首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Both MAPK and protein kinase C (PKC) signaling pathways promote cell survival and protect against cell death. Here, we show that 12-O-tetradecanoylphorbol-13-acetate (TPA) prevents Fas-induced apoptosis in T lymphocytes. The effect of TPA was specifically abolished by the PKC inhibitor GF109203X and by dominant negative PKCtheta, PKCepsilon, and PKCalpha, suggesting that novel and conventional PKC isoforms mediate phorbol ester action. Moreover, TPA stimulated phosphorylation of BAD at serine 112, an effect abrogated by GF109203X but not by the MEK inhibitor PD98059. Expression of constitutively active PKC increased the phosphorylation of BAD at serine 112 but not at serine 136. Additionally, Fas-mediated cell death was enhanced by overexpression of a catalytically inactive form of p90Rsk (Rsk2-KN). Finally, Rsk2-KN abolished the protective effect of constitutively active PKC and totally blocked phosphorylation of BAD on serine 112. Thus, novel PKCtheta and PKCepsilon rescue T lymphocytes from Fas-mediated apoptosis via a p90Rsk-dependent phosphorylation and inactivation of BAD.  相似文献   

3.
Vascular endothelial growth factor (VEGF) utilizes a phosphoinositide 3-kinase (PI 3-kinase)/Akt signaling pathway to protect endothelial cells from apoptotic death. Here we show that PI 3-kinase/Akt signaling promotes endothelial cell survival by inhibiting p38 mitogen-activated protein kinase (MAPK)-dependent apoptosis. Blockade of the PI 3-kinase or Akt pathways in conjunction with serum withdrawal stimulates p38-dependent apoptosis. Blockade of PI 3-kinase/Akt also led to enhanced VEGF activation of p38 and apoptosis. In this context, the pro-apoptotic effect of VEGF is attenuated by the p38 MAPK inhibitor SB203580. VEGF stimulation of endothelial cells or infection with an adenovirus expressing constitutively active Akt causes MEKK3 phosphorylation, which is associated with decreased MEKK3 kinase activity and down-regulation of MKK3/6 and p38 MAPK activation. Conversely, activation-deficient Akt decreases VEGF-stimulated MEKK3 phosphorylation and increases MKK/p38 activation. Activation of MKK3/6 is not dependent on Rac activation since dominant negative Rac does not decrease p38 activation triggered by inhibition of PI 3-kinase. Thus, cross-talk between the Akt and p38 MAPK pathways may regulate the level of cytoprotection versus apoptosis and is a new mechanism to explain the cytoprotective actions of Akt.  相似文献   

4.
Free oxygen radicals are involved in the pathogenesis of necrotizing enterocolitis (NEC) in premature infants. The stress-activated p38 mitogen-activated protein kinase (MAPK) has been implicated in gut injury. Here, we found that phosphorylated p38 was detected primarily in the villus tips of normal intestine, whereas it was expressed in the entire mucosa in NEC. H(2)O(2) treatment resulted in a rapid phosphorylation of p38 MAPK and subsequent apoptosis of rat intestinal epithelial (RIE)-1 cells; this induction was attenuated by treatment with SB203580, a selective p38 MAPK inhibitor, or transfection with p38alpha siRNA. Moreover, SB203580 also blocked H(2)O(2)-induced PKC activation. In contrast, the PKC inhibitor (GF109203x) did not affect p38 activation, indicating that p38 MAPK activation occurs upstream of PKC activation in H(2)O(2)-induced apoptosis. H(2)O(2) treatment also decreased mitochondrial membrane potential; pretreatment with SB203580 attenuated this response. Our study demonstrates that the p38 MAPK/PKC pathway plays an important role as a pro-apoptotic cellular signaling during oxidative stress-induced intestinal epithelial cell injury.  相似文献   

5.
Nanomolar concentrations of human amylin promote death of RINm5F cells in a time- and concentrationdependent manner. Morphological changes of chromatin integrity suggest that cells are predominantly undergoing apoptosis. Human amylin induces significant activation of caspase-3 and strong and sustained phosphorylation of stress-activated protein kinases, c-Jun N-terminal kinase (JNK) and p38, that precedes cell death. Extracellular signal-regulated kinase (ERK) activation was not concomitant with JNK and/or p38 activation. Activation of caspase-3 and mitogen-activated protein kinases (MAPKs) was detected by Western blot analysis. Addition of the MEK1 inhibitor PD 98059 had no effect on amylin-induced apoptosis, suggesting that ERK activation does not play a role in this apoptotic scenario. A correlative inhibition of JNK activation by the immunosuppressive drug FK506, as well as a selective inhibition of p38 MAPK activation by SB 203580, significantly suppressed procaspase-3 processing and the extent of amylin-induced cell death. Moreover, simultaneous pretreatment with both FK506 and SB 203580, or with the caspase-3 inhibitor Ac-DEVD-CHO alone, almost completely abolished procaspase-3 processing and cell death. Thus, our results suggest that amylin-induced apoptosis proceeds through sustained activation of JNK and p38 MAPK followed by caspase-3 activation.  相似文献   

