首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Instances of strong oxygen variations are described for two shallow water stations in the Kattegat, situated at the fluctuating frontal zone between outflowing surface water from the Baltic and inflowing bottom water from the Skagerrak/North Sea.The events consist of both a rapid emergence and a rapid disappearance of oxygen-depletion. Changes in oxygen concentration amounted to more than 20 g m–2 d–1 for the total water columns. Such high rates of change can not be explained by net local bottom oxygen consumption (0.6 g m–2 d–1) or net local water oxygen consumption (1.6 g m–2 d–1). The oxygen variations were influenced by the local and regional meteorological conditions. The observed instance of shallow water oxygen-depletion was connected to upward movement of the pycnocline and associated advective transport of oxygen-depleted Kattegat bottom waters to a shallow water area. Similarly, rapid disappearance of the bottom water oxygen deficit in a shallow water area was found to depend more on pycnocline lowering in connection with advective transport, than on the effect of local wind driven mixing.  相似文献   

2.
Fluctuations in the salinity and physicochemical characteristics of water quality were surveyed in brackish Lake Obuchi on the Shimokita Peninsula in Aomori, Japan. The mean salinity in the surface layer in all regions of Lake Obuchi was about 10 psu, whereas in the basin region at depths of greater than 3 m it was 20 psu. Furthermore, all the year round the halocline was formed at depths of 1–4 m. The maximum density gradient along a vertical axis in the center of the lake was observed at depths of 1–2 m in summer and 2–4 m in spring and fall. The depth of the maximum density gradient fluctuated with the seasons. In summer the water in the bottom layer was anoxic, and Fe, Mn, PO4 3−-P, and NH4 +-N supplied from the bottom sediment accumulated at high concentrations below the halocline. Thus, it was observed that the transfer of substances between the layers above and below the barrier formed by the halocline is suppressed. Although Lake Obuchi is small and shallow, the inflowing seawater easily resides, and a stable halocline readily forms because of the shape of its basin, which suddenly deepens on the Pacific Ocean side. Received: May 24, 1999 / Accepted: September 25, 1999  相似文献   

3.
Phosphorus release from the sediments of very shallow lakes, the Norfolk Broads, can be as high as 278 mgP m-2 d-1. These high rates are associated with high total sediment Fe:P ratios and occur when sulphide from sulphate reduction removes Fe(II) from the pore water. There is also evidence that bioturbation from benthic chironomids can enhance phosphorus release rates, particularly in sediments low in total iron. The release of phosphorus from the sediments of these lakes is delaying restoration following the control of phosphorus from sewage discharges. Biomanipulation is being used in these lakes to create clear water and re-establish aquatic macrophytes. This removal of fish has allowed larger populations of benthic chironomid larvae to develop which may result in an increase in the rate of phosphorus release and changes to the pore profiles of dissolved phosphorus, soluble iron and free sulphide.  相似文献   

4.
The new attached growth sponge tray bioreactor (STB) was evaluated at different operating conditions for removing organics and nutrients from primary treated sewage effluent. This STB was also assessed when using as a pre-treatment prior to micro-filtration (MF) for reducing membrane fouling. At a short hydraulic retention time (HRT) of 40 min, the STB could remove up to 92% of DOC and 40-56% of T-N and T-P at an organic loading rate (OLR) of 2.4 kg COD/m3 sponge day. This OLR is the best for the STB as compared to the OLRs of 0.6, 1.2 and 3.6 kg COD/m3 sponge day. At 28 mL/min of flow velocity (FV), STB achieved the highest efficiencies with 92% of DOC, 87.4% of T-P, and 54.8% of T-N removal. Finally, at the optimal OLR and FV, the STB could remove almost 90% of organic and nutrient, significantly reduce membrane fouling with HRT of only 120 min.  相似文献   

