首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An extensive comparative structural analysis of lactate dehydrogenase (LDH) sequences from thermophilic, mesophilic and psychrophilic bacilli revealed characteristic primary structural differences. These specific amino-acid substitutions were found in the entire LDH molecule. However, in certain regions of the LDH an accumulation of these exchanges could be detected. These regions seem to be particularly important for the temperature adaptation of the enzyme. The influence of one of such regions at the N-terminus on stability and activity of LDHs was analysed by the construction of hybrid mutants between LDH sequences from thermophilic, mesophilic and psychrophilic bacilli and also by site-directed mutagenesis experiments at five different positions. The substitutions of Thr-29 or Ser-39 to Ala residues in the LDH from the mesophilic B. megaterium increased the thermostability of the enzyme drastically (15 degrees C). An increase of 20 degrees C could be observed when both amino-acid substitutions were introduced. These amino-acid substitutions resulted in an increase of Km for pyruvate and led to a three-fold reduction of the activity (kcat/Km) at 40 degrees C compared with the wild type enzyme. The influence of these amino-acid substitutions was also investigated in the LDHs from thermophilic and psychrophilic bacilli. The high heat resistance of the LDH from the thermophilic B. stearothermophilus was not altered by the Ala to Thr and Ser substitutions at positions 29 and 39, respectively. This indicates a cooperatively stabilized conformation of this LDH. However, in this mutant of the B. stearothermophilus LDH the activity (kcat/Km) was increased two-fold.  相似文献   

2.
A thermostable aspartase gene (aspB) from Bacillus sp. YM55-1 was cloned and the gene sequenced. The aspB gene (1407 bp ORF) encodes a protein with a molecular mass of 51 627 Da, consisting of 468 amino-acid residues. An amino-acid sequence comparison revealed that Bacillus YM55-1 aspartase shared 71% homology with Bacillus subtilis aspartase and 49% with Escherichia coli and Pseudomonas fluorescens aspartases. The E. coli TK237/pUCASPB strain, which was obtained by transforming E. coli TK237 (aspartase-null strain) with a vector plasmid (pUCASPB) containing the cloned aspB gene, produced a large amount of the enzyme corresponding to > 10% of the total soluble protein. The over-expressed recombinant enzyme (native molecular mass: 200 kDa) was purified effectively and rapidly using heat treatment and affinity chromatography. In order to probe the catalytic residues of this enzyme, two conserved amino-acid residues, Lys183 and His134, were individually mutated to alanine. Although the tertiary structure of each mutant was estimated to be the same as that of wild-type aspartase in CD and fluorescence measurements, the Lys183Ala mutant lost its activity completely, whereas His134Ala retained full activity. This finding suggests that Lys183 may be involved in the catalytic activity of this thermostable Bacillus YM55-1 aspartase.  相似文献   

3.
G Ghosh  H Y Kim  J P Demaret  S Brunie  L H Schulman 《Biochemistry》1991,30(51):11767-11774
We have previously shown that the anticodon of methionine tRNAs contains the major recognition site required for aminoacylation of tRNAs by Escherichia coli methionyl-tRNA synthetase (MetRS) and have located part of the anticodon binding domain on the enzyme at a site close to Trp461 [Schulman, L. H., & Pelka, H. (1988) Science 242, 765-768; Ghosh, G., Pelka, H., & Schulman, L.H. (1990) Biochemistry 29, 2220-2225]. In order to gain information about other possible sites of contact between MetRS and its tRNA substrates, we have examined the effects of mutations at a series of positively charged residues on the surface of the C-terminal domain of the enzyme. Conversion of Arg356, Arg366, Arg380, or Arg453 to Gln had little or no effect on enzyme activity. Similarly, conversion of Lys402 or Lys439 to Asn failed to significantly alter aminoacylation activity. Conversion of Arg380 to Ala or Arg442 to Gln produced a 5-fold reduction in kcat/Km for aminoacylation of tRNAfMet, with no effect on methionine activation, indicating a possible minor role for these residues in interaction of the enzyme with the tRNA substrate. In contrast, mutation of a phylogenetically conserved residue, Arg395, to Gln increased the Km for aminoacylation of tRNAfMet about 30-fold and reduced kcat/Km by 25,000-fold. The mutant enzyme was also shown to be highly defective by its inability to complement a strain of E. coli having an altered chromosomal MetRS gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Sequence comparisons among methionyl-tRNA synthetases from different organisms reveal only one block of homology beyond the last beta strand of the mononucleotide fold. We have introduced a series of semi-conservative amino acid replacements in the conserved motif of yeast methionyl-tRNA synthetase. The results indicate that replacements of two polar residues (Asn584 and Arg588) affected specifically the aminoacylation reaction. The location of these residues in the tertiary structure of the enzyme is compatible with a direct interaction of the amino acid side-chains with the tRNA anticodon.  相似文献   

