that GRP/bombesin-immunoreactive nerve cell bodies in myenteric ganglia project from the myenteric plexus to other myenteric ganglia situated further anally (average length 12 mm), anally to the circular muscle (average length 9 mm), anally to submucous ganglia (average length 13 mm) and external to the intestine to the celiac ganglia.It is concluded that the GRP/bombesin-reactive neurons in the intestinal wall represent a distinct population of enteric neurons likely to be involved in controlling motility and in the coordination of other intestinal functions.  相似文献   

11.
The distribution of nerve cells and fibres with immunoreactivity for the calcium-binding protein, calretinin, was studied in the distal colon of the guinea-pig. The projections of the neurons were determined by examining the consequences of lesioning the myenteric plexus. Calretinin-immunoreactive neurons comprised 17% of myenteric nerve cells and 6% of submucous nerve cells. Numerous calretinin-immunoreactive nerve fibres were located in the longitudinal and circular muscle, and within the ganglia of the myenteric and submucous plexuses. Occasional fibres were found in the muscularis mucosae, but they were very rare in the lamina propria of the mucosa. Lesion studies revealed that myenteric neurons innervated the underlying circular muscle and provided both ascending and descending processes that gave rise to varicose branches in myenteric ganglia. Calretinin-immunoreactive fibres also projected to the tertiary component of the myenteric plexus, and are therefore likely to be motor neurons to the longitudinal muscle. Varicose fibres that supplied the submucous ganglia appear to arise from submucous nerve cells. Arterioles of the submucous plexus were sparsely innervated by calretinin-immunoreactive fibres. The submucous plexus was the principal source of immunoreactive nerve fibres in the muscularis mucosae. This work shows that calretinin-IR reveals different neuronal populations in the large intestine to those previously reported in the small intestine.  相似文献   

12.
Summary The distribution of galanin-immunoreactive (GAL-IR) neurons was mapped in detail in the gastro-intestinal tract of the rat, mouse, guinea-pig and pig by use of the indirect immunofluorescence technique. GAL-IR cell bodies were found in both the submucous and the myenteric plexus, with considerably higher numbers in the former ganglia. The largest number of GAL-IR perikarya was seen in the duodenal submucous plexus of the pig. With some (single) exceptions, GAL-IR cell somata were not observed in the myenteric plexus of the pig and guinea-pig, and in the submucous plexus of the esophagus and the stomach of the guinea-pig.GAL-IR fibers ocurred in most parts of the gastro-intestinal tract. In the lamina propria a few non-varicose, weakly fluorescent fibers were noted in the mouse and rat, whereas in the pig and guinea-pig were large numbers of GAL-IR fibers with a varicose appearance was observed. These fibers were in all species most numerous in the distal portion of the intestinal tract. In the submucosa GAL-IR fibers were detected in all four species, and in the pig and guinea-pig some fibers surrounded blood vessels. A large number of GAL-IR fibers was generally seen in the circular smooth muscle layer, except in the guinea-pig, which only seemed to contain a few fibers. In the longitudinal muscle layer only single fibers could be detected. However, the gastric fundus region of the pig contained a moderate number of fibers in the longitudinally and obliquely oriented layers.In general, in the rat, mouse and pig, the submucous and myenteric plexus contained moderate or large numbers of GAL-IR fibers. In the guinea-pig, no or only single fibers were observed in the plexus of the upper gastro-intestinal tract and the rectum, while moderate numbers were seen in the ileum and colon.Thin adjacent sections stained for vasoactive intestinal polypeptide (VIP) and GAL revealed the coexistence of these two peptides in cell bodies of the myenteric plexus in the pig duodenum and guinea-pig colon. In these two species the GALand VIP-nerve fiber networks also exhibited marked similarities. However, in the rat and mouse VIPand GAL-distribution patterns were in general different.The present findings indicate the presence of yet another neuropeptide or peptide family in the gastro-intestinal tract of several rodents and the pig.  相似文献   

13.
Using immunocytochemistry, NADPH-diaphorase (NADPHd) histochemistry and electron microscopy, the appearance of nitrergic enteric neurons in different digestive tract regions of the embryonic, neonatal and adult quail was studied in whole mounts and sections. NADPHd was first expressed by embryonic day 4–5 in two distinct locations, namely the mesenchyme of the gizzard primordium and at the caeco-colonic junction. At embryonic day 6, nitrergic neurons had already begun to form a myenteric nerve network in the wall of the proventriculus, gizzard and proximal part of the large intestine and by embryonic day 9, a myenteric network was visualized along the entire digestive tract of the quail. At the level of the stomach, this network was confined to the area covered by the intermediate muscles. By embryonic day 12–13, the NADPHd-positive myenteric neurons in the wall of the distal parts of the blind-ending paired caeca also became organized into ganglia. From this developmental stage on, a submucous nitrergic nerve network, sandwiched between the lamina muscularis mucosae and the luminal side of the outer muscle layer, became prominent in the proventriculus and intestinal walls. In the adult quail, only a minority of the NADPHd-positive neurons stained for vasoactive intestinal polypeptide (VIP) along the intestine. VIP-immunoreactive (IR) cell bodies were frequent in the myenteric plexus but not in the submucous plexus, whereas there were considerable numbers of NADPHd-positive neurons in both these plexuses. Nitrergic fibres were also observed in the outer muscle layer, but were almost absent from the lamina muscularis mucosa and lamina propria, in contrast to the dense VIP-ergic innervation encircling the bases of the intestinal crypts.  相似文献   