5.
Importance of tubificid populations on nitrogen cycle in two categories of shallow eutrophic lakes in the Danube Delta was quantitatively assessed for the 1992-1993 period. The structure of the primary producers in the studied lakes was used to discriminate between the two categories:(i) lakes dominated by macrophytes (A1) and (ii) lakes dominated by phytoplankton (A2). In both categories tubificid worms represented important fraction of the entire benthic community (35 and 32%, respectively, as number of individuals). They influence the sediment-water exchange of nutrients. The main processes involved are excretion of nutrients and their continuous release from sediments by molecular diffusion or through channels created by bioturbation. Inorganic nitrogen released from bottom sediments may regulate nitrogen load in the water body and thus, phytoplankton production. In 1992-1993, nitrogen stocks in tubificid biomass accounted for 5.3% in A1 lakes and 15.6% in A2 lakes of the amount stocked in phytoplankton, and only for 1.2 and 2.9% respectively, of the nitrogen load in water body. Nitrogen excretion rates ranged between 60.52 and 153.74 mg N m–2 year–1, and release rates from sediments between 378.26 and 960.87 mg N m–2 year–1, the lowest values being recorded for A2 category. Differences are related to tubificid biomass, structure and abundance of primary producers and to nutrient load in different ecosystems. Ratios between release rate of inorganic nitrogen by tubificid worms and sedimentation rate of organic nitrogen in the two categories of lakes were 8.3 and 6.4% respectively. Contribution of nitrogen released daily from sediments to the dissolved inorganic nitrogen load in the water column was less than 0.5%. However, in A1 and A2 lakes, the released nitrogen had a potential to sustain 24.74 and 8.01%, respectively, of the annual phytoplankton production. These values suggest the significance of tubificids in keeping the eutrophication process at a high level, especially during the periods when nitrogen is the main limiting factor for phytoplankton production.  相似文献   

6.
刘静静  董春颖  宋英琦  孙培德 《生态学报》2012,32(24):7932-7939
通过采集北里湖不同季节的柱状芯样,在实验室静态模拟沉积物氨氮(NH+4-N)和可溶解性磷酸盐(PO3-4-P)的释放,同时研究了沉积物间隙水中NH+4-N及PO3-4-P的垂直分布特征.结果表明,沉积物间隙水NH+4-N随深度的增加有上升的趋势,PO3-4-P随深度的增加呈先升后降的趋势.氮、磷营养盐在沉积物—水界面均存在浓度梯度,表明存在自间隙水向上覆水扩散的趋势.沉积物NH+4-N在春季、夏季、秋季、冬季的释放速率分别为0.074 mg·m-2· d-1、0.340mg· m-2· d-1、0.087 mg· m-2· d-1、0.0004 mg·m-2·d-1,pO3-4-P的释放速率则分别为0.340 mg·m-2·d-1、0.518 mg·m-2·d-1、0.094 mg·m-2·d-1、-0.037 mg· m-2·d-1.不同采样点表现出明显的季节和空间差异性,释放速率表现为夏季>春季、秋季>冬季.根据静态模拟出的不同季节下内源氮、磷释放速率计算,全湖内源氮、磷营养盐的贡献分别为0.0037、0.0057t/a.该研究可为北里湖富营养化及内源污染的治理提供基础数据.  相似文献   

7.
The Salton Sea is a 1000-km2 terminal lake located in the desert area of southeastern California. This saline (44000 mg l–1 dissolved solids) lake started as fresh water in 1905–07 by accidental flooding of the Colorado River, and it is maintained by agricultural runoff of irrigation water diverted from the Colorado River. The Salton Sea and surrounding wetlands have recently acquired substantial ecological importance because of the death of large numbers of birds and fish, and the establishment of a program to restore the health of the Sea. In this report, we present new data on the salinity and concentration of selected chemicals in the Salton Sea water, porewater and sediments, emphasizing the constituents of concern: nutrients (N and P), Se and salinity. Chemical profiles from a Salton Sea core estimated to have a sedimentation rate of 2.3 mm yr–1 show increasing concentrations of OC, N, and P in younger sediment that are believed to reflect increasing eutrophication of the lake. Porewater profiles from two locations in the Sea show that diffusion from bottom sediment is only a minor source of nutrients to the overlying water as compared to irrigation water inputs. Although loss of N and Se by microbial-mediated volatilization is possible, comparison of selected element concentrations in river inputs and water and sediments from the Salton Sea indicates that most of the N (from fertilizer) and virtually all of the Se (delivered in irrigation water from the Colorado River) discharged to the Sea still reside within its bottom sediment. Laboratory simulation on mixtures of sediment and water from the Salton Sea suggest that sediment is a potential source of N and Se to the water column under aerobic conditions. Hence, it is important that any engineered changes made to the Salton Sea for remediation or for transfer of water out of the basin do not result in remobilization of nutrients and Se from the bottom sediment into the overlying water.  相似文献   

