首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tight junctions between brain microvessel endothelial cells (BMECs) maintain the blood-brain barrier. Barrier breakdown is associated with brain tumors and central nervous system diseases. Tumor cell-secreted vascular endothelial growth factor (VEGF) increases microvasculature permeability in vivo and is correlated with the induction of clinically severe brain tumor edema. Here we investigated the permeability-increasing effect and tight junction formation of VEGF. By measuring [(14)C]sucrose flux and transendothelial electrical resistance (TER) across BMEC monolayer cultures, we found that VEGF increased sucrose permeability and decreased TER. VEGF also caused a loss of occludin and ZO-1 from the endothelial cell junctions and changed the staining pattern of the cell boundary. Western blot analysis of BMEC lysates revealed that the level of occludin but not of ZO-1 was lowered by VEGF treatment. These results suggest that VEGF increases BMEC monolayer permeability by reducing occludin expression and disrupting ZO-1 and occludin organization, which leads to tight junction disassembly. Occludin and ZO-1 appear to be downstream effectors of the VEGF signaling pathway.  相似文献   

2.
Tight junctions (TJs) in endothelial cells act as cell-cell adhesion structures, governing paracellular permeability (PCP). Disruption can lead to leaky vascular bed and potentially to oedema and swelling of tissues, the aetiology of mastalgia. These changes may also cause vascular spread of cancer cells. This study aimed to determine whether the function of TJs in endothelial cells can be strengthened by gamma linolenic acid (GLA), selenium (Se) and iodine (I) in the presence of 17beta-estradiol (17beta-estradiol), which causes leakage of endothelial cells by disruption of TJs in endothelium. GLA, I, and Se individually increased transendothelial resistance. The combination of all three agents also had a significant effect on TER. Addition of GLA/Se/I reduced PCP of the endothelial cells. Treatment with GLA/Se/I reversed the effect of 17beta-estradiol in reducing TER and increasing PCP. Immunofluorescence revealed that after treatment with Se/I/GLA over 24 h there was increasing relocation to endothelial cell-cell junctions of the TJ proteins Claudin-5, Occludin, and ZO-1. Interestingly, this relocation was particularly evident with treatments containing I when probing with Claudin-5 and those containing Se for Occludin. There was a small increase in overall protein levels when examined by Western blotting after treatment with GLA/Se/I when probed with Claudin-5 and Occludin. We report that GLA, I, and Se alone, or in combination are able to strengthen the function of TJs in human endothelial cells, by way of regulating the distribution of Claudin-5, Occludin, and ZO-1. Interestingly, this combination was also able to completely reverse the effect of 17beta-estradiol in these cells.  相似文献   

3.
The normal ovarian surface epithelium (OSE) is a primitive epithelium made up by a single layer of mesothelial-type epithelial cells. When these cells get trapped in the ovarian stroma, expression of epithelial specific markers, such as E-cadherin, are induced. Most epithelial cells are also characterized by the ability to form tight junctions (TJ). Incomplete TJ have earlier been demonstrated in the OSE by electron microscopy studies. We have investigated expression and localization of the TJ proteins ZO-1, occludin, and claudin-1 in tissue biopsies from normal human ovaries and OSE in culture. The dynamics of TJ formation were studied in human OSE cultured on porous filters in culture inserts by measuring trans epithelial resistance (TER) including Ca(2+) switch experiments. Confluent OSE cells were also analyzed by electron microscopy. The results show that normal human OSE has expression of all three TJ proteins investigated. These proteins, ZO-1, occludin, and claudin-1, were localized to OSE cell borders both in ovarian biopsies and in cultured OSE. There was no difference in this regard between fertile and postmenopausal women. Cells in culture were polarized and presented junctional complexes seen by electron microscopy. In the Ca(2+) switch experiments, removing free Ca(2+) transiently, TER decreased significantly (P < 0.05) in the Ca(2+)-free group compared with nontreated OSE. TER was fully restored after 24 h. N-cadherin but not E-cadherin was expressed in the OSE and localized to the cell borders. We conclude that normal human OSE express and form functional TJ both in vivo and vitro. This report also describes a method to study the influence of ovarian-derived mediators on TJ in cultured OSE.  相似文献   