14.
Partially purified nerve varicosities (PV) prepared from guinea pig ileal myenteric plexus were found to contain, by radioimmunoassay, gastrin-releasing polypeptide (GRP), substance P (SP), galanin, Leu-enkephalin (LE), Met-enkephalin (ME), and vasoactive intestinal polypeptide (VIP). SP was present in the highest concentration followed by, in descending order, ME, LE, VIP, GRP and galanin. On reverse-phase HPLC, SP-, LE- and ME-like immunoreactivity in the PV preparation eluted at retention times similar to their synthetic analogues, galanin-like immunoreactivity eluted at a retention time different from that of synthetic porcine galanin and VIP-like immunoreactivity eluted at the retention time of synthetic guinea pig VIP. GRP-like immunoreactivity, on reverse-phase HPLC, eluted at retention times close to that of synthetic porcine GRP-(1-27) and its major oxidized form. Evidence was obtained for the presence of an alpha-neurokinin-like immunoreactive entity and an unidentified SP-like immunoreactive entity in guinea pig myenteric plexus.  相似文献   

15.
The tertiary component of the myenteric plexus consists of interlacing fine nerve fibre bundles that run between its principal ganglia and connecting nerve strands. It was revealed by zinc iodide-osmium impregnation and substance P immunohistochemistry at the light-microscope level. The plexus was situated against the inner face of the longitudinal muscle and was present along the length of the small intestine at a density that did not vary markedly from proximal to distal. Nerve bundles did not appear to be present in the longitudinal muscle as judged by light microscopy, although numberous fibre bundles were encountered within the circular muscle layer. At the ultrastructural level, nerve fibre bundles of the tertiary plexus were found in grooves formed by the innermost layer of longitudinal smooth muscle cells. In the distal parts of the small intestine, some of these nerve fibre bundles occasionally penetrated the longitudinal muscle coat. Vesiculated profiles in nerve fibre bundles of the tertiary plexus contained variable proportions of small clear and large granular vesicles; they often approached to within 50–200 nm of the longitudinal smooth muscle cells. Fibroblast-like cells lay between strands of the tertiary plexus and the circular muscle but were never intercalated between nerve fibre varicosities and the longitudinal muscle. These anatomical relationships are consistent with the tertiary plexus being the major site of neurotransmission to the longitudinal muscle of the guinea-pig small intestine.  相似文献   

16.
The distribution of neurokinin-2 (NK2) tachykinin receptors was investigated by immunohistochemistry in the guinea-pig oesophagus, stomach, small and large intestine. Receptor immunoreactivity occurred at the surfaces of smooth muscle cells throughout the digestive tract. Nerve fibre varicosities in enteric ganglia were also immunoreactive. In myenteric ganglia, these varicosities were most numerous in the ileum, frequent, but less dense, in the proximal colon and caecum, rare in the distal colon, extremely infrequent in the rectum and duodenum, and absent from the stomach and oesophagus. Reactive varicosities were rare in the submucous ganglia. Reactive nerve fibres in the mucosa were only found in the caecum and proximal colon. Strong NK2 receptor immunoreactivity was also found on the surfaces of enterocytes at the bases of mucosal glands in the proximal colon. Receptors were not detectable on the surfaces of nerve cells or on non-terminal axons. Reactivity did not occur on nerve fibres innervating the muscle. Denervation studies showed that the immunoreactive varicosities in the myenteric plexus of the ileum were the terminals of descending interneurons. Immunoreactivity for nitric oxide synthase was colocalised with NK2 receptor (NK-R) immunoreactivity in about 70% of the myenteric varicosities in the small intestine. Bombesin immunoreactivity occurred in about 30% of NK2-R immunoreactive varicosities in the small intestine. Received: 10 April 1996 / Accepted: 13 May 1996  相似文献   

