首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Li J  Quinlan E  Mirza A  Iorio RM 《Journal of virology》2004,78(10):5299-5310
The Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) protein mediates attachment to cellular receptors. The fusion (F) protein promotes viral entry and spread. However, fusion is dependent on a virus-specific interaction between the two proteins that can be detected at the cell surface by a coimmunoprecipitation assay. A point mutation of I175E in the neuraminidase (NA) active site converts the HN of the Australia-Victoria isolate of the virus to a form that can interact with the F protein despite negligible receptor recognition and fusion-promoting activities. Thus, I175E-HN could represent a fusion intermediate in which HN and F are associated and primed for the promotion of fusion. Both the attachment and fusion-promoting activities of this mutant HN protein can be rescued either by NA activity contributed by another HN protein or by a set of four substitutions at the dimer interface. These substitutions were identified by the evaluation of chimeras composed of segments from HN proteins derived from two different NDV strains. These findings suggest that the I175E substitution converts HN to an F-interactive form, but it is one for which receptor binding is still required for fusion promotion. The data also indicate that the integrity of the HN dimer interface is critical to its receptor recognition activity.  相似文献   

2.
Zanamivir (4-guanidino-Neu5Ac2en [4-GU-DANA]) inhibits not only the neuraminidase activity but also the receptor interaction of the human parainfluenza virus type 3 (HPIV3) hemagglutinin-neuraminidase (HN), blocking receptor binding and subsequent fusion promotion. All activities of the HPIV3 variant ZM1 HN (T193I/I567V) are less sensitive to 4-GU-DANA's effects. The T193I mutation in HN confers both increased receptor binding and increased neuraminidase activity, as well as reduced sensitivities of both activities to 4-GU-DANA inhibition, consistent with a single site on the HN molecule carrying out both catalysis and binding. We now provide evidence that the HPIV3 variant's resistance to receptor-binding inhibition by 4-GU-DANA is related to a reduced affinity of the HN receptor-binding site for this compound as well as to an increase in the avidity of HN for the receptor. Newcastle disease virus (NDV) HN and HPIV3 HN respond differently to inhibition in ways that suggest a fundamental distinction between them. NDV HN-receptor binding is less sensitive than HPIV3 HN-receptor binding to 4-GU-DANA, while its neuraminidase activity is highly sensitive. Both HPIV3 and NDV HNs are sensitive to receptor-binding inhibition by the smaller molecule DANA. However, for NDV HN, some receptor binding cannot be inhibited. These data are consistent with the presence in NDV HN of a second receptor-binding site that is devoid of enzyme activity and has a negligible, if any, affinity for 4-GU-DANA. Avidity for the receptor contributes to resistance by allowing the receptor to compete effectively with inhibitors for interaction with HN, while the further determinant of resistance is the reduced binding of the inhibitor molecule to the binding pocket on HN. Based upon our data and recent three-dimensional structural information on the HPIV3 and NDV HNs, we propose mechanisms for the observed sensitivity and resistance of HN to receptor-binding inhibition and discuss the implications of these mechanisms for the distribution of HN functions.  相似文献   

3.
Paramyxoviruses are the leading cause of respiratory disease in children. Several paramyxoviruses possess a surface glycoprotein, the hemagglutinin-neuraminidase (HN), that is involved in attachment to sialic acid receptors, promotion of fusion, and removal of sialic acid from infected cells and progeny virions. Previously we showed that Newcastle disease virus (NDV) HN contained a pliable sialic acid recognition site that could take two states, a binding state and a catalytic state. Here we present evidence for a second sialic acid binding site at the dimer interface of HN and present a model for its involvement in cell fusion. Three different crystal forms of NDV HN now reveal identical tetrameric arrangements of HN monomers, perhaps indicative of the tetramer association found on the viral surface.  相似文献   

