首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In continuation of our work on N-(piperidin-4-yl)-naphthamides, the effect of substituted benzyl groups on D(2L), D(4.2), and 5-HT(2A) receptor affinity was evaluated. In the 1-naphthamide series most compounds were highly selective for D(4.2) over D(2L) and 5-HT(2A) receptors. Halogen and methyl substitution in position 3 or 4 of the benzyl group increased D(4.2) affinity. In the 2-naphthamide series a similar high D(4.2) over D(2L) selectivity was retained while 5-HT(2A) affinity was increased. 3-Methoxy, 3-methyl, and 4-methyl substituents were favorable for D(4.2) affinity while halogens reduced affinity. 2-Naphthamides with a 3-bromo- or a 3-methyl group were mixed D(4.2)/5-HT(2A) ligands similar to their unsubstituted parent compound. All compounds from both series with significant affinity for D(4.2) and 5-HT(2A) receptors were antagonists.  相似文献   

2.
Two series of arylpiperazinyl-alkyl quinoline-, isoquinoline-, naphthalene-sulfonamides with flexible (13-26) and semi-rigid (33-36) alkylene spacer were synthesized and evaluated for 5-HT(1A), 5-HT(2A), 5-HT(6), 5-HT(7) and selected compounds for D(2), D(3), D(4) receptors. The compounds with a mixed 5-HT and D receptors profile 16 (N-{4-[4-(3-chlorophenyl)-piperazin-1-yl]-butyl}-3-quinolinesulfonamide) and 36 (4-(4-{2-[4-(4-chloro-phenyl)-piperazin-1-yl]-ethyl}-piperidine-1-sulfonyl)-isoquinoline), displaying antagonistic activity at 5-HT(7), 5-HT(2A), D(2) postsynaptic sites, produced antidepressant-like effects in the forced swim test in mice and showed significant anxiolytic activity in the plus-maze test in rats. The lead compound 36, a multi-receptor 5-HT(2A)/5-HT(7)/D(2)/D(3)/D(4) agent, also displayed significant antipsychotic properties in the MK-801-induced hyperlocomotor activity in mice.  相似文献   

3.
A series of N-[(3S)-1-benzylpyrrolidin-3-yl]-(2-thienyl)benzamides 8 has been prepared and found to bind with high affinity to the human D(4) (hD(4)) and 5-HT(2A) receptors. Several compounds displayed selectivity for these receptors versus hD(2) and alpha(1) adrenergic receptors of over 500-fold.  相似文献   

4.
A series of N-(2-methoxyphenyl)piperazine and N-(2,3-dichlorophenyl)piperazine analogs were prepared and their affinities for dopamine D(2), D(3), and D(4) receptors were measured in vitro. Binding studies were also conducted to determine if the compounds bound to sigma (sigma(1) and sigma(2)) and serotonin (5-HT(1A), 5-HT(2A), 5-HT(2B), 5-HT(2C), 5-HT(3), 5-HT(4), 5-HT(5), 5-HT(6), and 5-HT(7)) receptors. The results of the current study revealed a number of compounds (12b, 12c, 12e, and 12g) having a high affinity for D(3) (K(i) at D(3) receptors ranging from 0.3 to 0.9 nM) versus D(2) (K(i) at D(2) receptors ranging from 40 to 53 nM) receptors and a log P value indicating that they should readily cross the blood brain barrier (log P = 2.6-3.5). All of the compounds evaluated in this study had a high affinity for serotonin 5-HT(1A) receptors. These compounds may be useful as probes for studying the behavioral pharmacology of the dopamine D(3) receptor, as well as lead compounds for the development of radiotracers for studying D(3) receptor regulation in vivo with the functional imaging technique, positron emission tomography.  相似文献   

5.
A series of novel long-chain arylpiperazines bearing a coumarin fragment was synthesized and the compounds were evaluated for their affinity at alpha(1), D(2 )and 5-HT(2A) receptors. Most of the new compounds showed high affinity for the three types of receptors alpha(1A), D(2) and 5-HT(2A) which depends, fundamentally, on the substitution of the N(4) of the piperazine ring. From the series emerged compound 6, which had an haloperidol-like profile at D(2) and 5HT(2A) receptors (pK(i) values of 7.93 and 6.76 respectively). The higher alpha(1A) receptor affinity (pA(2)=9.07) of this compound could contribute to a more atypical antipsychotic profile than the haloperidol.  相似文献   

