首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three aspects of the involvement of tumor necrosis factor in human immunodeficiency virus (HIV) pathogenesis were examined. Tumor necrosis factor alpha (TNF-alpha) mRNA production was analyzed by polymerase chain reaction amplification in monocytic U937 cells and in a chronically HIV infected U937 cell line (U9-IIIB). TNF-alpha RNA was undetectable in U937 cells, whereas a low constitutive level was detected in U9-IIIB cells. Paramyxovirus infection induced a 5- to 10-fold increase in the steady-state level of TNF-alpha RNA in U9-IIIB cells compared with U937 cells, suggesting that HIV-infected monocytic cells produced higher levels of TNF-alpha than did normal cells after a secondary virus infection. The effects of TNF-alpha on gene expression were examined by transient expression assays using reporter chloramphenicol acetyltransferase plasmids linked to regulatory elements from the HIV long terminal repeat (LTR) and the beta interferon promoter. In U937 and Jurkat T lymphoid cells, the inducibility of the different hybrid promoters by TNF-alpha or phorbol ester varied in a cell type- and promoter context-specific manner; the levels of gene activity of NF-kappa B-containing plasmids correlated directly with induction of NF-kappa B DNA-binding activity. Although the intact beta interferon promoter was only weakly stimulated by phorbol ester or TNF-alpha, multimers of the PRDII NF-kappa B-binding domain were inducible by both agents. TNF-alpha was able to increase expression of the HIV LTR in T cells, but in monocytic cells, TNF-alpha did not induce the HIV LTR above a constitutive level of activity. This level of NF-kappa B-independent activity appears to be sufficient for virus multiplication, since TNF-alpha treatment had no effect on the kinetics of de novo HIV type 1 (HIV-1) infection and viral RNA production in U937 cells. However, in Jurkat cells, TNF-alpha dramatically enhanced the spread of HIV-1 through the cell population and increased viral RNA synthesis, indicating that in T cells HIV-1 multiplication was stimulated by TNF-alpha treatment.  相似文献   

2.
Mycobacterial infection occurs commonly in patients with acquired immune deficiency syndrome. Incubation of monocytoid cell line U937 cells, which was cotransfected HIV-1 long terminal repeat sequence (LTR) chloramphenicol acetyltransferase (CAT) plasmid and Tat expression plasmid, with Mycobacterium smegmatis, Mycobacterium avium, Mycobacterium bovis BCG and Mycobacterium tuberculosis resulted in enhancement of CAT production, indicating that these mycobacteria could activate LTR in this cell line. The amount of CAT in the cells coexisting with M. smegmatis was higher than that infected with other mycobacteria. The amounts of CAT production in the cells coculturing with M. avium and M. bovis BCG were intermediate. M. tuberculosis slightly stimulated CAT production. The amount of tumor necrosis factor (TNF)-alpha produced by transfected U937 cells was correlated with the amount of CAT production. The interleukin (IL)-1beta and IL-6 levels in the supernatant from coculturing with all species were similar. The antibody to TNF-alpha inhibited CAT production induced by mycobacterial infections. The anti-IL-1beta and anti-IL-6 antibodies, however, scarcely influenced stimulation of LTR by mycobacteria. In addition, U937 cells transfected with full length LTR CAT plasmid showed increased CAT production by activation with mycobacteria, but the cells transfected with mutant LTR CAT constructs from which the nuclear factor (NF)-kappaB binding site was deleted did not show activation. These findings indicated that activation of Mycobacterium-induced LTR CAT is NF-kappaB dependent. These findings suggested that activation of HIV-1 LTR by mycobacteria was mainly mediated by NF-kappaB-induced secondary release of cytokine TNF-alpha.  相似文献   