4.
Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs) using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ), i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ) transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.  相似文献   

5.
Increased expression of vascular endothelial cell growth factor (VEGF) in the retina is sufficient to stimulate sprouting of neovascularization from the deep capillary bed of the retina, but not the superficial retinal capillaries or the choriocapillaris. Coexpression of VEGF and angiopoietin 2 (Ang2) results in sprouting of neovascularization from superficial and deep retinal capillaries, but not the choriocapillaris. However, retina-derived VEGF and Ang2 may not reach the choriocapillaris, because of tight junctions between retinal pigmented epithelial (RPE) cells. To eliminate this possible confounding factor, we used the human vitelliform macular dystrophy 2 (VMD2) promoter, an RPE-specific promoter, combined with the tetracycline-inducible promoter system, to generate double transgenic mice with inducible expression of VEGF in RPE cells. Adult mice with increased expression of VEGF in RPE cells had normal retinas and choroids with no choroidal neovascularization (CNV), but when increased expression of VEGF in RPE cells was combined with subretinal injection of a gutless adenoviral vector containing an expression construct for Ang2 (AGVAng2), CNV consistently occurred. In contrast, triple transgenic mice with induced expression of Ang2 and VEGF in RPE cells, did not develop CNV. These data suggest that increased expression of VEGF and/or Ang2 in RPE cells is not sufficient to cause CNV unless it is combined with a subretinal injection of a gutless adenoviral vector, which is likely to perturb RPE cells. These data also suggest that the effects of angiogenic proteins may vary among vascular beds, even those that are closely related, and, therefore, generalizations should be avoided.  相似文献   

6.
Multiple signaling mechanisms regulate epithelial cell tight junction (TJ) assembly and maintenance. Several G proteins are likely to regulate these processes, but only G(i/o) have been specifically tested. Treatment of MDCK cells with cholera toxin, a Galpha(s) activator, accelerated TJ development in the calcium switch as measured by the time to half-maximal [T(50) (H)] transepithelial resistance (TER). Galpha(s) was predominantly localized in the lateral membrane, but a fraction colocalizes with ZO-1 in the TJ. MDCK cell lines expressing epitope-tagged Galpha(s) and constitutively active (R201Calpha(s)) showed a similar localization. TJ assembly was significantly faster in R201Calpha(s)-MDCK cell lines (T(50) (H) of 1.7 versus 3.3 h for controls) without detectable differences in cAMP levels. Confocal studies showed R201Calpha(s)-MDCK cells more rapidly localized ZO-1 and occludin into the developing TJ without affecting E-cadherin or Na(+)/K(+) ATPase localization. Endogenous Galpha(s) and R201Calpha(s) were immunoprecipitated with ZO-1 at baseline and during TJ assembly. The data supports a model of multiple Galpha subunits interacting with TJ proteins to regulate the assembly and maintenance of the TJ.  相似文献   

7.
To investigate the effects of all-trans retinoic acid (atRA) on the barrier function in human retinal pigment epithelial cells, ARPE-19 cells were cultured on the filters as monolayer with atRA being added in the apical side. The change of epithelial permeability was observed from the measurement of transepithelial electrical resistance (TER), permeability assay, and Western Blot analysis. We discovered that atRA promoted the epithelial barrier function in vitro, and its bioavailability regulates the epithelial barrier, which is accompanied by altering expression of tight junctions (TJ)-associated proteins. Our study indicates that atRA provides barrier-positive elements to the RPE cell.  相似文献   