5.
The KMSKS pattern, conserved among several aminoacyl-tRNA synthetase sequences, was first recognized in the Escherichia coli methionyl-tRNA synthetase through affinity labelling with an oxidized reactive derivative of tRNA(Met)f. Upon complex formation, two lysine residues of the methionyl-tRNA synthetase (Lys61 and 335, the latter being part of the KMSKS sequence) could be crosslinked by the 3'-acceptor end of the oxidized tRNA. Identification of an equivalent reactive lysine residue at the active centre of tyrosyl-tRNA synthetase designated the KMSKS sequence as a putative component of the active site of methionyl-tRNA synthetase. To probe the functional role of the labelled lysine residue within the KMSKS pattern, two variants of methionyl-tRNA synthetase containing a glutamine residue at either position 61 or 335 were constructed by using site-directed mutagenesis. Substitution of Lys61 slightly affected the enzyme activity. In contrast, the enzyme activities were very sensitive to the substitution of Lys335 by Gln. Pre-steady-state analysis of methionyladenylate synthesis demonstrated that this substitution rendered the enzyme unable to stabilize the transition state complex in the methionine activation reaction. A similar effect was obtained upon substituting Lys335 by an alanine instead of a glutamine residue, thereby excluding an effect specific for the glutamine side-chain. Furthermore, the importance of the basic character of Lys335 was investigated by studying mutants with a glutamate or an arginine residue at this position. It is concluded that the N-6-amino group of Lys335 plays a crucial role in the activation of methionine, mainly by stabilizing the transient complex on the way to methionyladenylate, through interaction with the pyrophosphate moiety of bound ATP-Mg2+. We propose, therefore, that the KMSKS pattern in the structure of an aminoacyl-tRNA synthetase sequence represents a signature sequence characteristic of both the pyrophosphate subsite and the catalytic centre.  相似文献   

6.
Rat brain phospholipase D1 (rPLD1) has two highly conserved motifs [H(X)K(X)4D, denoted HKD] located at the N-terminal and C-terminal halves, which are required for activity. Association of the two halves is essential for rPLD1 activity, which probably brings the two HKD domains together to form a catalytic center. In the present study, we find that an intact C-terminus is also essential for the catalytic activity of rPLD1. Serial deletion of the last four amino acids, EVWT, which are conserved in all mammalian PLD isoforms, abolished the catalytic activity of rPLD1. This loss of catalytic activity was not due to a lack of association of the N-terminal and C-terminal halves. Mutations of the last three amino acids showed that substitutions with charged or less hydrophobic amino acids all reduced PLD activity. For example, mutations of Thr1036 and Val1034 to Asp or Lys caused marked inactivation, whereas mutation to other amino acids had less effect. Mutation of Trp1035 to Leu, Ala, His or Tyr caused complete inactivation, whereas mutation of Glu1033 to Ala enhanced activity. The size of the amino acids at the C-terminus also affected the catalytic activity of PLD, reduced activity being observed with conservative mutations within the EVWT sequence (such as T/S, V/L or W/F). The enzyme was also inactivated by the addition of Ala or Val to the C-terminus of this sequence. Interestingly, the inactive C-terminal mutants could be complemented by cotransfection with a wild-type C-terminal half to restore PLD activity in vivo. These data demonstrate that the integrity of the C-terminus of rPLD1 is essential for its catalytic activity. Important features are the hydrophobicity, charge and size of the four conserved C-terminal amino acids. It is proposed that these play important roles in maintaining a functional catalytic structure by interacting with a specific domain within rPLD1.  相似文献   

7.
The size distribution of methionyl-tRNA synthetase in extracts from sheep liver is compared to that of lysyl-tRNA, isoleucyl-tRNA, leucyl-tRNA and seryl-tRNA synthetases by gel filtration on Biogel A-5m. Extraction conditions are described which lead to isolation of methionyl-tRNA synthetase exclusively in the form of complexes of molecular weight close to 10(6). Limited trypsin treatment of these aggregates releases a fully active low-molecular-weight form of methionyl-tRNA synthetase which was purified to a specific activity of 674 units/mg at 25 degrees C with a yield of 40%. The homogeneous enzyme appears to be undistinguishable from the corresponding enzyme derived from sheep lactating mammary gland, as judged by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and by titration with antibodies raised against the enzyme purified from liver.  相似文献   