3.
The bacterial neomycin phosphotransferase gene driven by the Moloney mouse leukemia virus long terminal repeat (LTR) or SV40 early region promoter was introduced into the human promonocyte-macrophage cell line, U937, and into the pluripotential human embryonic teratocarcinoma cell line, NT2/D1. Clonally derived cell lines capable of growing in 2-4 mg/ml of the aminoglycoside antibiotic, G418 (Geneticin), were established and transfected with pHIVCat, a plasmid expressing the bacterial chloramphenicol acetyl transferase (CAT) activity under the control of the human immunodeficiency virus (HIV-1) LTR. All of the G418 resistant (neo(r)) U937 cell lines and 10 of 14 neo(r) NT2/D1 cell lines exhibited reduced basal levels of CAT expression or impaired responses to activation of the HIV-1 LTR by phorbol 12-myristate 13-acetate (PMA) when compared to the parental lines. Other differences included inhibition of tat activation of the HIV-1 LTR and increased sensitivity of U937 cells to human tumor necrosis factor alpha. The expression of other eukaryotic promoters including the HTLV-1 LTR, SV40 ori sequences, and the human beta-actin gene promoter was similarly affected. However, differentiation of the neo(r) U937 cells into macrophages was neither delayed nor impaired. Because PMA is an activator of protein kinase C (PKC) and a potent inducer of HIV-1 directed gene expression, the amounts, sensitivity to G418, and cytosol to membrane translocation of this enzyme were determined in the wild type and neo(r) U937 cells. G418 at concentrations too low to affect cell growth (12-150 micrograms/ml) inhibited PMA-induced transactivation responses in wild type cells but did not inhibit PKC-dependent protein phosphorylation in vitro. PKC activities in the wild type and neo(r) cells were similar in absolute amounts and in the cytosol-membrane distribution of the enzyme. In contrast with wild type cells, however, all of the cytosolic Ca(2+)-phospholipid-dependent form of PKC disappeared from the neo(r) cells within 30 min after PMA induction. The results suggested that, depending upon the cell type, gene cotransfer using aminoglycoside resistance as a selectable marker may seriously perturb important cellular control mechanisms such as the PKC pathway leading to activation of gene expression.  相似文献   

4.
Y Su  W Popik    P M Pitha 《Journal of virology》1995,69(1):110-121
We have examined the feasibility of using interferon (IFN) gene transfer as a novel approach to anti-human immunodeficiency virus type 1 (HIV-1) therapy in this study. To limit expression of a transduced HIV-1 long terminal repeat (LTR)-IFNA2 (the new approved nomenclature for IFN genes is used throughout this article) hybrid gene to the HIV-1-infected cells, HIV-1 LTR was modified. Deletion of the NF-kappa B elements of the HIV-1 LTR significantly inhibited Tat-mediated transactivation in T-cell lines, as well as in a monocyte line, U937. Replacement of the NF-kappa B elements in the HIV-1 LTR by a DNA fragment derived from the 5'-flanking region of IFN-stimulated gene 15 (ISG15), containing the IFN-stimulated response element, partially restored Tat-mediated activation of LTR in T cells as well as in monocytes. Insertion of this chimeric promoter (ISG15 LTR) upstream of the human IFNA2 gene directed high levels of IFN synthesis in Tat-expressing cells, while this promoter was not responsive to tumor necrosis factor alpha-mediated activation. ISG15-LTR-IFN hybrid gene inserted into the retrovirus vector was transduced into Jurkat and U937 cells. Selected transfected clones produced low levels of IFN A (IFNA) constitutively, and their abilities to express interleukin-2 and interleukin-2 receptor upon stimulation with phytohemagglutinin and phorbol myristate acetate were retained. Enhancement of IFNA synthesis observed upon HIV-1 infection resulted in significant inhibition of HIV-1 replication for a period of at least 30 days. Virus isolated from IFNA-producing cells was able to replicate in the U937 cells but did not replicate efficiently in U937 cells transduced with the IFNA gene. These results suggest that targeting IFN synthesis to HIV-1-infected cells is an attainable goal and that autocrine IFN synthesis results in a long-lasting and permanent suppression of HIV-1 replication.  相似文献   