6.
Several structural analogues of 5-methoxy-2-[N-(2-benzamidoethyl)-N-n-propylamino]tetralin (5-OMe-BPAT, 1), a representative of a series of 2-aminotetralin-derived benzamides with potential atypical antipsychotic properties, were synthesized and evaluated for their ability to bind to dopamine D2A, D3, and serotonin 5-HT1A receptors in vitro. The structure affinity relationships revealed that the aromatic ring of the benzamide moiety of 1 contributes to the high affinities for all three receptor subtypes. Furthermore, 1 may interact with the dopamine D2 and D3 receptors through hydrogen bond formation with its carbonyl group. Investigation of the role of the amide hydrogen atom by amide N-alkylation was not conclusive, since conformational aspects may be responsible for the decreased dopaminergic affinities of the N'-alkylated analogues of 1. The effects of the amide modifications on the serotonin 5-HT1A receptor affinity were less pronounced, suggesting that the benzamidoethyl side-chain of 1 as a whole enhances the affinity for this receptor subtype probably through hydrophobic interactions with an accessory binding site. The structural requirements for the substituents at the basic nitrogen atom supported the hypothesis that the 2-aminotetralin moieties of the 2-aminotetralin-derived substituted benzamides may share the same binding sites as the 2-(N,N-di-n-propylamino)tetralins.  相似文献   

7.
In the present paper, we report the synthesis and the binding profiles on 5-HT1A, D2, and alpha1 receptors of 1-substituted-4-[3-(5- or 7-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine derivatives 19-32 and some related heteroalkyl derivatives 33-35. The results obtained are compared to those previously reported for the 1-phenyl, 1-(2-methoxyphenyl), 1-(2-pyridyl) analogues 2-9. The results pointed out the critical role of the group linked in the N-1 position of the piperazine in terms of 5-HT1A binding affinity. In fact, 1-cyclohexyl, 1-(3-benzisoxazolyl), 1-(benzothiazole-2-carbonyl), 1-(2-benzothiazolyl), 1-(2-quinolyl) substituted piperazines 21-30 displayed moderate or low 5-HT1A receptor affinity; on the contrary, 1-(3-benzisothiazolyl) and 1-(1-naphthalenyl) substituted piperazines 19, 20 and 32 displayed high 5-HT1A receptor affinity, the Ki values being in the subnanomolar range. Furthermore, compounds 19, 20 and 32 demonstrated better selectivity over alpha1 receptors than the reference compounds 2-9.  相似文献   

8.
A novel (4,5-dihydroimidazol-2-yl)-biphenylamine series of 5-HT(7) agonist compounds was developed from a structurally related lead compound 1. The newly discovered series is exemplified by compound 2 that possesses high affinity for 5-HT(7) receptors and shows intrinsic agonist activity in functional assays. This new series has significant alpha(1) and alpha(2) activities perhaps due to the presence of the 2-aminoimidazoline moiety.  相似文献   

9.
It is suggested that the ratio of dopamine D(2) to 5-hydroxytryptamine 5-HT(1A) activity is an important parameter that determines the efficiency of antipsychotic drugs. Here we present the synthesis of N-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-2-aryl-2-yl-acetamides and 1-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-3-aryl-2-yl-ureas and their structure-activity relationship studies on dopamine D(2) and 5-hydrohytryptamine 5-HT(1A) receptors. It was shown that ligand selectivity and affinity strongly depends on their topology and the presence of a pyridyl group in the head of molecules. Molecular modeling studies using homology modeling and docking simulation revealed a rational explanation for the ligand behavior. The observed binding modes and receptor-ligand interactions provided us with a clue for optimizing the optimal selectivity towards 5-HT(1A) receptors.  相似文献   

10.
A new class of selective alpha(1) adrenoceptor antagonists derived from the antipsychotic drug sertindole is described. The most potent and selective compound 1-(2-(4-[5-aminomethyl-1-(4-fluorophenyl)-1H-indol-3-yl]-1-piperidinyl)ethyl)-2-imidazolidinone (11) binds with 0.50 nM affinity for alpha(1) adrenergic receptors and with more than 44 times lower affinity for dopamine D(2),D(3), D(4) and serotonin 5-HT(1A), 5-HT(1B), 5-HT(2A) and 5-HT(2C) receptors. The molecular features providing high affinity for adrenergic alpha(1) receptors and high selectivity towards dopamine D(2) and serotonin 5-HT(2A) and 5-HT(2C) receptors are discussed.  相似文献   

11.
A new series of 1,4-benzoxazepine derivatives was designed, synthesized, and evaluated for binding to 5-HT1A receptor and cerebral anti-ischemic effect. A lot of compounds exhibited nanomolar affinity for 5-HT1A receptor with good selectivity over both dopamine D2 and alpha1-adrenergic receptors. Among these compounds, 3-chloro-4-[4-[4-(2-pyridinyl)-1,2,3,6-tetrahydropyridin-1-yl]butyl]-1, 4-benzoxazepin-5(4H)-one (50: SUN N4057 (Piclozotan) as 2HCl salt) showed remarkable neuroprotective activity in a transient middle cerebral artery occlusion (t-MCAO) model.  相似文献   

