首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In anuran tadpole tails, the myelinated motor nerve fibers branch in the myoseptum to innervate both red and white muscle fibers at, or near, their ends. There are no significant ultrastructural differences between the nerve endings of the two types of muscle fibers.Intense acetylcholinesterase reaction product was observed in synaptic clefts and junctional folds, as well as in transverse tubules. As metamorphosis proceeded, the junctional folds of the nerve endings disappeared, however, acetylcholinesterase reaction product was still observed in the synaptic clefts. As muscle fibers began to degenerate, nerve endings began to separate from them. However, after nerve endings were completely separated from the surfaces, degenerated muscle fibers, synaptic and cored vesicles were still well preserved although no acetylcholinesterase reaction product was found. It seems clear that the mechanism of the muscle degeneration in the tadpole tail during metamorphosis is not the result of the degeneration of its nerve endings.  相似文献   

2.
Transganglionic degeneration was used in an electron microscopic study of afferent synaptic contacts in the dorsomedial region of the pars interpolaris of rats. In one experiment, the left inferior alveolar nerve was transected and in the other, partial pulpectomy of the first and second left lower molars was performed. Well defined degenerating terminals, almost completely occupied by round synaptic vesicle profiles were found in both ipsi and contralateral sides. In both experiments, approximately 70% of these terminals formed single asymmetric contacts with intermediate or distal dendritic segments. Fewer contacts were observed with proximal dendritic segments, dendritic spines, perikarya and other terminals. In addition, double and multiple synaptic contacts (synaptic glomeruli), accounting for 10% of the total, were also observed. Quantitative data regarding ultrastructural synaptic elements suggest that there is no preference for post-synaptic sites of fibers related to different sensory modalities such as pain, conveyed by dental fibers or other modalities, conveyed by the inferior alveolar nerve fibers.  相似文献   

3.
In experiments on rabbits anesthetized with urethane, we recorded spontaneous sympathetic activity of single nerve fibers. The activity was recorded from fine filaments dissected from the cervical sympathetic nerve trunk (CSNT). Conduction velocities in CSNT fibers and action-potential amplitude of single B-fibers were measured during recording of whole nerve trunk. Spectral analysis of the activity recorded was carried out. It was shown that unmyelinated CSNT fibers are under stronger baroreceptor control than myelinated fibers. Also, a periodic component of 2–3 Hz, noted by a number of authors after denervation of baroreceptors, was detected in intact animals along with a rhythm at the pulse rate. This component was found equally often in the activity of B- and C-fibers. Cross-correlation analysis of the simultaneously recorded activities of 24 pairs of CSNT single fibers was carried out. A correlation due to synchronization of the activities of pairs of fibers with a physiological rhythm (respiration, pulse) was found in five pairs. The correlation in one pair suggests the presence of a common excitatory synaptic input into two distinct preganglionic neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 3, pp. 259–266, May–June, 1991.  相似文献   

4.
The response of leaky integrate-and-fire neurons is analyzed for periodic inputs whose phases vary with their spatial location. The model gives the relationship between the spatial summation distance and the degree of phase locking of the output spikes (i.e., locking to the periodic stochastic inputs, measured by the synchronization index). The synaptic inputs are modeled as an inhomogeneous Poisson process, and the analysis is carried out in the Gaussian approximation. The model has been applied to globular bushy cells of the cochlear nucleus, which receive converging inputs from auditory nerve fibers that originate at neighboring sites in the cochlea. The model elucidates the roles played by spatial summation and coincidence detection, showing how synchronization decreases with an increase in both frequency and spatial spread of inputs. It also shows under what conditions an enhancement of synchronization of the output relative to the input takes place.  相似文献   

5.
Experiments in visual cortex have shown that the firing rate of a neuron in response to the simultaneous presentation of a preferred and non-preferred stimulus within the receptive field is intermediate between that for the two stimuli alone (stimulus competition). Attention directed to one of the stimuli drives the response towards the response induced by the attended stimulus alone (selective attention). This study shows that a simple feedforward model with fixed synaptic conductance values can reproduce these two phenomena using synchronization in the gamma-frequency range to increase the effective synaptic gain for the responses to the attended stimulus. The performance of the model is robust to changes in the parameter values. The model predicts that the phase locking between presynaptic input and output spikes increases with attention.  相似文献   