8.
Dynamics of greenhouse gases, CH4, CO2 and N2O, and nutrients, NO 2 + NO 3 , NH 4 + and P, were studied in the sediments of the eutrophic, boreal Lake Kevätön in Finland. Undisturbed sediment cores taken in the summer, autumn and winter from the deep and shallow profundal and from the littoral were incubated in laboratory microcosms under aerobic and anaerobic water flow conditions. An increase in the availability of oxygen in water overlying the sediments reduced the release of CH4, NH 4 + and P, increased the flux of N2O and NO 2 + NO 3 , but did not affect CO2 production. The littoral sediments produced CO2 and CH4 at high rates, but released only negligible amounts of nutrients. The deep profundal sediments, with highest carbon content, possessed the greatest release rates of CO2, CH4, NH 4 + and P. The higher fluxes of these gases in summer and autumn than in winter were probably due to the supply of fresh organic matter from primary production. From the shallow profundal sediments fluxes of CH4, NH4 + and P were low, but, in contrast, production of N2O was the highest among the different sampling sites. Due to the large areal extension, the littoral and shallow profundal zones had the greatest importance in the overall gas and nutrient budgets in the lake. Methane emissions, especially the ebullition of CH4 (up to 84% of the total flux), were closely related to the sediment P and NH 4 + release. The high production and ebullition of CH4, enhances the internal loading of nutrients, lake eutrophication status and the impact of boreal lakes to trophospheric gas budgets.  相似文献   

9.
Increasing trends of dissolved Si measured by a colorimetric method and ICP (DSicol and DSiICP, respectively) and total Si concentrations were detected at the center of Lake Kasumigaura during 1980–2006 (mean DSicol concentration in the 1980s and 2000s was 1.3 and 4.0 mg l−1, respectively). The observation of such trends is rare; therefore, the elucidation of the causes could be useful to understanding silicon dynamics in inland waters. Based on statistical analysis, we found that the increases in DSicol and lithogenic Si accounted for most of the total Si increase (44 and 45%, respectively) and that biogenic Si, consisting of diatom frustules, also increased with them. Increases in DSiICP concentration were not detected near the mouth of the inflowing rivers, suggesting that the increase was caused by in-lake processes. Because the increase in suspended solids (SS) caused by sediment resuspension had been observed in the lake for the same period, we assumed that the Si release from SS containing diatom frustules contributed to the increase. The results of the laboratory experiments in which surface sediments were stirred in lake waters showed that the change in DSicol concentration depended mainly on SS concentration, water temperature and the elapsed time of diatom frustules dissolution. An estimation of the released amount of Si from SS using the sediment resuspension model was (1.0–2.7) × 109 g year−1 in the 2000s, which was about 30–90% of the increase in the DSicol outflow of 3.0 × 109 g year−1 from the 1980s to the 2000s. We also determined the Si release rates from bottom sediments through laboratory experiments. The Si amount released from bottom sediments in the lake in the 2000s was estimated to be 4.3 × 109 g year−1, which was about 2–4 times higher than the estimated Si amount released from SS. These findings suggest that the sediment resuspension might be the cause of the latest DSi increase.  相似文献   

10.
The accumulation of natural radioisotopes by aquatic organisms and bottom sediments was studied in two small rivers, one uncontaminated and the other polluted by effluents of uranium ore mining and milling. Parabolic regressions between the water and uppermost sediment content of both uranium and total beta activity (corrected for 40K content) is presented and demonstrates the water cumulative capacity of organically rich sediments. For 226Ra no significant differences between sediments with different organic content were found. The 226Ra content of bottom sediments is expressed as a power function of radium and calcium concentration in the water. In the given reaches, 53% and 85% of uranium and over 90% of 226Ra and total beta activity (corrected for 40K) was accumulated in the upper two centimetres of sediments and biomass of aquatic vegetation. Filamentous algae, plankton, aquatic bryophyta and macrophyta from the present and other published data showed rather higher cumulation capacities as compared with bottom sediments.  相似文献   