4.
Paramyxovirus hemagglutinin-neuraminidase (HN) plays roles in viral entry and maturation, including binding to sialic acid receptors, activation of the F protein to drive membrane fusion, and enabling virion release during virus budding. HN can thereby directly influence virulence and in a subset of avirulent Newcastle disease virus (NDV) strains, such as NDV Ulster, HN must be proteolytically activated to remove a C-terminal extension not found in other NDV HN proteins. Ulster HN is 616 amino acids long and the 45 amino acid C-terminal extension present in its precursor (HN0) form has to be cleaved to render HN biologically active. Here we show that Ulster HN contains an inter-subunit disulfide bond within the C-terminal extension at residue 596, which regulates HN activities and neuraminidase (NA) domain dimerization. We determined the crystal structure of the dimerized NA domain containing the C-terminal extension, which extends along the outside of the sialidase β-propeller domain and inserts C-terminal residues into the NA domain active site. The C-terminal extension also engages a secondary sialic acid binding site present in NDV HN proteins, which is located at the NA domain dimer interface, that most likely blocks its attachment function. These results clarify how the Ulster HN C-terminal residues lead to an auto-inhibited state of HN, the requirement for proteolytic activation of HN0 and associated reduced virulence.  相似文献   

5.
The paramyxovirus hemagglutinin-neuraminidase (HN) is a multifunctional protein mediating hemagglutination (HA), neuraminidase (NA), and fusion promotion activities. It has been a matter of debate whether HN contains combined or separate sites for HA and NA activities. To clear the issue, we determined the presence of the second binding site on human parainfluenza virus (hPIV) type 1, 2, and 3 and Sendai virus (SeV) HN proteins. Results of virus elution from erythrocytes at an elevated temperature and HA inhibition by NA inhibitor BCX-2798 suggest that all hPIVs bind to the receptor only through the NA catalytic site, while SeV HN has an additional receptor binding site. Comparison of SeV and hPIV1 HN sequences revealed two amino acid differences at residues 521 and 523 in the region close to the second binding site identified in Newcastle disease virus HN. We mutated hPIV1 HN at position 523 from Asn to the residue of SeV HN, Asp, and rescued a recombinant SeV that carries the mutated hPIV1 HN by a reverse genetics system. The hPIV1 HN with Asp at position 523 hemagglutinated in the presence of BCX-2798, suggesting that the amino acid difference at position 523 is critical for the formation of a second binding site. Creation of the second binding site on hPIV1 HN, however, did not significantly affect the growth or fusion activity of the recombinant virus. Our study indicates that the presence and requirement of a second binding site vary among paramyxoviruses.  相似文献   

6.
We recently reported the first crystal structure of a paramyxovirus hemagglutinin-neuraminidase (HN) from Newcastle disease virus. This multifunctional protein is responsible for binding to cellular sialyl-glycoconjugate receptors, promotion of fusion through interaction with the second viral surface fusion (F) glycoprotein, and processing progeny virions by removal of sialic acid from newly synthesized viral coat proteins. Our structural studies suggest that HN possesses a single sialic acid recognition site that can be switched between being a binding site and a catalytic site. Here we examine the effect of mutation of several conserved amino acids around the binding site on the hemagglutination, neuraminidase, and fusion functions of HN. Most mutations around the binding site result in loss of neuraminidase activity, whereas the effect on receptor binding is more variable. Residues E401, R416, and Y526 appear to be key for receptor binding. The increase in fusion promotion seen in some mutants that lack receptor binding activity presents a conundrum. We propose that in these cases HN may be switched into a fusion-promoting state through a series of conformational changes that propagate from the sialic acid binding site through to the HN dimer interface. These results further support the single-site model and suggest certain residues to be important for the triggering of fusion.  相似文献   

7.
The Australia-Victoria (AV) isolate of Newcastle disease virus (NDV) induces fusion from within but not fusion from without. L1, a neuraminidase (NA)-deficient virus derived from AV, has the opposite fusion phenotype from the wild-type virus. It fails to induce the former mode of fusion, but has gained a limited ability to promote the latter. Monoclonal antibodies to antigenic site 23 on the hemagglutinin-neuraminidase (HN) glycoprotein have previously been shown to select variants of the AV isolate that have altered NA activity or receptor-binding affinity. By using an antibody to this site, variants of L1 have been selected. Three of the variants have gained an increased affinity for sialic acid-containing receptors, as evidenced by the resistance of their hemagglutinating activity to the presence of reduced amounts of sialic acid on the surface of chicken erythrocytes. All four variants still have very low levels of NA activity, comparable to that of the parent virus, L1. The alteration in receptor-binding affinity results in a decreased potential for elution from cellular receptors and correlates with an increased ability to promote both modes of fusion. A single amino acid substitution in the HN protein of each variant, responsible for its escape from neutralization, has been identified. These studies identify two HN residues, 193 and 203, at which monoclonal antibody-selected substitution influences the receptor recognition properties of NDV and may influence its ability to promote syncytium formation.  相似文献   