12.
A series of new N-substituted 2,3-dihydro-2-aminomethyl-2H-1-benzofuran derivatives was prepared and evaluated for affinity at 5-HT1A, 5-HT2A, 5-HT2C, 5-HT3, D2, and D3 receptors. Compound 9, 8-[4-[N-propyl-N-(7-hydroxy-2,3-dihydro -2H-1-benzofuran-2-yl)methyl]aminobutyl]-8-azaspiro[4,5]decane-7,9 -dione, bound at 5-HT1A sites with nanomolar affinity (IC50= 1.5 nM) and high selectivity over 5-HT2A, 5-HT2C, 5-HT3, D2, and D3 receptors.  相似文献   

13.
Starting with the structure of potent 5-HT(1A) ligands, that is, MM77 [1-(2-methoxyphenyl)-4-(4-succinimidobutyl)piperazine, 4] and its constrained version 5 (MP349), previously obtained in our laboratory, a series of their direct analogues with differently substituted aromatic ring (R=H, m-Cl, m-CF(3), m-OCH(3), p-OCH(3)) were synthesized. The flexible and the corresponding 1e,4e-disubstituted cyclohexane derivatives were designed in order to investigate the influence of rigidification on 5-HT(1A) affinity, selectivity for 5-HT(2A), 5-HT(7), D(1), and D(2) binding sites and functional profile at pre- and postsynaptic 5-HT(1A) receptors. The new compounds 19-25 were found to be highly active 5-HT(1A) receptor ligands (K(i)=4-44 nM) whereas their affinity for other receptors was: either significantly decreased after rigidification (5-HT(7)), or controlled by substituents in the aromatic ring (alpha(1)), or influenced by both those structural modifications (5-HT(2A)), or very low (D(2), K(i)=5.3-31 microM). Since a distinct disfavor towards rigid compounds was observed for 5-HT(7) receptors only, it seems that the bioactive conformation of chain derivatives at those sites should differ from the extended one. Several in vivo models were used to asses functional activity of 19-25 at pre- (hypothermia in mice) and postsynaptic 5-HT(1A) receptors (lower lip retraction in rats and serotonin syndrome in reserpinized rats). Unlike the parent antagonists 4 and 5, all the new derivatives tested were classified as partial agonists with different potency, however, similar effects were observed within pairs (flexible and rigid) of the analogues. The obtained results indicated that substitution in the aromatic ring, but not spacer rigidification, controls the 5-HT(1A) functional activity of the investigated compounds. Moreover, an o-methoxy substituent in the structure of 5 seems to be necessary for its full antagonistic properties. Of all the new compounds studied, trans-4-(4-succinimidocyclohexyl)-1-(3-trifluoromethylphenyl)piperazine 24 was the most potent 5-HT(1A) receptor ligand in vitro (K(i)=4 nM) and in vivo, with at least 100-fold selectivity for the other receptors tested.  相似文献   

14.
The selectivity for 5-HT(1A) versus D(4) receptors is significantly increased when the basic side chain of WAY-100635 is replaced by a 4-phenylpiperazine (3e) or a 4-phenyl-1,2,3,6-tetrahydropyridine moiety (3i). The 4-phenyl-1,2,3,6-tetrahydropyridine compounds (3i-l) have a higher affinity for 5-HT(1A) receptors than do the corresponding unsubstituted phenylpiperazine analogues (3e-h). Compounds 3e and 3i appear to be selective for 5-HT(1A) receptors over other relevant receptors and still behave as neutral antagonists.  相似文献   

15.
Six active compounds, among previously synthesized and screened arylpiperazines, were selected and evaluated for the binding affinity to rat dopamine, serotonin and alpha(1) receptors. Two compounds with benztriazole group had a 5-HT(2A)/D(2) binding ratio characteristic for atypical neuroleptics (>1, pK(i) values). Compound 2, 5-[2-[4-(2,3-dimethyl-phenyl)-piperazin-1-yl]ethyl]1H-benzotriazole, expressed clozapine-like in vitro binding profile at D(2), 5-HT(2A) and alpha 1 receptors and a higher affinity for 5-HT(1A) receptors than clozapine. Also, it exhibited the noncataleptic behavioural pattern of atypical antipsychotics and antagonized d-amphetamine-induced hyperlocomotion in rats.  相似文献   