8.
Hepatocyte growth factor (HGF) induces mitogenesis, motogenesis, and tubulogenesis of cultured Madin-Darby canine kidney (MDCK) epithelial cells. We report that in addition to these effects HGF stimulates morphogenesis of tight, polarized MDCK cell monolayers into pseudostratified layers without loss of tight junction (TJ) functional integrity. We tested TJ functional integrity during formation of pseudostratified layers. In response to HGF, the TJ marker ZO-1 remained in morphologically complete rings and functional barriers to paracellular diffusion of ruthenium red were maintained in pseudostratified layers. Transepithelial resistance (TER) increased transiently two- to threefold during the morphogenetic transition from monolayers to pseudostratified layers and then declined to baseline levels once pseudostratified layers were formed. In MDCK cells expressing the trk/met chimera, both HGF and NGF at concentrations of 2.5 ng/ml induced scattering. However, 2.5 ng/ml HGF did not affect TER. The peak effect of HGF on TER was at a concentration of 100 ng/ml. In contrast, NGF at concentrations as high as 25 µg/ml had no effect on TER or pseudostratified layer morphogenesis of trk/met-expressing cultures. These results suggest that altered presentation of the stimulus, such as through HGF interaction with low-affinity sites, may change the downstream signaling response. In addition, our results demonstrate that HGF stimulates pseudostratified layer morphogenesis while inducing an increase in TER and maintaining the overall tightness of the epithelial layer. Stimulation of epithelial cell movements by HGF without loss of functional TJs may be important for maintaining epithelial integrity during morphogenetic events such as formation of pseudostratified epithelia, organ regeneration, and tissue repair. c-met protooncogene; transepithelial resistance; Madin-Darby canine kidney cell  相似文献   

9.
This study shows that resealing of opened tight junctions (TJs) is impaired by interaction with oligopeptides homologous to the external domain of chick occludin. The experiments were carried out with confluent A6 cell monolayers grown on collagen supports under stable transepithelial electrical resistance (TER). The monolayers were bathed on the apical side with a 75 mm KCl solution and on the basolateral side by NaCl-Ringer's solution. TJ opening was induced by basolateral Ca2+ removal and was characterized by a marked drop of TER. The reintroduction of Ca2+ triggered junction resealing as indicated by an elevation of TER to control values. Custom-made peptides SNYYGSGLSY (corresponding to the residues 100 to 109) and SNYYGSGLS (residues 100 to 108), homologous to segments of the first external loop of chick occludin molecule, impaired junction resealing when the peptides were included in the apical bathing fluid (concentrations in the range of 0.5 to 1.5 mg/ml). Peptide removal from the apical solution usually triggered a slow recovery of TER, indicating a slow recovery of the TJ seal. Changes in localization of ZO-1, a cytoplasmic protein that underlies the membrane at the TJs, were evaluated immunocytochemically following Ca2+ removal and reintroduction. The presence or absence of the oligopeptides showed no influence on the pattern of change of ZO-1 localization. These observations support the hypothesis that the TJ seal results from the interaction of specific homologous segments of occludin on the surface of adjacent cells. Additionally, our results show that small peptides homologous to segments of the occludin first external loop can be used as specific reagents to manipulate the permeability of tight junctions. Received: 4 December 1998/Revised: 22 January 1999  相似文献   

10.
The blood-brain barrier (BBB) is created by a combination of endothelial cells with tight junctions and astrocytes. One of the key tight junction proteins, zona occludens-1 (ZO-1), has been reported to be stimulated in its expression by insulin and IGF-1. To assess the role of insulin and IGF-1 in endothelial cells in the BBB we have utilized mice with a vascular endothelial cell-specific knockout of the insulin receptor (VENIRKO) and IGF-1 receptor (VENIFARKO). Both of these mice show a normal BBB based on no increase in leakage of Evans blue dye in the brain of these mice basally or after cold injury. Furthermore, the structural integrity of the BBB and blood-retinal barrier (BRB) was intact using the vascular markers lectin B-4 and ZO-1, and both proteins were properly co-localized in both brain and retinal vascular tissue of these mice. These observations indicate that neither insulin nor IGF-1 signaling in vascular endothelial cells is required for development and maintenance of BBB or BRB.  相似文献   