6.
本文根据容积导体中有关动作电位的电生理理论,用三点源模型模拟单根纤维动作电位(SFAP),并假设神经束的复合动作电位(CAP)是由SFAP线性叠加而成,给出了神经束CAP的模型.通过运用上述模型,计算了正常人正中神经纤维传导速度分布,分析了刺激腕部正中神经引导的传感诱发电位(SEP)的N~-_9成分;另外,还得出一些描述此外周传导通路性质的其它参数,如平均传导速度、神经纤维活动最可几传速度分布范围等.此方法可用来研究其它各种外围诱发电位.  相似文献   

7.
研究采用ABC免疫组化方法及电镜观察发现;豚鼠胆囊含有SP免疫反应的神经元,神经纤维及肥大细胞,这些神经纤维束是被神经膜细胞完全或不完全包裹的无髓神经纤维。其神经纤维内含有的突触小泡形态大小不一。电镜下分可为3种类型;(1)以小型无芯小泡为主以及少量大型有芯小泡。(2)以小型有芯小泡为主以及少量无芯小泡和大型有芯小泡。(3)以大型有芯小泡为主以及少量小型无芯小泡。用SP免疫电镜组化方法观察。豚鼠胆囊的SP免疫反应阳性神经纤维内散在分布的突触小泡多为第3种。但在血管,淋巴管周围SP免疫反应阳性神经纤维内的突触小泡多为小型有芯小泡,胆囊除了受肾上腺素能神经支配外,尚受SP等肽能神经的支配。本研究对豚鼠胆囊SP免疫组织化学反应阳性神经纤维分布特点及神经纤维内突触小泡的超微结构特点进行了研究。  相似文献   

8.
Individual nerves of the superior cervical sympathetic ganglion were stimulated in acute experiments on cats, and action potentials (AP) were recorded from other nerves of the ganglion in order to clarify whether or not there is transmission of excitation through the ganglion from one nerve to another and to establish whether this transmission is continuous or synaptic. The method of intracellular recording from neurons of the ganglion was also used. It is established that stimulation of the cervical sympathetic nerve evokes AP in all of the peripheral nerves of the ganglion, a circumstance that is the result of synaptic transmission of excitation. There is no transmission of excitation in the reverse direction or between any of the 12 peripheral nerves of the ganglion (including the four branches of the internal carotid nerve). Orthodromic excitation is recorded intracellularly from neurons of the ganglion during stimulation of the cervical sympathetic nerve, and antidromic excitation is recorded during stimulation of a peripheral nerve (the internal carotid nerve). It follows that the pathways through the ganglion which conduct excitation from the cervical sympathetic nerve into all of the remaining nerves of the ganglion are synaptic. Analysis of EPSP latent periods indicated that preganglionic fibers that differ sharply with respect to threshold and conduction rate (groups S2 and S4) converge on one and the same neurons of the ganglion.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 2, pp. 216–224, March–April, 1970.  相似文献   

9.
The compound action potential arising in response to supramaximal stimulation of Aδ- or C-fibers of a cat cutaneous nerve (the saphenous nerve) was investigated by methods improving the signal/noise ratio in the record of the unit evoked response. By the use of optical and computer (BÉSM-3M) methods of coherent signal accumulation followed by averaging, potentials of nerve fibers ranging in amplitude from 20 to 0.05 µV and in duration from 10 to 0.4 msec were distinguished from the apparatus noise. A continuous distribution of nerve fibers by conduction velocity was found over the range from 80 to 0.15 m/sec. The conditions of appearance of low-amplitude action potentials of nerve fibers with a low conduction velocity are discussed.  相似文献   