5.
6.
7.
8.
9.
C/EBPbeta plays a pivotal role in activation of human immunodeficiency virus type 1 (HIV-1) in monocytes/macrophages. However, mechanisms for functional regulation of C/EBPbeta remain uncharacterized. Previous studies indicated that NF-kappaB activation by tumor necrosis factor (TNF) receptor family, which activates TNF receptor associated factor (TRAF), induces HIV-1 expression. We found that TRAF signals activate HIV-1 LTR with mutations of NF-kappaB sites in promonocytic cell line U937, suggesting existence of an alternative HIV-1 activating pathway. In this study, we have characterized the signal transduction pathway of TRAF other than that leading to NF-kappaB, using U937 cell line, and its subline, U1, which is chronically infected by HIV-1. We show that signals downstream of TRAF2 and TRAF5 activate p38 MAPK, which directly phosphorylates C/EBPbeta, and that activation of p38 MAPK potently activates C/EBPbeta-mediated induction of HIV-1 gene expression. We also show TRAF2 and TRAF5 are expressed in monocytes/macrophages of spleen samples from HIV-1 infected patients. Identification of TRAF-p38 MAPK-CEBPbeta pathway provides a new target for controlling reactivation of latent HIV-1 in monocytes/macrophages.  相似文献   

10.
TNF-alpha transduces signals of survival or death via its two receptors, R1/p55/p60 and RII/p80/p75. The role of caspases as effectors of cell death is universally accepted, although caspase inhibitors may potentiate TNF cytotoxicity in some instances. In conditions when macromolecular synthesis is blocked, caspases are part of the machinery that executes TNF-triggered apoptotic death in U937, a human myelomonocyte cell line, and in the Jurkat T cell line. However, inhibition of p38 mitogen-activated protein kinase (p38 MAPK) triggered TNF cytotoxicity in U937 cells and murine splenic macrophages, but not the Jurkat cell line. TNF induced expression of the antiapoptotic protein c-IAP2 (cytoplasmic inhibitor of apoptosis protein 2), and was blocked in the presence of a p38 MAPK inhibitor, which also induced caspase-dependent, TNF-mediated apoptosis in U937 cells. Thus, inhibition of p38 MAPK resulted in the activation of caspase 9 and cleavage of the adaptor molecule BH3 interacting domain death agonist, and blocked NF-kappaB-mediated transactivation, without affecting the nuclear translocation of NF-kappaB. Collectively, these data show that activation of p38 MAPK is critical to cell survival by TNF in U937 cells, and demonstrate lineage-specific regulation of TNF-triggered signals of activation or apoptosis.  相似文献   

11.
In the human promonocytic U937 cell line, pyrrolidine dithiocarbamate (PDTC) was a potent inhibitor of the nuclear factor-kappaB (NF-kappaB) signalling pathway induced by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). However, PDTC did not inhibit tumour necrosis factor-alpha (TNF-alpha)-induced NF-kappaB DNA binding activity but potentiated the effect of TNF-alpha on kappaB-dependent gene expression. The stimulatory effect of PDTC with TNF-alpha was not observed with an HIV-1 LTR reporter construct containing two mutated kappaB binding sites or with a construct with a mutation of the activating protein (AP)-2 binding site located between the two kappaB elements. Two distinct signalling pathways, one mediated by TPA and the other by TNF-alpha, were shown to interact, functionally defining a threshold important in the inhibitory or stimulatory effect of PDTC on kappaB-dependent gene expression. Evidence that PDTC induced AP-1 DNA binding and AP-1 reporter gene activity, raised the hypothesis that the effect of PDTC was mediated by an interaction between the AP-1 pathway and p65(RelA). Co-transfection with expression vectors for p65(RelA) and the AP-1 subunits c-Fos and c-Jun resulted in a decrease in the stimulatory effect of PDTC on HIV-1 LTR activity. Co-transfection of p65(RelA) with Tam67, a dominant negative mutant of c-Jun defective in transactivation, stimulated the effect of PDTC on HIV-1 LTR activity. Evidence that the stimulatory effect of Tam67 with PDTC was reduced with c-Jun is consistent with the hypothesis.  相似文献   