11.
In well polarized epithelial cells, closely related ZO-1 and ZO-2 are thought to function as scaffold proteins at tight junctions (TJs). In epithelial cells at the initial phase of polarization, these proteins are recruited to cadherin-based spotlike adherens junctions (AJs). As a first step to clarify the function of ZO-1, we successfully generated mouse epithelial cell clones lacking ZO-1 expression (ZO-1-/- cells) by homologous recombination. Unexpectedly, in confluent cultures, ZO-1-/- cells were highly polarized with well organized AJs/TJs, which were indistinguishable from those in ZO-1+/+ cells by electron microscopy. In good agreement, by immunofluorescence microscopy, most TJ proteins including claudins and occludin appeared to be normally concentrated at TJs of ZO-1-/- cells with the exception that a ZO-1 deficiency significantly up- or down-regulated the recruitment of ZO-2 and cingulin, another TJ scaffold protein, respectively, to TJs. When the polarization of ZO-1-/- cells was initiated by a Ca2+ switch, the initial AJ formation did not appear to be affected; however, the subsequent TJ formation (recruitment of claudins/occludin to junctions and barrier establishment) was markedly retarded. This retardation as well as the disappearance of cingulin were rescued completely by exogenous ZO-1 but not by ZO-2 expression. Quantitative evaluation of ZO-1/ZO-2 expression levels led to the conclusion that ZO-1 and ZO-2 would function redundantly to some extent in junction formation/epithelial polarization but that they are not functionally identical. Finally, we discussed advantageous aspects of the gene knock-out system with cultured epithelial cells in epithelial cell biology.  相似文献   

12.
Light toxicity is suspected to enhance certain retinal degenerative processes such as age-related macular degeneration. Death of photoreceptors can be induced by their exposure to the visible light, and although cellular processes within photoreceptors have been characterized extensively, the role of the retinal pigment epithelium (RPE) in this model is less well understood. We demonstrate that exposition to intense light causes the immediate breakdown of the outer blood–retinal barrier (BRB). In a molecular level, we observed the slackening of adherens junctions tying up the RPE and massive leakage of albumin into the neural retina. Retinal pigment epithelial cells normally secrete vascular endothelial growth factor (VEGF) at their basolateral side; light damage in contrast leads to VEGF increase on the apical side – that is, in the neuroretina. Blocking VEGF, by means of lentiviral gene transfer to express an anti-VEGF antibody in RPE cells, inhibits outer BRB breakdown and retinal degeneration, as illustrated by functional, behavioral and morphometric analysis. Our data show that exposure to high levels of visible light induces hyperpermeability of the RPE, likely involving VEGF signaling. The resulting retinal edema contributes to irreversible damage to photoreceptors. These data suggest that anti-VEGF compounds are of therapeutic interest when the outer BRB is altered by retinal stresses.  相似文献   

13.
Cerebral microvessel endothelial cells that form the blood-brain barrier (BBB) have tight junctions (TJ) that are critical for maintaining brain homeostasis and low permeability. Both integral (claudin-1 and occludin) and membrane-associated zonula occluden-1 and -2 (ZO-1 and ZO-2) proteins combine to form these TJ complexes that are anchored to the cytoskeletal architecture (actin). Disruptions of the BBB have been attributed to hypoxic conditions that occur with ischemic stroke, pathologies of decreased perfusion, and high-altitude exposure. The effects of hypoxia and posthypoxic reoxygenation in cerebral microvasculature and corresponding cellular mechanisms involved in disrupting the BBB remain unclear. This study examined hypoxia and posthypoxic reoxygenation effects on paracellular permeability and changes in actin and TJ proteins using primary bovine brain microvessel endothelial cells (BBMEC). Hypoxia induced a 2.6-fold increase in [(14)C]sucrose, a marker of paracellular permeability. This effect was significantly reduced (~58%) with posthypoxic reoxygenation. After hypoxia and posthypoxic reoxygenation, actin expression was increased (1.4- and 2.3-fold, respectively). Whereas little change was observed in TJ protein expression immediately after hypoxia, a twofold increase in expression was seen with posthypoxic reoxygenation. Furthermore, immunofluorescence studies showed alterations in occludin, ZO-1, and ZO-2 protein localization during hypoxia and posthypoxic reoxygenation that correlate with the observed changes in BBMEC permeability. The results of this study show hypoxia-induced changes in paracellular permeability may be due to perturbation of TJ complexes and that posthypoxic reoxygenation reverses these effects.  相似文献   