8.
The fusion (F) proteins of Newcastle disease virus (NDV) and Nipah virus (NiV) are both triggered by binding to receptors, mediated in both viruses by a second protein, the attachment protein. However, the hemagglutinin-neuraminidase (HN) attachment protein of NDV recognizes sialic acid receptors, whereas the NiV G attachment protein recognizes ephrinB2/B3 as receptors. Chimeric proteins composed of domains from the two attachment proteins have been evaluated for fusion-promoting activity with each F protein. Chimeras having NiV G-derived globular domains and NDV HN-derived stalks, transmembranes, and cytoplasmic tails are efficiently expressed, bind ephrinB2, and trigger NDV F to promote fusion in Vero cells. Thus, the NDV F protein can be triggered by binding to the NiV receptor, indicating that an aspect of the triggering cascade induced by the binding of HN to sialic acid is conserved in the binding of NiV G to ephrinB2. However, the fusion cascade for triggering NiV F by the G protein and that of triggering NDV F by the chimeras can be distinguished by differential exposure of a receptor-induced conformational epitope. The enhanced exposure of this epitope marks the triggering of NiV F by NiV G but not the triggering of NDV F by the chimeras. Thus, the triggering cascade for NiV G-F fusion may be more complex than that of NDV HN and F. This is consistent with the finding that reciprocal chimeras having NDV HN-derived heads and NiV G-derived stalks, transmembranes, and tails do not trigger either F protein for fusion, despite efficient cell surface expression and receptor binding.  相似文献   

9.
Mahon PJ  Mirza AM  Iorio RM 《Journal of virology》2011,85(22):12079-12082
Newcastle disease virus (NDV)-induced membrane fusion requires an interaction between the hemagglutinin-neuraminidase (HN) attachment and the fusion (F) proteins, triggered by HN's binding to receptors. NDV HN has two sialic acid binding sites: site I, which also mediates neuraminidase activity, and site II, which straddles the membrane-distal end of the dimer interface. By characterizing the effect on receptor binding avidity and F-interactive capability of HN dimer interface mutations, we present evidence consistent with (i) receptor engagement by site I triggering the interaction with F and (ii) site II functioning to maintain high-avidity receptor binding during the fusion process.  相似文献   

10.
The hemagglutinin-neuraminidase (HN) protein of paramyxoviruses carries out three distinct activities contributing to the ability of HN to promote viral fusion and entry: receptor binding, receptor cleavage (neuraminidase), and activation of the fusion protein. The relationship between receptor binding and fusion triggering functions of HN are not fully understood. For Newcastle disease virus (NDV), one bifunctional site (site I) on HN's globular head can mediate both receptor binding and neuraminidase activities, and a second site (site II) in the globular head is also capable of mediating receptor binding. The receptor analog, zanamivir, blocks receptor binding and cleavage activities of NDV HN's site I while activating receptor binding by site II. Comparison of chimeric proteins in which the globular head of NDV HN is connected to the stalk region of either human parainfluenza virus type 3 (HPIV3) or Nipah virus receptor binding proteins indicates that receptor binding to NDV HN site II not only can activate its own fusion (F) protein but can also activate the heterotypic fusion proteins. We suggest a general model for paramyxovirus fusion activation in which receptor engagement at site II plays an active role in F activation.  相似文献   

11.
Paramyxoviruses, including the human pathogen measles virus (MV) and the avian Newcastle disease virus (NDV), enter host cells through fusion of the viral envelope with the target cell membrane. This fusion is driven by the concerted action of two viral envelope glycoproteins: the receptor binding protein and the fusion protein (F). The MV receptor binding protein (hemagglutinin [H]) attaches to proteinaceous receptors on host cells, while the receptor binding protein of NDV (hemagglutinin-neuraminidase [HN]) interacts with sialic acid-containing receptors. The receptor-bound HN/H triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. The mechanism of fusion activation has been proposed to be different for sialic acid-binding viruses and proteinaceous receptor-binding viruses. We report that a chimeric protein containing the NDV HN receptor binding region and the MV H stalk domain can activate MV F to fuse, suggesting that the signal to the stalk of a protein-binding receptor binding molecule can be transmitted from a sialic acid binding domain. By engineering the NDV HN globular domain to interact with a proteinaceous receptor, the fusion activation signal was preserved. Our findings are consistent with a unified mechanism of fusion activation, at least for the Paramyxovirinae subfamily, in which the receptor binding domains of the receptor binding proteins are interchangeable and the stalk determines the specificity of F activation.  相似文献   