10.
Microarray analysis of gene expression during the yeast division cycle has led to the proposal that a significant number of genes in Saccharomyces cerevisiae are expressed in a cell-cycle-specific manner. Four different methods of synchronization were used for cell-cycle analysis. Randomized data exhibit periodic patterns of lesser strength than the experimental data. Thus the cyclicities in the expression measurements in the four experiments presented do not arise from chance fluctuations or noise in the data. However, when the degree of cyclicity for genes in different experiments are compared, a large degree of non-reproducibility is found. Re-examining the phase timing of peak expression, we find that three of the experiments (those using α-factor, CDC28 and CDC15 synchronization) show consistent patterns of phasing, but the elutriation synchrony results demonstrate a different pattern from the other arrest-release synchronization methods. Specific genes can show a wide range of cyclical behavior between different experiments; a gene with high cyclicity in one experiment can show essentially no cyclicity in another experiment. The elutriation experiment, possibly being the least perturbing of the four synchronization methods, may give the most accurate characterization of the state of gene expression during the normal, unperturbed cell cycle. Under this alternative explanation, the observed cyclicities in the other three experiments are a stress response to synchronization, and may not reproduce in unperturbed cells.  相似文献   

11.
12.
The connectives above and below the second thoracic ganglion and nerves to and from the mesothoracic leg were severed in Periplaneta americana. Isolated ganglia and severed nerve cord were examined in the electron microscope. In the connectives, sheaths of degenerating fibers remain continuous but become thicker and more dense. There is increase in number and more haphazard disposition of the neuroglial processes which ensheath the axons. The cytoplasm contains vacuoles. Dense droplets normally intercalated between the layers of neuroglial processes ensheathing the axons are strikingly increased in number. The axoplasm with its organelles forms dense clumps. Mitochondria in axons are enlarged, the intramitochondrial matrix is more dense, and the internal folds are disorganized. In ganglia, mitochondrial changes in terminal parts of the axons appear similar to those described in the parent axons in the connective. The synaptic portions of nerve fibers appear very dense. Alterations of the sheath are minimal. Synaptic particles in the degenerating axoplasmic coagulum undergo only slight morphological changes and are still present up to 6 days after severance of their nerve fibers. It is difficult to assess whether there are any alterations in the total number of synaptic particles during degeneration.  相似文献   

13.
 Some synapses between cortical pyramidal neurons exhibit a rapid depression of excitatory postsynaptic potentials for successive presynaptic spikes. Since depressing synapses do not transmit information on sustained presynaptic firing rates, it has been speculated that they are favorable for temporal coding. In this paper, we study the dynamical effects of depressing synapses on stimulus-induced transient synchronization in a simple network of inhibitory interneurons and excitatory neurons, assuming that the recurrent excitation is mediated by depressing synapses. This synchronization occurs in a temporal pattern which depends on a given stimulus. Since the presence of noise is always a potential hazard in temporal coding, we investigate the extent to which noise in stimuli influences the synchronization phenomena. It is demonstrated that depressing synapses greatly contribute to suppressing the influences of noise on the stimulus-specific temporal patterns of synchronous firing. The timing-based Hebbian learning revealed by physiological experiments is shown to stabilize the temporal patterns in cooperation with synaptic depression. Thus, the times at which synchronous firing occurs provides a reliable information representation in the presence of synaptic depression. Received: 5 July 2000 / Accepted in revised form: 12 January 2001  相似文献   

14.
In this study we have examined the sensitivity of auditory nerve fibers in the bullfrog (Rana catesbeiana) to changes in the phase spectrum of an equal-amplitude multi-harmonic stimulus which spanned the bullfrog's range of hearing. To assess peripheral auditory phase sensitivity, changes in the response properties of VIIIth nerve fibers were measured when the relative phase angle of a single harmonic component nearest a unit's best excitatory frequency was systematically varied. The results revealed that shifts in the phase spectrum are encoded in at least J different ways by the peripheral auditory system of the bullfrog: 1) by changes in the degree of spike synchronization of fibers from both inner ear organs (the amphibian papilla and the basilar papilla) to the fundamental waveform period; 2) by changes in the shapes of period histograms of fibers from both organs; and 3) by changes in the spike rates of amphibian papilla fibers. The presence of phase sensitivity in the peripheral auditory system of the bullfrog indicates that information regarding the fine-temporal waveshape and the underlying phase spectrum of an acoustic signal is contained within the spike trains of VIIIth nerve fibers. Similar sensitivities to changes in the phase spectra and temporal waveshapes of acoustic signals may also be present in the peripheral auditory system of other vertebrates. Such studies could provide valuable insight into the role that phase spectra and temporal waveshape may play in bioacoustic communication.Abbreviations BEF best excitatory frequency - BEC best excitatory component - CSf 1 synchronization to the fundamental period Portions of this study have been summarized in abstract form (Bodnar and Capranica 1991)  相似文献   