11.
Sedimentary phosphorus fractions and phosphorus release from the sediments were studied in Lake Ladoga at altogether 46 sampling sites, representing the full range of sediment types encountered in the lake. Determination of P fractions and physico-chemical analyses were made of surface sediment cores (10–20 cm long, each sampled at 3–4 levels) and in the overlying water. The range of total phosphorus per dry weight of sediment was 0.2–3.3 mg g–1, and that of inorganic P 0.1–2.5 mg g–1. The levels of interstitial soluble phosphorus, range 2–613 µg 1–1 for total P and 1–315 µg 1–1 for inorganic P, were higher than those of dissolved P concentrations in the overlying water. Diffusive fluxes of phosphate from sediment to the overlying water were estimated using three independent methods. The estimated range was 4–914 µg P m–2 d–1; the mean value for the whole bottom area, 0.1 mg P m–2 d–1, is lower than previously published estimates. The estimated annual contribution of sedimentary inorganic P flux to Lake Ladoga water is equal to 620 tons of P per year, which amounts to more than 10% of the estimated external P load into the lake. 68% of the total diffusive flux emanates from deep water sediments, which are not exposed to seasonal variation of conditions. In deep lakes, such as Lake Ladoga, phosphorus release from the sediments is controlled primarily by diffusive mechanisms. Wave action and currents as well as bioturbation are probably of importance mainly in shallow near-shore areas. Phosphorus release by gas ebullition and macrophytes is considered negligible.  相似文献   

12.
In situ estimates of sediment nutrient flux are necessary to understand seasonal variations in internal loading in lakes. We investigated the sources and sinks of nutrients in the hypolimnion of a small (0.33 km2), relatively shallow (18 m max. depth), eutrophic lake (Lake Okaro, New Zealand) in order to determine changes in sediment nutrient fluxes resulting from a whole lake sediment capping trial using a modified zeolite phosphorus inactivation agent (Z2G1). Sediment nutrient fluxes in the hypolimnion were estimated as the residual term in a nutrient budget model that accounted for mineralisation of organic nutrients, nutrient uptake by phytoplankton and mixing, nitrification, adsorption/desorption and diffusion of dissolved nutrients at the thermocline. Of the total hypolimnetic phosphate and ammonium fluxes during one period of seasonal stratification (2007–08), up to 60 and 50%, respectively, were derived from the bottom sediments, 18 and 24% were due to mineralisation of organic species, 36 and 28% were due to phytoplankton uptake and 9 and 6% were from diffusion across the thermocline. Adsorption/desorption of phosphate to suspended solids and nitrification were of minor (<8%) importance to the total fluxes. Any reduction in sediment nutrient release by Z2G1 was small compared with both the total sediment nutrient flux and the sum of other hypolimnetic fluxes. Uneven sediment coverage of Z2G1 may have been responsible for the limited effect of the sediment capping layer formed by Z2G1.  相似文献   

13.
Krogerus  Kirsti  Ekholm  Petri 《Hydrobiologia》2003,492(1-3):15-28
In shallow lakes, the cycling of P between water and bottom sediments is strongly influenced by wind-induced resuspension of particulate matter. The significance of this P flux as an algal nutrient source is unclear. We examined gross sedimentation in 3 open and shallow agriculturally loaded lakes. In addition, we estimated the potential P-release from settling and bottom matter by laboratory tests. The mean daily rate of gross sedimentation was 21–170 g m–2 d–1 of dry sediment, 0.04–0.18 g m–2 d–1 of P and 0.18–2.0 g m–2 d–1 of N; being the highest in the shallowest and most eutrophic lake. In Lake Karhijärvi, where the most intensive measurements were taken, wind explained the temporal variation in the gross sedimentation to some extent. The settling matter consisted of inorganic particles low in nutrients, especially during peak sedimentation periods. On average, 7.7 ± 3.1% (x ± 95% confidence interval) of the P in the settling matter in L. Karhijärvi was in an algal-available form according to 2–3 week bioassays. In the bottom matter of the three lakes, 3.0 ± 1.7% and 2.5 ± 3.6%, and 4.3 ± 3.7% of the P was utilized by the algae. In L. Karhijärvi, resuspension of the potentially available P exceeded 20 times the external loading during the open water season. According to sorption tests, P is released from the bottom matter only when the concentration of o-P is <2 g l–1. Although such a low value cannot be determined with common analytical procedures, it seems probable that the P concentration allows P desorption during P-limited periods. However, the significance of resuspended matter as an algal nutrient source calls for further research.  相似文献   