8.
Long-range functional communication is a hallmark of many enzymes that display allostery, or action-at-a-distance. Many aminoacyl-tRNA synthetases can be considered allosteric, in that their trinucleotide anticodons bind the enzyme at a site removed from their catalytic domains. Such is the case with E. coli methionyl-tRNA synthase (MetRS), which recognizes its cognate anticodon using a conserved tryptophan residue 50 A away from the site of tRNA aminoacylation. The lack of details regarding how MetRS and tRNA(Met) interact has limited efforts to deconvolute the long-range communication that occurs in this system. We have used molecular dynamics simulations to evaluate the mobility of wild-type MetRS and a Trp-461 variant shown previously by experiment to be deficient in tRNA aminoacylation. The simulations reveal that MetRS has significant mobility, particularly at structural motifs known to be involved in catalysis. Correlated motions are observed between residues in distant structural motifs, including the active site, zinc binding motif, and anticodon binding domain. Both mobility and correlated motions decrease significantly but not uniformly upon substitution at Trp-461. Mobility of some residues is essentially abolished upon removal of Trp-461, despite being tens of Angstroms away from the site of mutation and solvent exposed. This conserved residue does not simply participate in anticodon binding, as demonstrated experimentally, but appears to mediate the protein's distribution of structural ensembles. Finally, simulations of MetRS indicate that the ligand-free protein samples conformations similar to those observed in crystal structures with substrates and substrate analogs bound. Thus, there are low energetic barriers for MetRS to achieve the substrate-bound conformations previously determined by structural methods.  相似文献   

9.
The liver cytosolic enzyme tryptophan 2,3-dioxygenase (TDO) catalyzes the oxidation of L-tryptophan to formylkynurenine and controls the physiological flux of tryptophan into both the serotonergic and kynureninic pathways. This hemoprotein enzyme is composed of four noncovalently bound subunits of equivalent mass and contains two heme moieties per molecule. Electron paramagnetic resonance analyses have indicated that a histidyl nitrogen is involved in heme ligation [Henry et al., (1976) J. Biol. Chem. 251, 1578], but the identity of the His residue(s) is unknown. In an attempt to characterize the active site of the enzyme we have substituted each of the 12 His residues in the rat TDO subunit with Ala, to determine their relative importance in heme binding. Sequence alignment of the rat liver protein with that of known or putative TDO sequences from other organisms reveals that four of the His residues are conserved in eukaryotes, two of which are also conserved in prokaryotes. Our findings indicate that replacement of the evolutionarily conserved His 76 and 328 residues resulted in a dramatic reduction of TDO activity, whereas that of the eukaryotically conserved His70 resulted in a significant reduction relative to that of the wild-type enzyme. On the other hand, replacement of the other eukaryotically conserved His273 residue, while affecting the relative expression of the enzyme, had little effect on its specific activity. Size-exclusion analyses revealed that the His76Ala and His328Ala mutants retained little or no heme, suggesting that these may be key residues in ligating the prosthetic heme moieties. Whether these His residues are both provided by the same TDO subunit or a different TDO subunit remains to be determined.  相似文献   

10.
A decrease in the in vivo acylation level of methionine transfer ribonucleic acid (tRNAmet) induced by methioninyl adenylate led to a specific derepression of methionyl-transfer ribonucleic acid (tRNA) synthetase formation. This derepression required de novo protein synthesis and was reflected by overproduction of unaltered enzyme. Two different strains of Escherichia coli K-12 that have normal levels of methionyl-tRNA synthetase were examined and the derepression of methionyl-tRNA synthetase was observed in both. Moreover, for one of these strains, the relation between the level of methionyl-tRNA synthetase and deacylation level of tRNAmet was established; under the growth conditions used, when more than 25% of tRNAmet was deacylated, methionyl-tRNA synthetase formation was derepressed and the level of derepression became proportional to the amount of tRNAmet deacylated. Concomitantly, the enzyme was subject to specific inactivation as a consequence of which the true de novo rate of derepression of the formation of this enzyme was higher than that determined by measurements of enzyme activity. These studies were extended to strains AB311 and ed2, which had a constitutive enhanced level of methionyl-tRNA synthetase. In these strains no derepression of enzyme formation was observed on reducing the acylation level of tRNAmet by use of methioninyl adenylate.  相似文献   