12.
In order to examine functions of the hemagglutinin-neuraminidase (HN) protein that quantitatively influence fusion promotion, human parainfluenza virus 3 (HPIV3) variants with alterations in HN were studied. The variant HNs have mutations that affect either receptor binding avidity, neuraminidase activity, or fusion protein (F) activation. Neuraminidase activity was regulated by manipulation of temperature and pH. F activation was assessed by quantitating the irreversible binding of target erythrocytes (RBC) to HN/F-coexpressing cells in the presence of 4-GU-DANA (zanamivir) to release target cells bound only by HN-receptor interactions; the remaining, irreversibly bound target cells are retained via the fusion protein. In cells coexpressing wild-type (wt) or variant HNs with wt F, the fusion promotion capacity of HN was distinguished from target cell binding by measuring changes with time in the amounts of target RBC that were (i) reversibly bound by HN-receptor interaction (released only upon the addition of 4-GU-DANA), (ii) released by HN's neuraminidase, and (iii) irreversibly bound by F-insertion or fusion (F triggered). For wt HN, lowering the pH (to approach the optimum for HPIV3 neuraminidase) decreased F triggering via release of HN from its receptor. An HN variant with increased receptor binding avidity had F-triggering efficiency like that of wt HN at pH 8.0, but this efficiency was not decreased by lowering the pH to 5.7, which suggested that the variant HN's higher receptor binding activity counterbalanced the receptor dissociation promoted by increased neuraminidase activity. To dissect the specific contribution of neuraminidase to triggering, two variant HNs that are triggering-defective due to a mutation in the HN stalk were evaluated. One of these variants has, in addition, a mutation in the globular head that renders it neuraminidase dead, while the HN with the stalk mutation alone has 30% of wt neuraminidase. While the variant without neuraminidase activity triggered F effectively at 37 degrees C irrespective of pH, the variant possessing effective neuraminidase activity completely failed to activate F at pH 5.7 and was capable of only minimal triggering activity even at pH 8.0. These results demonstrate that neuraminidase activity impacts the extent of HPIV3-mediated fusion by releasing HN from contact with receptor. Any particular HN's competence to promote F-mediated fusion depends on the balance between its inherent F-triggering efficacy and its receptor-attachment regulatory functions (binding and receptor cleavage).  相似文献   

13.
Paramyxovirus infects cells by initially attaching to a sialic acid-containing cellular receptor and subsequently fusing with the plasma membrane of the cells. Hemagglutinin-neuraminidase (HN) protein, which is responsible for virus attachment, interacts with the fusion protein in a virus type-specific manner to induce efficient membrane fusion. To elucidate the mechanism of HN-promoted membrane fusion, we characterized a series of Newcastle disease virus HN proteins whose surface residues were mutated. Fusion promotion activity was substantially altered in only the HN proteins with a mutation in the first or sixth beta sheet. These regions overlap the large hydrophobic surface of HN; thus, the hydrophobic surface may contain the fusion promotion domain. Furthermore, a comparison of the HN structure crystallized alone or in complex with 2-deoxy-2,3-dehydro-N-acetylneuraminic acid revealed substantial conformational changes in several loops within or near the hydrophobic surface. Our results suggest that the binding of HN protein to the receptor induces the conformational change of residues near the hydrophobic surface of HN protein and that this change triggers the activation of the F protein, which initiates membrane fusion.  相似文献   