14.
Sediment and water column phosphorus fractions were recorded monthly for one year (April 2004–April 2005) in a shallow lake recovering from nutrient pollution (Loch Leven, Scotland). Equilibrium phosphate concentration (EPC0) and gross sediment phosphorus (P) release rates were estimated from laboratory experiments. Pore water and organic P pools were lowest during warm water periods whereas bottom water P was lowest during cold water periods. Reductant-soluble, organic, metal oxide-adsorbed, residual and sediment total phosphorus pools all varied significantly with overlying water depth. Short-term, high magnitude, redox initiated P release events occurred in late summer and winter as a result of anoxic sediment conditions. Lower magnitude long-term release conditions were maintained for most of the year, most likely as a result of organic P cycling and maintenance of high concentration gradients between the pore and bottom water P pools. Estimates of summer P uptake/release rates, across an intact sediment-water interface, suggested that maximum gross internal release was ~12 mg SRP m−2 lake surface area d−1 with EPC0 values ranging between 180 and 270 μg P L−1. This study highlights the biological mediation of internal loading in shallow eutrophic lakes, and in particular, the role of sediment algae in decreasing, and sediment bacteria in enhancing, sediment P release.  相似文献   

15.
After a reduction of the external phosphorus loading to a lake, an internal loading from the sediments may delay the improvement of the water quality. The accepted method to combat internal loading is careful dredging of the upper sediment layers (Cooke et al., 1986), but this method is costly and time consuming. Addition of phosphorus binding agents to the sediments might offer an alternative. In the Netherlands the use of aluminum compounds, the most common phosphorus binding agent, for water quality improvement purposes is not favoured. Therefore a sediment treatment with a solution of iron(III)chloride was tested. Iron was chosen because it is considered to be a natural binder of phosphate. 100 g m–2 of Fe3+ were added to the sediments of the shallow (1.75 m average depth) and eutrophic Lake Groot Vogelenzang (The Netherlands) in October and November 1989. The iron(III)chloride solution was diluted 100 times with lake water and mixed with the surface sediments with a water jet.Following the addition the concentrations of total phosphorus (Fig. 1), chlorophyll-a and suspended solids decreased. This improvement of the water quality lasted for three months. After this time the total phosphorus concentration increased again, but remained at a lower level than in spring and summer of 1989. The phosphorus release rate from the sediments as measured from intact sediment cores decreased from 4 to 1.2 mg P m–2 d–1 (n = 5), and the bioavailability of the sediment phosphorus, as measured with bioassays, decreased from 34 to 23% (n = 5) shortly after the treatment. One year after the treatment the release rate was increased to 3 mg P m–2 d–1 (n = 5). Before treatment, the lake was thought to have a residence time of over one year. However, the chloride added to the lake disappeared according to a dilution rate of 0.03 d–1 or a retention time of about 35 days. A high external loading due to rapid flushing with phosphorus-rich water from surrounding lakes possibly prevented a more durable improvement in water quality. Another possibility is that the iron addition has lost its phosphate binding capacity due to reduction or binding with other anions like carbonate or sulphide. Therefore the suitability of the method to reduce internal loading and especially the long term availability of added iron to bind phosphorus needs additional proof.The treatment of the 18 ha area of Lake Groot Vogelenzang took three weeks. The operational costs were about US$ 125000. This is fast and cheap compared to dredging. Application of the technique is limited to those cases where the sediments are not polluted with micro-pollutants and the water depth need not be increased.  相似文献   

16.
Phosphorus release from the Loosdrecht Lakes sediments was studied, using a continuous flow reactor. The summer release maxima were 4 mg P.m–2.d–1 in 1984 and 1.4 mg P.m–2.d–1 in 1985. Temperature and downward seepage controlled release rates to a great extent, the pH of the overlying water being only of minor importance. From these results it could be concluded that release processes might be driven by mineralization of particulate organic phosphorus in the sediment. Pore water studies in the sediments of the release reactor confirmed this hypothesis. From the profiles phosphorus dissolution rates were calculated.  相似文献   