11.
Trypanosoma brucei contains two tandemly arranged genes for glycerol kinase. The downstream gene was analysed in detail. It contains an ORF for a polypeptide of 512 amino acids. The polypeptide has a calculated molecular mass of 56 363 Da and a pI of 8.6. Comparison of the T. brucei glycerol kinase amino-acid sequence with the glycerol kinase sequences available in databases revealed positional identities of 39.0-50.4%. The T. brucei glycerol kinase gene was overexpressed in Escherichia coli cells and the recombinant protein obtained was purified and characterized biochemically. Its kinetic properties with regard to both the forward and reverse reaction were measured. The values corresponded to those determined previously for the natural glycerol kinase purified from the parasite, and confirmed that the apparent Km values of the trypanosome enzyme for its substrates are relatively high compared with those of other glycerol kinases. Alignment of the amino-acid sequences of T. brucei glycerol kinase and other eukaryotic and prokaryotic glycerol kinases, as well as inspection of the available three-dimensional structure of E. coli glycerol kinase showed that most residues of the magnesium-, glycerol- and ADP-binding sites are well conserved in T. brucei glycerol kinase. However, a number of remarkable substitutions was identified, which could be responsible for the low affinity for the substrates. Most striking is amino-acid Ala137 in T. brucei glycerol kinase; in all other organisms a serine is present at the corresponding position. We mutated Ala137 of T. brucei glycerol kinase into a serine and this mutant glycerol kinase was over-expressed and purified. The affinity of the mutant enzyme for its substrates glycerol and glycerol 3-phosphate appeared to be 3. 1-fold to 3.6-fold higher than in the wild-type enzyme. Part of the glycerol kinase gene comprising this residue 137 was amplified in eight different kinetoplastid species and sequenced. Interestingly, an alanine occurs not only in T. brucei, but also in other trypanosomatids which can convert glucose into equimolar amounts of glycerol and pyruvate: T. gambiense, T. equiperdum and T. evansi. In trypanosomatids with no or only a limited capacity to produce glycerol, a hydroxy group-containing residue is found as in all other organisms: T. vivax and T. congolense possess a serine while Phytomonas sp., Leishmania brasiliensis and L. mexicana have a threonine.  相似文献   

12.
The hepatitis C virus (HCV) NS3 helicase shares several conserved motifs with other superfamily 2 (SF2) helicases. Besides these sequences, several additional helicase motifs are conserved among the various HCV genotypes and quasispecies. The roles of two such motifs are examined here. The first motif (YRGXDV) forms a loop that connects SF2 helicase motifs 4 and 5, at the tip of which is Arg393. When Arg393 is changed to Ala, the resulting protein (R393A) retains a nucleic acid stimulated ATPase but cannot unwind RNA. R393A also unwinds DNA more slowly than wild type and translocates poorly on single-stranded DNA (ssDNA). DNA and RNA stimulate ATP hydrolysis catalyzed by R393A like the wild type, but the mutant protein binds ssDNA more weakly both in the presence and absence of the non-hydrolyzable ATP analog ADP(BeF3). The second motif (DFSLDPTF) forms a loop that connects two anti-parallel sheets between SF2 motifs 5 and 6. When Phe444 in this Phe-loop is changed to Ala, the resulting protein (F444A) is devoid of all activities. When Phe438 is changed to Ala, the protein (F438A) retains nucleic acid-stimulated ATPase, but does not unwind RNA. F438A unwinds DNA and translocates on ssDNA at about half the rate of the wild type. Equilibrium binding data reveal that this uncoupling of ATP hydrolysis and unwinding is due to the fact that the F438A mutant does not release ssDNA upon ATP binding like the wild type. A model is presented explaining the roles of the Arg-clamp and the Phe-loop in the unwinding reaction.  相似文献   