15.
This paper shows the results of computer simulation of changes in motoneuron (MN) firing evoked by a repetitively applied synaptic volley that consists of a single excitatory postsynaptic potential (EPSP). Spike trains produced by the threshold-crossing MN model were analyzed as experimental results. Various output functions were applied for analysis; the most useful was a peristimulus time histogram, a special modification of a raster plot and a peristimulus time frequencygram (PSTF). It has been shown that all functions complement each other in distinguishing between the genuine results evoked by the excitatory volley and the secondary results of the EPSP-evoked synchronization. The EPSP rising edge was best reproduced by the PSTF. However, whereas the EPSP rise time could be estimated quite accurately, especially for high EPSP amplitudes at high MN firing rates, the EPSP amplitude estimate was also influenced by factors unrelated to the synaptic volley, such as the afterhyperpolarization duration of the MN or the amplitude of synaptic noise, which cannot be directly assessed in human experiments. Thus, the attempts to scale any estimate of the EPSP amplitude in millivolts appear to be useless. The decaying phase of the EPSP cannot be reproduced accurately by any of the functions. For the short EPSPs, it is extinguished by the generation of an action potential and a subsequent decrease in the MN excitability. For longer EPSPs, it is inseparable from the secondary effects of synchronization. Thus, the methods aimed at extracting information about long-lasting and complex postsynaptic potentials from stimulus-correlated MN firing, should be refined, and the theoretical considerations checked in computer simulations.  相似文献   

16.
Epilepsy involves a diverse group of abnormalities, including molecular and cellular disorders. These abnormalities prove to be associated with the changes in local excitability and synaptic dynamics. Correspondingly, the epileptic processes including onset, propagation and generalized seizure may be related with the alterations of excitability and synapse. In this paper, three regions, epileptogenic zone (EZ), propagation area and normal region, were defined and represented by neuronal population model with heterogeneous excitability, respectively. In order to describe the synaptic behavior that the strength was enhanced and maintained at a high level for a short term under a high frequency spike train, a novel activity-dependent short-term plasticity model was proposed. Bifurcation analysis showed that the presence of hyperexcitability could increase the seizure susceptibility of local area, leading to epileptic discharges first seen in the EZ. Meanwhile, recurrent epileptic activities might result in the transition of synaptic strength from weak state to high level, augmenting synaptic depolarizations in non-epileptic neurons as the experimental findings. Numerical simulation based on a full-connected weighted network could qualitatively demonstrate the epileptic process that the propagation area and normal region were successively recruited by the EZ. Furthermore, cross recurrence plot was used to explore the synchronization between neuronal populations, and the global synchronization index was introduced to measure the global synchronization. Results suggested that the synchronization between the EZ and other region was significantly enhanced with the occurrence of seizure. Interestingly, the desynchronization phenomenon was also observed during seizure initiation and propagation as reported before. Therefore, heterogeneous excitability and short-term plasticity are believed to play an important role in the epileptic process. This study may provide novel insights into the mechanism of epileptogenesis.  相似文献   

17.
Activity and synapse elimination at the neuromuscular junction   总被引:2,自引:0,他引:2  
The neuromuscular junction undergoes a loss of synaptic connections during early development. This loss converts the innervation of each muscle fiber from polyneuronal to single. During this change the number of motor neurons remains constant but the number of muscle fibers innervated by each motor neuron is reduced. Evidence indicates that a local competition among the inputs on each muscle fiber determines which inputs are eliminated. The role of synapse elimination in the development of neuromuscular circuits, other than ensuring a single innervation of each fiber, is unclear. Most evidence suggests that the elimination plays little or no role in correcting for errant connections. Rather, it seems that connections are initially highly specific, in terms of both which motor neurons connect to which muscles and which neurons connect to which particular fibers within these muscles. A number of attempts have been made to determine the importance of neuromuscular activity during early development for this rearrangement of synaptic connections. Experiments reducing neuromuscular activity by muscle tenotomy, deafferentation and spinal cord section, block of nerve impulse conduction with tetrodotoxin, and the use of postsynaptic and presynaptic blocking agents have all shown that normal activity is required for normal synapse elimination. Most experiments in which complete muscle paralysis has been achieved show that activity may be essential for the occurrence of synapse elimination. Furthermore, experiments in which neuromuscular activity has been augmented by external stimulation show that synapse elimination is accelerated. A plausible hypothesis to explain the activity dependence of neuromuscular synapse elimination is that a neuromuscular trophic agent is produced by the muscle fibers and that this production is controlled by muscle-fiber activity. The terminals on each fiber compete for the substance produced by that fiber. Inactive fibers produce large quantities of this substance; on the other hand, muscle activity suppresses the level of synthesis of this agent to the point where only a single synaptic terminal can be maintained. Inactive muscle fibers would be expected to be able to maintain more nerve terminals. The attractiveness of this scheme is that it provides a simple feedback mechanism to ensure that each fiber retains a single effective input.  相似文献   