12.
13.
The state of T cell activation and proliferation controls HIV-1 replication and gene expression. Previously, we demonstrated that the administration of PHA and PMA to the human T cell line Jurkat activates the HIV-1 enhancer, which is composed of two nuclear factor kappa B (NF kappa B) binding sites. Here, we show that PMA alone is sufficient for this effect. In addition, activation of T cells through the surface proteins TCR/CD3 and CD28 increased gene expression directed by the HIV-1 long terminal repeat (LTR) to the same extent as PMA. Analysis of 5' deletions in the LTR revealed that the NF kappa B binding sites and sequences in the upstream U3 region are required for this response. Whereas cyclosporin A did not inhibit the effect of PMA, it reduced the effects of agonists to TCR/CD3 and CD28 on the LTR. H7, an inhibitor of protein kinase C (PKC), blocked the effects of all stimuli. Thus, PMA activates the NF kappa B sites through a PKC-dependent pathway while ligands to TCR/CD3 and CD28 activate the LTR through a cyclosporin A-sensitive, PKC-dependent pathway of T cell activation. We conclude that mechanisms involved in the expression of IL-2 and the alpha-chain of the IL-2R alpha genes also play a role in the regulation of HIV-1. Physiologic stimuli can activate HIV-1 gene expression; agents that block T cell activation also inhibit activation of the LTR. These observations might serve as a model for the regulation of HIV-1 gene expression in peripheral blood T cells.  相似文献   

14.
Induction of NF-KB during monocyte differentiation by HIV type 1 infection   总被引:11,自引:0,他引:11  
The production of human immunodeficiency virus type 1 (HIV-1) progeny was followed in the U937 promonocytic cell line after stimulation either with retinoic acid or PMA, and in purified human monocytes and macrophages. Electrophoretic mobility shift assays and Southwestern blotting experiments were used to detect the binding of cellular transactivation factor NF-KB to the double repeat-KB enhancer sequence located in the long terminal repeat. PMA treatment, and not retinoic acid treatment of the U937 cells acts in inducing NF-KB expression in the nuclei. In nuclear extracts from monocytes or macrophages, induction of NF-KB occurred only if the cells were previously infected with HIV-1. When U937 cells were infected with HIV-1, no induction of NF-KB factor was detected, whereas high level of progeny virions was produced, suggesting that this factor was not required for viral replication. These results indicate that in monocytic cell lineage, HIV-1 could mimic some differentiation/activation stimuli allowing nuclear NF-KB expression.  相似文献   

15.
Piperidinylpyrimidine derivatives, previously prepared as inhibitors of TNF-alpha production, were evaluated for their inhibitory activity against HIV-1 LTR activation. Some of these derivatives inhibited activation of HIV-1 LTR-directed CAT gene expression induced by PMA in Jurkat cells. In this report, we describe SAR in this series of compounds and show that the 3,4-methylenedioxybenzoyl (piperonyloyl) group on the nitrogen of piperidine and lipophilic substitution at the C(6)-position of pyrimidine are important for this inhibitory activity. Some of the synthesized compounds also inhibited HIV-1 LTR transactivation induced by viral protein Tat. These results suggest that piperidinylpyrimidines are useful as potent AIDS therapeutics that directly inhibit HIV-1 LTR activation and indirectly suppress TNF-alpha production.  相似文献   

16.
The effect of host cell factors on infectivity of human immunodeficiency virus type 1 (HIV-1) was studied by infecting a monoblastoid cell line (U937) or a T-cell line (MOLT-4) with a highly infective single clone of HIV-1 and comparing the infectivity of the produced viruses to different cell lines. Chronically infected U937 cells consistently produced viruses with minimal infectivity. This phenotypic change was host-dependent as the back-passage of the U937-produced low infective viruses into MOLT-4 cells resulted in regaining their original high infectivity. Southern and Northern blot analyses of the HIV-1 grown in U937 cells did not reveal any genomic difference between it and the virus grown it MOLT-4 cells. The radioimmunoprecipitation analysis of viral proteins showed that the HIV-1-infected U937 cells had a different pattern of envelope glycoproteins and core proteins, which well correlated with the low infectivity of the produced viruses. This experimental system using MOLT-4 and U937 cell lines would be useful to further explore host cell factor(s) which play an important role in the regulation of HIV-1 infectivity.  相似文献   