14.
Dysfunction and loss of retinal pigment epithelium (RPE) are major pathologic changes observed in various retinal degenerative diseases such as aged-related macular degeneration. RPE generated from human pluripotent stem cells can be a good candidate for RPE replacement therapy. Here, we show the differentiation of human embryonic stem cells (hESCs) toward RPE with the generation of spherical neural masses (SNMs), which are pure masses of hESCs-derived neural precursors. During the early passaging of SNMs, cystic structures arising from opened neural tube-like structures showed pigmented epithelial morphology. These pigmented cells were differentiated into functional RPE by neuroectodermal induction and mechanical purification. Most of the differentiated cells showed typical RPE morphologies, such as a polygonal-shaped epithelial monolayer, and transmission electron microscopy revealed apical microvilli, pigment granules, and tight junctions. These cells also expressed molecular markers of RPE, including Mitf, ZO-1, RPE65, CRALBP, and bestrophin. The generated RPE also showed phagocytosis of isolated bovine photoreceptor outer segment and secreting pigment epithelium-derived factor and vascular endothelial growth factor. Functional RPE could be generated from SNM in our method. Because SNMs have several advantages, including the capability of expansion for long periods without loss of differentiation capability, easy storage and thawing, and no need for feeder cells, our method for RPE differentiation may be used as an efficient strategy for generating functional RPE cells for retinal regeneration therapy.  相似文献   

15.
16.
Tight junctions (TJ) are multiprotein complexes that function to regulate paracellular transport of molecules through epithelial and endothelial cell layers. Many new tight junction-associated proteins have been identified in the past few years, and their functional roles and interactions have just begun to be elucidated. In this paper, we describe a novel protein LYsine-RIch CEACAM1 co-isolated (LYRIC) that is widely expressed and highly conserved between species. LYRIC has no conserved domains that would indicate function and does not appear to be a member of a larger protein family. Data from analysis of rat and human tissue sections and cell lines show that LYRIC colocalizes with tight junction proteins ZO-1 and occludin in polarized epithelial cells, suggesting that LYRIC is part of the tight junction complex. LYRIC dissociates from ZO-1 when junctional complexes are disrupted, and as tight junctions reform, ZO-1 relocalizes before LYRIC. These results suggest that LYRIC is most likely not a structural component required for TJ formation, but rather is recruited during the maturation of the tight junction complex.  相似文献   

17.
Tight junctions govern the paracellular permeability of endothelial and epithelial cells. Aberrations of tight junction function are an early and key event during the vascular spread of cancer and inflammation. This study sought to determine the role of estrogen in the regulation of tight junctions and expression of molecules making tight junctions in endothelial cells. Human endothelial cell, HECV, which express ER-beta but not ER-alpha was used. 17-beta-estradiol induced a concentration- and time-dependent biphasic effect on tight junction. At 10(-9) and 10(-6) M, it decreased the level of occludin and increased in paracellular permeability of HECV cells, but at 10(-12) M it decreased in paracellular permeability and increased the level of occludin. The transendothelial electrical resistance (TER), however, was reduced by 17-beta-estradiol at lower concentrations (as low as 10(-12) M). Furthermore, the time-dependent biphasic effect was observed over a period of 4 days, with the first reduction of TER seen within 15 min and the second drop occurring 48 h after 17-beta-estradiol treatment. It was further revealed that protein and mRNA levels of occludin, but not claudin-1 and -5, and ZO-1, were reduced by 17-beta-estradiol, in line with changes of TER. This study shows that 17-beta-estradiol can induce concentration- and time-related biphasic effects on tight junction functions expression of occludin in endothelial cells and that this perturbation of tight junction functions may have implications in the etiology of mastalgia and the vascular spread of breast cancer.  相似文献   