14.
For most paramyxoviruses, syncytium formation requires the expression of both surface glycoproteins (HN and F) in the same cell, and evidence suggests that fusion involves a specific interaction between the HN and F proteins (X. Hu et al., J. Virol. 66:1528-1534, 1992). The stalk region of the Newcastle disease virus (NDV) HN protein has been implicated in both fusion promotion and virus specificity of that activity. The NDV F protein contains two heptad repeat motifs which have been shown by site-directed mutagenesis to be critical for fusion (R. Buckland et al., J. Gen. Virol. 73:1703-1707, 1992; T. Sergel-Germano et al., J. Virol. 68:7654-7658, 1994; J. Reitter et al., J. Virol. 69:5995-6004, 1995). Heptad repeat motifs mediate protein-protein interactions by enabling the formation of coiled coils. Upon analysis of the stalk region of the NDV HN protein, we identified two heptad repeats. Secondary structure analysis of these repeats suggested the potential for these regions to form alpha helices. To investigate the importance of this sequence motif for fusion promotion, we mutated the hydrophobic a-position amino acids of each heptad repeat to alanine or methionine. In addition, hydrophobic amino acids in other positions were also changed to alanine. Every mutant protein retained levels of attachment activity that was greater than or equal to the wild-type protein activity and bound to conformation-specific monoclonal as well as polyclonal antisera. Neuraminidase activity was variably affected. Every mutation, however, showed a dramatic decrease in fusion promotion activity. The phenotypes of these mutant proteins indicate that individual amino acids within the heptad repeat region of the stalk domain of the HN protein are important for the fusion promotion activity of the protein. These data are consistent with the idea that the HN protein associates with the F protein via specific interactions between the heptad repeat regions of both proteins.  相似文献   

15.
Gravel KA  Morrison TG 《Journal of virology》2003,77(20):11040-11049
The activation of most paramyxovirus fusion proteins (F proteins) requires not only cleavage of F(0) to F(1) and F(2) but also coexpression of the homologous attachment protein, hemagglutinin-neuraminidase (HN) or hemagglutinin (H). The type specificity requirement for HN or H protein coexpression strongly suggests that an interaction between HN and F proteins is required for fusion, and studies of chimeric HN proteins have implicated the membrane-proximal ectodomain in this interaction. Using biotin-labeled peptides with sequences of the Newcastle disease virus (NDV) F protein heptad repeat 2 (HR2) domain, we detected a specific interaction with amino acids 124 to 152 from the NDV HN protein. Biotin-labeled HR2 peptides bound to glutathione S-transferase (GST) fusion proteins containing these HN protein sequences but not to GST or to GST containing HN protein sequences corresponding to amino acids 49 to 118. To verify the functional significance of the interaction, two point mutations in the HN protein gene, I133L and L140A, were made individually by site-specific mutagenesis to produce two mutant proteins. These mutations inhibited the fusion promotion activities of the proteins without significantly affecting their surface expression, attachment activities, or neuraminidase activities. Furthermore, these changes in the sequence of amino acids 124 to 152 in the GST-HN fusion protein that bound HR2 peptides affected the binding of the peptides. These results are consistent with the hypothesis that HN protein binds to the F protein HR2 domain, an interaction important for the fusion promotion activity of the HN protein.  相似文献   

16.
The hemagglutinin-neuraminidase (HN) protein of paramyxoviruses carries out three discrete activities that each affect the ability of HN to promote viral fusion and entry: receptor binding, receptor cleaving (neuraminidase), and triggering of the fusion protein. The interrelationship between the receptor binding and fusion-triggering functions of HN has not been clear. For human parainfluenza type 3 (HPIV3), one bifunctional site on HN can carry out both receptor binding and neuraminidase activities, and this site's receptor binding can be inhibited by the small receptor analog zanamivir. We now report experimental evidence, complemented by computational data, for a second receptor binding site near the HPIV3 HN dimer interface. This second binding site can mediate receptor binding even in the presence of zanamivir, and it differs from the second receptor binding site of the paramyxovirus Newcastle disease virus in its function and its relationship to the primary binding site. This second binding site of HPIV3 HN is involved in triggering F. We suggest that the two receptor binding sites on HPIV3 HN each contribute in distinct ways to virus-cell interaction; one is the multifunctional site that contains both binding and neuraminidase activities, and the other contains binding activity and also is involved in fusion promotion.  相似文献   