13.
Eukaryotic protein kinases (EPKs) feature two coevolved structural segments, the Activation segment, which starts with the Asp-Phe-Gly (DFG) and ends with the Ala-Pro-Glu (APE) motifs, and the helical GHI subdomain that comprises αG-αH-αI helices. Eukaryotic-like kinases have a much shorter Activation segment and lack the GHI subdomain. They thus lack the conserved salt bridge interaction between the APE Glu and an Arg from the GHI subdomain, a hallmark signature of EPKs. Although the conservation of this salt bridge in EPKs is well known and its implication in diseases has been illustrated by polymorphism analysis, its function has not been carefully studied. In this work, we use murine cAMP-dependent protein kinase (protein kinase A) as the model enzyme (Glu208 and Arg280) to examine the role of these two residues. We showed that Ala replacement of either residue caused a 40- to 120-fold decrease in catalytic efficiency of the enzyme due to an increase in K(m)(ATP) and a decrease in k(cat). Crystal structures, as well as solution studies, also demonstrate that this ion pair contributes to the hydrophobic network and stability of the enzyme. We show that mutation of either Glu or Arg to Ala renders both mutant proteins less effective substrates for upstream kinase phosphoinositide-dependent kinase 1. We propose that the Glu208-Arg280 pair serves as a center hub of connectivity between these two structurally conserved elements in EPKs. Mutations of either residue disrupt communication not only between the two segments but also within the rest of the molecule, leading to altered catalytic activity and enzyme regulation.  相似文献   

14.
The peptide motif of HLA-A*6603 was determined and compared with the available data on the peptide motifs of A*6601 and A*6602. A*6601 differs from A*6602 by two amino acids at positions 90 (Asp90Ala; outer loop) and 163 (Arg163Glu; pocket A). A*6603 differs from A*6601 and A*6602 by a single amino-acid exchange at position 70 (His70Gln; pockets A, B and C). No significant differences were found between the A*6602 and A*6603 peptide motifs suggesting that the Gln70His variation is of minor importance. However, the auxiliary anchors at position P1 of peptides bound by A*6601 (polar/acidic: Asp, Glu) and A*6602/6603 (polar/neutral: Ser) had striking differences. This finding may be best explained by the Arg163Glu substitution that results in a shift towards higher acidity in pocket A of A*6602/6603, apparently leading to the loss of preference for acidic auxiliary anchors. The similarity of A*6602 and A*6603 peptide motifs suggests low allogenicity when mismatched in stem cell transplantation. Inversely, the differences in A*6601 versus A*6602/6603 peptide motifs suggest that mismatches will have a higher allogenicity. These data will contribute to both assessing permissive mismatches in the A*66 group and weighting the impact of this individual amino-acid variation for matching and peptide binding algorithms.  相似文献   

15.
16.
The lip2 gene from the antarctic psychotroph Moraxella TA144 was sequenced. The primary structure of the Lip2 preprotein deduced from the nucleotide sequence is composed of 433 amino acids with a predicted Mr of 47,222. This enzyme contains a Ser-centered consensus sequence and a conserved His-Gly dipeptide found in most lipase amino-terminal domains. These sequences are involved in the lipase active site conformation since substitution of the conserved Ser or His residues by Ala and Gln, respectively, results in the loss of both lipase and esterase activities. Structural factors that would allow proper enzyme flexibility at low temperatures are discussed. It is suggested that only subtle changes in the primary structure of these psychrotrophic enzymes can account for their ability to catalyze lipolysis at temperatures close to 0 degrees C.  相似文献   

17.
Recent studies by us [Biochemistry (1977) 16, 2570-2579] have shown that L-methioninol, a methionine analog lacking the carboxylate negative charge, enhances the affinity of AMP for methionyl-tRNA synthetase while L-methionine antagonizes the nucleotide binding. Such couplings between ligands of the enzyme have now been applied to affinity chromatography of methionyl-tRNA synthetase on an agarose-hexyl-adenosine-5'-phosphate gel (the spacer is attached to AMP at the adenine C-8 position). Retention of the enzyme on this gel column was shown to be dependent on the presence of appropriate concentrations of magnesium and of L-methioninol in the equilibration buffer. The enzyme was then specifically recovered from the column by omitting the amino alcohol or by adding an excess of L-methionine which antagonizes the cooperative effect of L-methioninol. This approach has provided the basis for a new purification procedure of methionyl-tRNA synthetase which leads to a 200-fold purification in a single chromatographic step. In this manner, after 30-50% ammonium sulfate fractionation of extracts of Escherichia coli EM 20031 (carrying the F32 episome), 0.25 mg X methionyl-tRNA synthetase was obtained at 90% purity per ml of agarose-hexyl-adenosine-5'-phosphate gel.  相似文献   