16.
A series of 2-(5-bromo-2,3-dimethoxyphenyl)-5-(aminomethyl)-1H-pyrrole analogues was prepared and their affinity for dopamine D(2), D(3), and D(4) receptors was measured using in vitro binding assays. The results of receptor binding studies indicated that the incorporation of a pyrrole moiety between the phenyl ring and the basic nitrogen resulted in a significant increase in the selectivity for dopamine D(3) receptors. The most selective compound in this series is 2-(5-bromo-2,3-dimethoxyphenyl)-5-(2-(3-pyridal)piperidinyl)methyl-1H-pyrrole (6p), which has a D(3) receptor affinity of 4.3 nM, a 20-fold selectivity for D(3) versus D(2) receptors, and a 300-fold selectivity for D(3) versus D(4) receptors. This compound is predicted to be a useful ligand for studying the functional role of dopamine D(3) receptors in vivo.  相似文献   

17.
A series of carboxamide and sulphonamide alkyl(ethyl to hexyl)piperazine analogues were prepared and tested for their affinity to bind to a range of receptors potentially involved in psychiatric disorders. These chemical modifications led us to explore the impact of homology and bioisosteric replacement of the amide group. All of these compounds possessed a high affinity for 5-HT1A receptors, irrespective of the size of the linker, the carboxamide derivative with a pentyl linker had the highest affinity for α2A receptor sites and also a high affinity for 5-HT1A and D3 receptors. The sulphonamide analogue with a hexyl linker possessed a high affinity for 5-HT1A, D4.2 and D3 receptors.  相似文献   

18.
Novel arylpiperazines with N-acylated amino acids, selected on the basis of a preliminary screening of two libraries previously synthesized on SynPhase Lanterns, were prepared in solution and their affinity for 5-HT(1A), 5-HT(2A), and D(2) receptors was evaluated. The compounds bearing (3-acylamino)pyrrolidine-2,5-dione (19-26) and N-acylprolinamide (29-34) moieties showed high affinity for 5-HT(1A) (K(i)=3-47 nM), high-to-low for 5-HT(2A) (K(i)=4.2-990 nM), and low for D(2) receptors (K(i)=0.77-21.19 microM). All the new o-methoxy derivatives of (3-acylamino)pyrrolidine-2,5-diones tested in vivo revealed agonistic activity at postsynaptic 5-HT(1A) receptors, while m-chloro derivatives were classified as antagonists of these sites; similar relations were observed for o-methoxy (29) and m-chlorophenylpiperazine derivatives of N-acylprolinamides. The reported results show that the amino acid-derived terminal fragment modified the in vivo functional profile. Finally, the selected compounds 19 and 20, a 5-HT(1A) partial agonist and a full agonist, respectively, and 26, a mixed 5-HT(1A)/5-HT(2A) antagonist, were evaluated in preclinical animal models of depression and anxiety. The project allowed selecting the lead compound 20 which exhibited an anxiolytic-like effect in the four-plate test in mice and revealed distinct antidepressant-like effects in the forced swimming and tail suspension tests in mice.  相似文献   

19.
A series of new piperidinyl- and 1,2,3,6-tetrahydropyridinyl-pyrimidine derivatives were synthesized. Among these compounds, 4-methyl-2-(1,2,3,6-tetrahydropyridin-4-yl)pyrimidine derivative 23 (SUN N5147) exhibited sub-nanomolar affinity for 5-HT1A receptor with 1000-fold selectivity over both dopamine D2 and alpha1-adrenergic receptors and remarkable neuroprotective activity in a transient middle cerebral artery occlusion (t-MCAO) model.  相似文献   

20.
NRA0160, 5 - [2- ( 4- ( 3 - fluorobenzylidene) piperidin-1-yl) ethyl] - 4 -(4-fluorophenyl) thiazole-2-carboxamide, has a high affinity for human cloned dopamine D4.2, D4.4 and D4.7 receptors, with Ki values of 0.5, 0.9 and 2.7 nM, respectively. NRA0160 is over 20,000fold more potent at the dopamine D4.2 receptor compared with the human cloned dopamine D2L receptor. NRA0160 has negligible affinity for the human cloned dopamine D3 receptor (Ki=39 nM), rat serotonin (5-HT)2A receptors (Ki=180 nM) and rat alpha1 adrenoceptor (Ki=237 nM). NRA0160 and clozapine antagonized locomotor hyperactivity induced by methamphetamine (MAP) in mice. NRA0160 and clozapine antagonized MAP-induced stereotyped behavior in mice, although their effects did not exceed 50% inhibition, even at the highest dose given. NRA0160 and clozapine significantly induced catalepsy in rats, although their effects did not exceed 50% induction even at the highest dose given. NRA0160 and clozapine significantly reversed the disruption of prepulse inhibition (PPI) in rats produced by apomorphine. NRA0160 and clozapine significantly shortened the phencyclidine (PCP)-induced prolonged swimming latency in rats in a water maze task. These findings suggest that NRA0160 may have unique antipsychotic activities without the liability of motor side effects typical of classical antipsychotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号