17.
It is known that histamine suppresses gene expression and synthesis of tumor necrosis factor alpha (TNF-alpha) induced by lipopolysaccharide (LPS) in human peripheral blood mononuclear monocytes (HPM) or alveolar macrophages via histamine H2 receptors. We investigated the effect of histamine and differentiation in macrophages on the expression and secretion of TNF-alpha, TNF-alpha-converting enzyme (TACE), and histamine H1 and H2 receptors by use of a leukemia cell line, U937, and HPM. Differentiation of U937 and HPM cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) enhanced the H1 receptor expression and rather suppressed the H2 receptor, resulting in up-regulation of the histamine-induced expression and secretion of TNF-alpha, modulated via TACE. Therefore, histamine failed to inhibit up-regulated expression of TNF-alpha induced by LPS in macrophages. The switch from H2 to H1 receptors during differentiation in the monocyte/macrophage lineage could participate in the pathogenic processes of atherosclerosis and inflammatory reactions in the arterial wall.  相似文献   

18.
Infection with several DNA or RNA viruses induces a state of increased sensitivity to cell lysis mediated by tumor necrosis factor (TNF), particularly in the presence of gamma interferon (IFN-gamma). Infection of human cells with the human immunodeficiency virus (HIV) may induce a similar phenomenon. However, TNF and IFN-gamma are known upregulators of HIV replication, raising the question of the potential role of these cytokines in the selective elimination of cells infected with this virus. The present study demonstrates that chronically infected U1 cells were killed with much greater efficiency by costimulation with TNF-alpha and IFN-gamma than their uninfected parental cell line U937. However, synergistic induction of viral expression also occurred in U1 cells as a consequence of treatment with the two cytokines. Cell death in U1 cells was not caused by the massive production of virions, in that costimulation with glucocorticoid hormones and TNF-alpha or IFN-gamma resulted in high levels of virion production without cytopathicity. To investigate the nature of the selective cytotoxic effect observed in U1 cells costimulated with TNF-alpha plus IFN-gamma, a panel of uninfected cell clones was generated by limiting dilution of U937 cells and tested for response to TNF-alpha and/or IFN-gamma. In contrast to the uncloned bulk parental U937 cell line, most uninfected cell clones showed a very high susceptibility to being killed by TNF-alpha and IFN-gamma. Similar findings were obtained when both infected U1 cells and several uninfected U937 cell clones were costimulated with an anti-Fas monoclonal antibody in the presence of IFN-gamma, although, unlike cells stimulated with TNF-alpha, cells treated with anti-Fas antibody did not express virus. Therefore, the increased susceptibility to cytokine-mediated lysis observed in cell lines infected with HIV is likely due to the selection of preexisting cell clones rather than viral infection.  相似文献   

19.
Pyrrolidine dithiocarbamate (PDTC) has been widely used as an inhibitor of the nuclear factor-kappa B, (NF-kappa B) signalling pathway. Here, we show that kappa B-dependent reporter gene expression induced by low concentrations of 12-O-tetradecanoylphorbol-13-acetate (TPA) is potentiated by PDTC in the human pro-monocytic U937 cell line. The stimulatory effect of PDTC on kappa B-dependent gene expression was shown with a 4 x kappa B chloramphenicol acetyltransferase construct and required an intact kappa B element in the human immunodeficiency virus long terminal repeat (HIV-1 LTR). Unexpectedly, an HIV-1 LTR construct with a mutation of the activator protein 2 (AP-2) binding site located between the two kappa B elements was unresponsive to the stimulatory effect of PDTC with TPA. The stimulation or inhibition of kappa B-dependent gene expression was dependent on PDTC pre-treatment and the concentration of TPA. No stimulatory effect on HIV-1 LTR activity was observed with the metal chelator dipyridyl or the anti-oxidant N-acetyl-L-cysteine. These results are consistent with the hypothesis that PDTC treatment potentiated kappa B-dependent gene expression in a manner dependent on the concentration of TPA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号