18.
The complete amino-acid sequence of Cu-Zn superoxide dismutase from white cabbage (Brassica oleracea) is reported. The polypeptide chain consists of 151 amino acids and has a molecular mass of 15,604 Da. The primary structure of the reduced and S-carboxymethylated protein was determined by automated solid phase sequence analysis of tryptic fragments and peptides obtained by digestion with Staphylococcus aureus proteinase V8. The protein shows a free amino terminus as was found for all non-mammalian Cu-Zn enzymes so far sequenced. Comparison of the amino-acid sequence from the plant Cu-Zn enzyme with those from nine eukaryotic enzymes reveals a high degree of homology (50-64%) among these enzymes. As already described for all the eukaryotic Cu-Zn superoxide dismutases also the plant enzyme shows a low homology (about 28%) with the bacteriocuprein of Photobacterium leiognathi. However, the amino-acid residues involved in metal binding, the half-cystine residues forming the intermolecular disulfide bridge, one of the arginine and some glycine and proline residues are conserved in all eleven Cu-Zn superoxide dismutases. Although the precise role of the 23 completely conserved residues is not yet completely understood, they appear to almost define the minimum structural requirements for optimizing the superoxide dismutation at the catalytic site, since functional differences between the eleven enzymes are not detectable.  相似文献   

19.
Valyl-tRNA synthetase (ValRS) from Escherichia coli undergoes covalent valylation by a donor valyl adenylate synthesized by the enzyme itself. ValRS could also be modified, although to a lesser extent, by the noncognate isosteric substrate L-threonine from a donor threonyl adenylate synthesized by the synthetase itself, or by the nonsubstrate methionine from methionyl adenylate produced by catalytic amounts of methionyl-tRNA synthetase. MALDI mass spectrometry analysis designated lysines 154, 162, 170, 533, 554, 593, 894, 930, and 940 of ValRS as the target residues for the attachment of valine. Following autothreonylation, lysines 162, 170, 178, 277, 291, 554, 580, 593, 861, 894, and 930 were found to be modified. Finally, L-Met-labeled residues were lysines 118, 162, 170, 178, 277, and 938. Alignment of the available ValRS amino acid sequences showed that lysines 277 and 554 are strictly conserved (with the exception concerning replacement of Lys-277 with a methionine or a tyrosine in archaebacteria), suggesting that these residues might be functionally significant. Indeed, lysine 554 of ValRS is the first lysine of the Lys-Met-Ser-Lys-Ser signature of the catalytic site of class I aminoacyl-tRNA synthetases. Lys-277 which is labeled by L-threonine or L-methionine, and not by L-valine, is located at or near the editing site, in the three-dimensional structure of ValRS. The role of lysine 277 was evaluated by site-directed mutagenesis. The Lys277Ala mutant (K277A) exhibited a posttransfer Thr-tRNA(Val) editing rate that was significantly lower than that observed for the wild-type enzyme. In addition, the K277A substitution altered amino acid discrimination in the editing site, resulting in hydrolysis of the correctly charged cognate Val-tRNA(Val). Finally, significant amounts of mischarged Thr-tRNA(Val) were produced by the K277A mutant, and not by wild-type ValRS. Altogether, our results designate Lys-277 as a likely candidate for nucleophilic attack of misacylated tRNA in the editing site of ValRS.  相似文献   

20.
The spruce budworm, Choristoneura fumiferana, produces antifreeze protein (AFP) to assist in the protection of the overwintering larval stage. AFPs are thought to lower the freezing point of the hemolymph, noncolligatively, by interaction with the surface of ice crystals. Previously, we had identified a cDNA encoding a 9-kDa AFP with 10-30 times the thermal hysteresis activity, on a molar basis, than that shown by fish AFPs. To identify important residues for ice interaction and to investigate the basis for the hyperactivity of the insect AFPs, six new spruce budworm AFP cDNA isoforms were isolated and sequenced. They differ in amino-acid identity as much as 36% from the originally characterized AFP and can be divided into three classes according to the length of their 3' untranslated regions (UTRs). The new isoforms have at least five putative 'Thr-X-Thr' ice-binding motifs and three of the new isoforms encode larger, 12-kDa proteins. These appear to be a result of a 30 amino-acid insertion bearing two additional ice-binding motifs spaced 15 residues apart. Molecular modeling, based on the NMR structure of a short isoform, suggests that the insertion folds into two additional beta-helix loops with their Thr-X-Thr motifs in perfect alignment with the others. The first Thr of the motifs are often substituted by Val, Ile or Arg and a recombinantly expressed isoform with both Val and Arg substitutions, showed wild-type thermal hysteresis activity. The analysis of these AFP isoforms suggests therefore that specific substitutions at the first Thr in the ice binding motif can be tolerated, and have no discernible effect on activity, but the second Thr appears to be conserved. The second Thr is thus likely important for the dynamics of initial ice contact and interaction by these hyperactive antifreezes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号