17.
Paramyxoviruses cause a wide variety of human and animal diseases. They infect host cells using the coordinated action of two surface glycoproteins, the receptor binding protein (HN, H, or G) and the fusion protein (F). HN binds sialic acid on host cells (hemagglutinin activity) and hydrolyzes these receptors during viral egress (neuraminidase activity, NA). Additionally, receptor binding is thought to induce a conformational change in HN that subsequently triggers major refolding in homotypic F, resulting in fusion of virus and target cell membranes. HN is an oligomeric type II transmembrane protein with a short cytoplasmic domain and a large ectodomain comprising a long helical stalk and large globular head domain containing the enzymatic functions (NA domain). Extensive biochemical characterization has revealed that HN-stalk residues determine F specificity and activation. However, the F/HN interaction and the mechanisms whereby receptor binding regulates F activation are poorly defined. Recently, a structure of Newcastle disease virus (NDV) HN ectodomain revealed the heads (NA domains) in a “4-heads-down” conformation whereby two of the heads form a symmetrical interaction with two sides of the stalk. The interface includes stalk residues implicated in triggering F, and the heads sterically shield these residues from interaction with F (at least on two sides). Here we report the x-ray crystal structure of parainfluenza virus 5 (PIV5) HN ectodomain in a “2-heads-up/2-heads-down” conformation where two heads (covalent dimers) are in the “down position,” forming a similar interface as observed in the NDV HN ectodomain structure, and two heads are in an “up position.” The structure supports a model in which the heads of HN transition from down to up upon receptor binding thereby releasing steric constraints and facilitating the interaction between critical HN-stalk residues and F.  相似文献   

18.
Paramyxoviruses, including the emerging lethal human Nipah virus (NiV) and the avian Newcastle disease virus (NDV), enter host cells through fusion of the viral and target cell membranes. For paramyxoviruses, membrane fusion is the result of the concerted action of two viral envelope glycoproteins: a receptor binding protein and a fusion protein (F). The NiV receptor binding protein (G) attaches to ephrin B2 or B3 on host cells, whereas the corresponding hemagglutinin-neuraminidase (HN) attachment protein of NDV interacts with sialic acid moieties on target cells through two regions of its globular domain. Receptor-bound G or HN via its stalk domain triggers F to undergo the conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We show that chimeric proteins containing the NDV HN receptor binding regions and the NiV G stalk domain require a specific sequence at the connection between the head and the stalk to activate NiV F for fusion. Our findings are consistent with a general mechanism of paramyxovirus fusion activation in which the stalk domain of the receptor binding protein is responsible for F activation and a specific connecting region between the receptor binding globular head and the fusion-activating stalk domain is required for transmitting the fusion signal.  相似文献   

19.
The paramyxovirus hemagglutinin-neuraminidase (HN) functions in virus attachment to cells, cleavage of sialic acid from oligosaccharides, and stimulating membrane fusion during virus entry into cells. The structural basis for these diverse functions remains to be fully understood. We report the crystal structures of the parainfluenza virus 5 (SV5) HN and its complexes with sialic acid, the inhibitor DANA, and the receptor sialyllactose. SV5 HN shares common structural features with HN of Newcastle disease virus (NDV) and human parainfluenza 3 (HPIV3), but unlike the previously determined HN structures, the SV5 HN forms a tetramer in solution, which is thought to be the physiological oligomer. The sialyllactose complex reveals intact receptor within the active site, but no major conformational changes in the protein. The SV5 HN structures do not support previously proposed models for HN action in membrane fusion and suggest alternative mechanisms by which HN may promote virus entry into cells.  相似文献   

20.
The tetrameric paramyxovirus hemagglutinin-neuraminidase (HN) protein mediates attachment to sialic acid-containing receptors as well as cleavage of the same moiety via its neuraminidase (NA) activity. The X-ray crystallographic structure of an HN dimer from Newcastle disease virus (NDV) suggests that a single site in two different conformations mediates both of these activities. This conformational change is predicted to involve an alteration in the association between monomers in each HN dimer and to be part of a series of changes in the structure of HN that link its recognition of receptors to the activation of the other viral surface glycoprotein, the fusion protein. To explore the importance of the dimer interface to HN function, we performed a site-directed mutational analysis of residues in a domain defined by residues 218 to 226 at the most membrane-proximal part of the dimer interface in the globular head. Proteins carrying substitutions for residues F220, S222, and L224 in this domain were fusion deficient. However, this fusion deficiency was not due to a direct effect of the mutations on fusion. Rather, the fusion defect was due to a severely impaired ability to mediate receptor recognition at 37 degrees C, a phenotype that is not attributable to a change in NA activity. Since each of these mutated proteins efficiently mediated attachment in the cold, it was also not due to an inherent inability of the mutated proteins to recognize receptors. Instead, the interface mutations acted by weakening the interaction between HN and its receptor(s). The phenotype of these mutants correlates with the disruption of intermonomer subunit interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号