17.
Bacterial abundance and the rates of sulfate reduction (SR) and total organic matter decomposition (Dtotal) were studied in the bottom sediments of nine lakes in the vicinity of Vilnius (Lithuania) during the ice-free seasons of 2006–2009. During the spring mixing of the water, aerobic processes of organic matter decomposition prevailed in the bottom sediments of most lakes, while anaerobic processes predominated (up to 80–90% Dtotal) in summer and early autumn. SR rates in the bottom sediments made up 0.16–2.6 and 0.09–2.0 mg S2?/(dm3 day) for the medium-depth and shallow lakes, respectively. The highest numbers of sulfate-reducing bacteria (up to 106 cells/cm3) and SR rates were observed in summer. SR rate in mediumdepth lakes increased with development of anaerobic conditions at the bottom and elevated sulfate concentrations (up to 96.0 mg/dm3). In shallow lakes, where O2 concentration at the bottom was at least 6.7 mg/L, SR rates increased with temperature and inflow of fresh organic matter, especially during cyanobacterial blooms. The average SR rates in the bottom sediments of the lakes of urbanized areas were 4 times higher than in the shallow lakes of protected areas. Accumulation of organic matter and its intensive decomposition during summer may enhance the processes of secondary eutrophication of these small and shallow lakes.  相似文献   

18.
Stratification and phosphorus fluxes (input, output, sedimentation, and release from sediments) were studied in České údolí Reservoir (49°43′N, 13°21′E; V – 2.65 × 106 m3; A – 1.04 × 106 m2; zmax – 5.5 m; surface altitude – 314 m a.s.l.) during two summer stratification periods which differed in outlet operation and in hydraulic residence time (1997: surface outlets and 14 days; 1998: bottom outlets and 23 days). Use of bottom outlets resulted in weaker thermal stratification, a less pronounced oxygen deficit in the hypolimnion, and significantly lower P retention (17%) in comparison with surface discharge (42%). Factors apparently contributing to lower retention of P during the use of bottom outlets were: (i) faster flushing of the hypolimnion which intensified longitudinal transport of particles, (ii) more intense P release from sediments due to a lower concentration of nitrate in the water column and to more frequent contact of sediments in the shallows with water of pH >9. During both periods, phytoplankton production was limited only by light, not by nutrients. Phytoplankton biomass was comparable in both years despite some differences in vertical distribution.  相似文献   

19.
The history of the deep north basin of Lake Biwa extends over 430,000 years. Although it has probably been oxic and oligotrophic since its formation, human impacts have been changing lake conditions. In this paper, we discuss long-term changes in the chemistry of bottom water by compiling literature and through our own data over the last half-century. Long-term records show an increase in temperature, decrease in dissolved oxygen (DO), and increase in nutrients in bottom water. The stoichiometry among oxygen and nutrients indicates that changes are basically consistent with aerobic decomposition of organic matter. These changes are most likely the result of global warming and local eutrophication. Of particular note, yearly minimum DO concentrations <50 µmol kg?1 have started to occur frequently at ~90 m depth since 1999. Manganese (Mn) concentrations in bottom water are at their minimum during the turnover period and at a maximum during the late stratification period each year. Yearly minimum Mn concentration has been within a narrow range over the last 30 years (0.25 ± 0.07 µmol kg?1, n = 12). However, abnormally high Mn concentrations (up to 9.3 µmol kg?1) were observed in 2007, caused by reductive release of a substantial amount of Mn from suboxic sediments and subsequent oxidation in bottom water. The concentration of arsenic (As) has gradually increased over the last 20 years in a similar manner, with a homologous element of phosphorus (P), resulting in an observed range of 17–29 nmol kg?1 in 2010. The accumulation rate was ~0.8 nmol kg?1 year?1 for As and ~6 nmol kg?1 year?1 for P.  相似文献   

20.
Sediments have a significant influence on the overlying water, and nutrient release from sediments is an important source for lake eutrophication, particularly in shallow lakes. Sediment resuspension is primarily driven by wind-induced currents. In this research, the correlation between release rate of suspended sediment and flow velocity was studied, and an experiment on hydrodynamic forces was conducted in a rectangle flume using water and sediments collected from three sites in Lake Taihu, a eutrophic lake in China. It was shown that the starting velocities of sediment in Lake Taihu at three different incipient standards gained from the experiment were 15, 30, and 40 cm s−1 and the release rate of suspended sediment could reach up to 643.4, 5377.1, and 13980.5 g m−2 d−1, respectively. Based on the experiment, a water quantity and quality numerical model of wind-induced current with sediment pollution for Lake Taihu was developed. The model was calibrated and validated by applying it to the study of the water quality of Lake Taihu. The calculated values were generally in good agreement with field observations, which indicated that the developed model could represent the dynamics of sediment resuspension to a certain extent. This study provides a new approach and a practical tool for planning and management policy and operations to protect the water quality and ecosystems of shallow lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号