18.
Following amputation of the limb of the newt, Triturus viridescens, muscle fibers dedifferentiate giving rise to mesenchymal cells. The earliest changes detected in neuromuscular junctions of dedifferentiating muscle fibers are the appearance of a few vacuoles and decrease in density of the terminal axoplasm. Later, synaptic vesicles become tightly clustered in the axon termination, and their content appears denser than normal. Then, vesicles diminish in number until few are seen in the ending. While these changes are occurring, the area of contact of nerve with muscle becomes smaller. Junctional folds persist only where the nerve maintains contact with muscle, but these are shorter than normal and appear as slight ridges on the muscle surface. Subsequently, the nerve withdraws from the muscle cell and is completely invested by Schwann cell cytoplasm, and all traces of junctional folds are lost at the former region of contact. Cholinesterase activity was localized with the thiolacetic acid-lead nitrate method. Even before marked morphological changes occur in the junction, DFP- and physostigmine-sensitive activity in the cleft between nerve and muscle is decreased in intensity. Activity continues to decrease as the area of nerve-muscle contact diminishes and junctional folds disappear. When the nerve has withdrawn from the muscle surface, only a few small deposits of lead are left in the intervening region. These results show that as muscle becomes less specialized during dedifferentiation, the neuromuscular junction also loses the cytological and cytochemical specializations associated with synaptic function.  相似文献   

19.
Interictal discharges (IIDs) accompany epileptic seizures and highlight the mechanisms of pathological activity. The propagation of IIDs along the neural tissue is not well understood. To simulate IID propagation, this study proposes a new mathematical model that uses the conductance-based refractory density approach for glutamatergic and GABAergic neuronal populations. The mathematical model is found to be consistent with experimental double-patch registrations in the 4-aminopyridine in vitro model of epilepsy. In slices, the spontaneous activity of interneurons leads to their synchronization by means of the depolarizing GABAmediated response, thus initiating IIDs. Modeling reveals a clustering of interneuronal synchronization followed by IIDs with activity fronts that propagate along the cortex. The GABA-mediated depolarization either remains to be subthreshold for the principal neurons and thus results in pure GABAergic IIDs (IID1s) or leads to glutamatergic excitation, thus resulting in another type of IIDs (IID2s). In both the model and experiment, IIDs propagate as waves, with constant activity profiles and velocity. The speed of IIDs is of the order of tens of mm/s and is larger for IID2s than for IID1s (40 and 20?mm/s, respectively). The simulations, consistent with experimental observations, show that the wavelike propagation of IIDs initiated by interneurons is determined by local synaptic connectivity under the conditions of depolarizing GABA.  相似文献   

20.
Afferent stimulation of one canine thoracic cardiopulmonary nerve can generate compound action potentials in another ipsilateral cardiopulmonary nerve. These compound action potentials persist after acute decentralization of the middle cervical ganglion, indicating that they result from neural activity in the middle cervical ganglion and thoracic nerves. Changing the frequency of stimulation can alter the compound action potentials, suggesting that temporal facilitation or inhibition occurs in this middle cervical ganglion preparation. The compound action potentials can be modified by stimulation of sympathetic preganglionic fibers and by hexamethonium, atropine, phentolamine, propranolol, and (or) manganese. It thus appears that afferent cardiopulmonary nerves can activate efferent cardiopulmonary nerves via synaptic mechanisms in the stellate and middle cervical ganglia. It also appears that these mechanisms involve adrenergic and cholinergic receptors and are influenced by preganglionic sympathetic fibers arising from the cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号