18.
Paracellular permeability (PCP) is governed by tight junctions (TJs) in epithelial cells, acting as cell-cell adhesion structures, the aberration of which is known to be linked to the dissociation and metastasis of breast cancer cells. This study hypothesized that the function of TJs in human breast cancer cells can be augmented by gamma linolenic acid (GLA), selenium (Se), and iodine (I) in the presence of 17-beta-estradiol, as these molecules are known to increase TJ functions in endothelial cells, using assays of trans-epithelial resistance (TER), PCP, immunofluorescence, and in vitro invasion and motility models. GLA, I, and Se individually increased TER of MDA-MB-231 and MCF-7 human breast cancer cells. The combination of all three agents also had a significant increase in TER. Addition of GLA/Se/I reduced PCP of both breast cancer cell lines. GLA/Se/I reversed the effect of 17-beta-estradiol (reduced TER, increased PCP). Immunofluorescence revealed that after treatment with Se/I/GLA over 24 h, there was increasing relocation to breast cancer cell-cell junctions of occludin and ZO-1 in MCF-7 cells. Moreover, treatment with GLA/Se/I, alone or in combination, significantly reduced in vitro invasion of MDA-MB-231 cells through an endothelial cell barrier (P < 0.0001) and reduced 17-beta-estradiol induced breast cancer cell motility (P < 0.0001). Our previous work has demonstrated that GLA, I, and Se alone, or in combination are able to strengthen the function of TJs in human endothelial cells; this has now proved to be true of human breast cancer cells. This combination also completely reversed the effect of 17-beta-estradiol in these cells.  相似文献   

19.
HIF-1α is known to play an important role in the induction of VEGF by hypoxia in retinal pigment epithelial (RPE) cells. However, the involvement of the other isoform, HIF-2α, in RPE cells remains unclear. Thus, the purpose of present study was to clarify the role of HIF-2α during induction of angiogenic genes in hypoxic RPE cells. When human RPE cells (ARPE-19) were cultured under hypoxic conditions, HIF-1α and HIF-2α proteins increased. This induced an increase in mRNA for VEGF, causing secretion of VEGF protein into the medium. This conditioned medium induced tube formation in human vascular endothelial cells (HUVEC). The increased expression of mRNA for VEGF in hypoxic RPE cells was partially inhibited by HIF-1α siRNA, but not by HIF-2α siRNA. However, co-transfection of HIF-1α siRNA and HIF-2α siRNA augmented downregulation of VEGF mRNA and protein in hypoxic RPE cells and inhibited formation of tube-like structures in HUVEC. GeneChip and PCR array analyses revealed that not only VEGF, but also expression of other angiogenic genes were synergistically downregulated by co-transfection of hypoxic RPE cells with HIF-1α and HIF-2α siRNAs. These findings suggest an important compensatory role for the HIF-2α isoform in the regulation of angiogenic gene expression. Thus, suppression of angiogenic genes for HIF-1α and HIF-2α may be a possible therapeutic strategy against retinal angiogenesis in Age-related macular degeneration (ARMD).  相似文献   

20.
Cingulin, a protein component of the submembrane plaque of tight junctions (TJ), contains globular and coiled-coil domains and interacts in vitro with several TJ and cytoskeletal proteins, including the PDZ protein ZO-1. Overexpression of Xenopus cingulin in transfected Xenopus A6 cells resulted in the disruption of endogenous ZO-1 localization, suggesting that cingulin functionally interacts with ZO-1. Glutathione S-transferase pull-down experiments showed that a conserved ZO-1 interaction motif (ZIM) at the NH(2) terminus of cingulin is required for cingulin-ZO-1 interaction in vitro. An NH(2)-terminal region of cingulin, containing the ZIM, was sufficient, when fused to coiled-coil sequences, to target transfected cingulin to junctions. However, deletion of the ZIM did not abolish junctional localization of transfected cingulin in A6 cells, suggesting that cingulin can be recruited to TJ through multiple protein interactions. Interestingly, the ZIM was required for cingulin recruitment into ZO-1-containing adherens junctions of Rat-1 fibroblasts, indicating that cingulin junctional recruitment does not require the molecular context of TJ. Cingulin coiled-coil sequences enhanced the junctional accumulation of expressed cingulin head region in A6 cells, but purified recombinant cingulin did not form filaments under physiological conditions in vitro, suggesting that the cingulin coiled-coil domain acts primarily by promoting dimerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号