17.
The nitrergic innervation of the sphincter of Oddi (SO) and duodenum in the Australian brush-tailed possum and the possible association of this innervation with the neuropeptide vasoactive intestinal polypeptide (VIP) were investigated by using immunohistochemical localisation of nitric oxide synthase (NOS) and VIP, together with the general neuronal marker, protein gene product 9.5 (PGP9.5). Whole-mount preparations of the duodenum and attached SO without the mucosa, submucosa and circular muscle (n=12) were double- and triple-labelled. The density of myenteric nerve cell bodies of the SO in the more distal region (duodenal end) was significantly higher than that in the more proximal region. In the SO, approximately 50% of all cells were NOS-immunoreactive (IR), with 27% of the NOS-IR cells being VIP-IR. Within the duodenal myenteric plexus, NOS immunoreactivity was present in about 25% of all neurons, with 27% of these NOS-IR neurons also being VIP-IR, a similar proportion to that in the SO. Varicose nerve fibres with NOS and VIP immunoreactivity were present within the myenteric and submucous plexuses of the SO and duodenum, and in the circular and longitudinal muscle layers. The NOS-positive cells within both the SO and duodenum were unipolar, displaying a typical Dogiel type I morphology. The myenteric plexuses of the SO and duodenum were in direct continuity, with many interconnecting nerve trunks, some of which showed NOS and VIP immunoreactivity. Thus, the possum possesses an extensive NOS innervation of the SO and duodenum, with a significantly higher proportion of NOS-IR neurons within the SO, a subset of which contains VIP.  相似文献   

18.
The small and large intestine of adult horses were histochemically and immunohistochemically investigated in order to evidence components of the intramural nervous system. The general structural organization of the intramural nervous system was examined by using Nissl-thionin staining as well as the anti-neurofilament 200 (NF200) immunoreaction, which demonstrated the presence of neurons in the submucous as well as myenteric plexuses. The additional presence of subserosal ganglia was shown in the large intestine. Acetylcholinesterase (AChEase) activity was observed in both the submucous and myenteric plexuses. Localization of acetylcholine-utilizing neurons was also evidenced by immunohistochemical reactions for choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT). With both histochemistry and immunohistochemistry possible cholinergic nerve fibres were detected in the inner musculature. The two possible cholinergic co-mediators Calcitonin Gene-Related Peptide (CGRP) and Substance P (SP) have been investigated by an immunohistochemical approach. CGRP immunoreactivity was detected in roundish nerve cell bodies as well as in nerve fibres of the submucous plexus, whereas SP immunoreactivity was evidenced in nerve fibres of the tunica mucosa, in nerve cell bodies and fibres of the submucous plexus and in nerve fibres of the myenteric plexus. NADPH-diaphorase reactivity, which is linked to the synthesis and release of nitric oxide, was detected in nerve cell bodies and nerve fibres of both the submucous and myenteric plexuses as well as in a subserosal localization of the large intestine. The nitrergic components were confirmed by the anti-NOS (nitric oxide synthase) immunoreaction. Results are compared with those of other mammals and related to the complex intestinal horse physiology and pathophysiology.  相似文献   

19.
Furness  J. B.  Keast  J. R.  Pompolo  S.  Bornstein  J. C.  Costa  M.  Emson  P. C.  Lawson  D. E. M. 《Cell and tissue research》1988,252(1):79-87
Summary Immunoreactivity for vitamin D-dependent calcium-binding protein (CaBP) has been localized in nerve cell bodies and nerve fibres in the gastrointestinal tracts of guinea-pig, rat and man. CaBP immunoreactivity was found in a high proportion of nerve cell bodies of the myenteric plexus, particularly in the small intestine. It was also found in submucous neurons of the small and large intestines. Immunoreactive nerve fibres were numerous in the myenteric ganglia, and were also common in the submucous ganglia and in the intestinal mucosa. Immunoreactive fibres were rare in the circular and longitudinal muscle coats. In the myenteric ganglia of the guinea-pig small intestine the immunoreactivity is restricted to one class of nerve cell bodies, type-II neurons of Dogiel, which display calcium action potentials in their cell bodies. These neurons were also immunoreactive with antibodies to spot 35 protein, a calcium-binding protein from the cerebellum. From the distribution of their terminals and the electrophysiological properties of these neurons it is suggested they might be sensory neurons, or perhaps interneurons. The discovery of CaBP in restricted sub-groups of enteric neurons may provide an important key for the analysis of their functions.  相似文献   

20.
The neurochemical composition of nerve fibres and cell bodies in the myenteric plexus of the proventriculus, stomach and small and large intestines of the golden hamster was investigated by using immunohistochemical and histochemical techniques. In addition, the procedures for localising nitric-oxide-utilising neurones by histochemical (NADPH-diaphorase) and immunohistochemical (nitric oxide synthase) methods were compared. The co-localisation of vasoactive intestinal polypeptide and nitric oxide synthase in the myenteric plexus of all regions of the gut was also assessed. The results demonstrated the presence of nerve fibres and nerve cell bodies immunoreactive to protein gene product, vasoactive intestinal polypeptide, substance P, calcitonin gene-related peptide, tyrosine hydroxylase, 5-hydroxytryptamine and nitric oxide synthase in all regions of the gastrointestinal tract examined. The pattern of distribution of immunoreactive nerve fibres and nerve cell bodies containing the above markers was found to vary in different regions of the gut. Myenteric neurones and nerve fibres containing immunoreactivity to nitric oxide synthase and NADPH-diaphorase reactivity, however, were shown to have an identical distribution throughout the gut. In contrast to some studies on the guinea-pig and rat, the co-existence of vasoactive intestinal polypeptide and nitric oxide synthase was seen in only a small population of myenteric neurones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号