6.
We examined whether the mitogen-activated protein kinase (MAPK) pathway is involved in Shiga toxin (Stx)-induced Vero cell injury. Consonant with cell injury, Stx caused a transient extracellular signal-regulated kinase1/2 (ERK1/2) and a sustained p38 MAPK phosphorylation. p38 MAPK inhibitors (SB 203580 and PD 169316), but not an ERK1/2 kinase inhibitor (PD 98059), partially inhibited the Stx-induced cell death. BAPTA-AM, a Ca(2+) chelator, reduced both cell injury and p38 MAPK phosphorylation. Antioxidants reduced Stx1-induced p38 MAPK phosphorylation. These data indicate that Stx activates p38 MAPK through an increase in intracellular Ca(2+) and reactive oxygen species, and this signaling is involved in Stx-induced cell death.  相似文献   

7.
Among other cellular responses, tumor necrosis factor (TNF) induces different forms of cell death and the activation of the p38 mitogen-activated protein kinase (MAPK). The influence of p38 MAPK activation on TNF-induced apoptosis or necrosis is controversially discussed. Here, we demonstrate that pharmacological inhibition of p38 MAPK enhances TNF-induced cell death in murine fibroblast cell lines L929 and NIH3T3. Furthermore, overexpression of dominant-negative versions of p38 MAPK or its upstream kinase MKK6 led to increased cell death in L929 cells. While overexpression of the p38 isoforms alpha and beta did not protect L929 cells from TNF-induced toxicity, overexpression of constitutively active MKK6 decreased TNF-induced cell death. Although the used inhibitors of p38 MAPK decreased the phosphorylation of the survival kinase PKB/Akt, this effect could be ruled out as cause of the observed sensitization to TNF-induced cytotoxicity. Finally, we demonstrate that the nuclear factor kappaB (NF-kappaB)-dependent gene expression, shown as an example for the anti-apoptotic gene cellular inhibitor of apoptosis (c-IAP2), was reduced by p38 MAPK inhibition. In consequence, we found that inhibition of p38 MAPK led to the activation of the executioner caspase-3.  相似文献   

8.
9.
Hyperglycemia augments flux through the hexosamine biosynthetic pathway and subsequent O-linkage of single β-N-acetyl-d-glucosamine moieties to serine and threonine residues on cytoplasmic and nuclear proteins (O-GlcNAcylation). Perturbations in this posttranslational modification have been proposed to promote glomerular matrix accumulation in diabetic nephropathy, but clear evidence and mechanism are lacking. We tested the hypothesis that O-GlcNAcylation enhances profibrotic signaling in rat mesangial cells. An adenovirus expressing shRNA directed against O-GlcNAc transferase (OGT) markedly reduced basal and high-glucose-stimulated O-GlcNAcylation. Interestingly, O-GlcNAc depletion prevented high-glucose-induced p38 mitogen-activated protein kinase (MAPK) and c-Jun NH(2)-terminal kinase phosphorylation. Downstream of p38, O-GlcNAc controlled the expression of plasminogen activator inhibitor-1, fibronectin, and transforming growth factor-β, important factors in matrix accumulation in diabetic nephropathy. Treating mesangial cells with thiamet-G, a highly selective inhibitor of O-GlcNAc-specific hexosaminidase (O-GlcNAcase), increased O-GlcNAcylation and p38 phosphorylation. The high-glucose-stimulated kinase activity of apoptosis signal-regulating kinase 1 (ASK1), an upstream MAPK kinase kinase for p38 that is negatively regulated by Akt, was inhibited by OGT shRNA. Akt Thr(308) and Ser(473) phosphorylation were enhanced following OGT shRNA expression in high-glucose-exposed mesangial cells, but high-glucose-induced p38 phosphorylation was not attenuated by OGT shRNA in cells pretreated with the phosphatidylinositol 3-kinase inhibitor LY-294002. OGT shRNA also reduced high-glucose-stimulated reactive oxygen species (ROS) formation. In contrast, diminished O-GlcNAcylation caused elevated ERK phosphorylation and PKCδ membrane translocation. Thus, O-GlcNAcylation is coupled to profibrotic p38 MAPK signaling by high glucose in part through Akt and possibly through ROS.  相似文献   

10.
Numerous studies have shown that long-chain polyunsaturated fatty acids can kill cancer cells in vitro as well as in vivo, while normal cells remain unaffected. Unfortunately, the cellular and molecular mechanisms responsible for this phenomenon are still poorly understood. The aim of this study was to investigate the potential chemopreventative/antiproliferative potential of docosahexaenoic acid (DHA) in an adenocarcinoma cell line (CaCo2 cells) and to evaluate the signalling pathways modulated by it. DHA (5-50 microM) significantly inhibited cell viability in a dose-dependent manner in CaCo2 cells, while the viability of normal colon cells (NCM460 cells) was not compromised. DHA also induced apoptosis in CaCo2 cells, as indicated by increases in caspase-3 activation and poly-ADP-ribose polymerase cleavage. Signalling proteins, which include extracellular signal-regulated kinase, p38 mitogen-activated protein kinase (MAPK), Akt and p53 were analysed by Western blotting using phosphospecific and total antibodies. The protein inhibitors wortmannin (phosphoinositide 3 kinase inhibitor), PD 98059 (MEK inhibitor) and SB 203580 (p38 inhibitor) as well as silencing RNA [small interfering RNA (siRNA)] of the p38 MAPK protein, were used to investigate cross-talk between signalling pathways. DHA supplementation significantly suppressed Akt phosphorylation, which also correlated with decreased cell viability and increased apoptosis in CaCo2 cells. Furthermore, siRNA experiments suggested a possible role for p38 MAPK in the phosphorylation of p53 at Ser15, a site which is associated with DNA damage. DHA might thus exert its beneficial effects by means of increased apoptosis and suppression of the important survival-related kinase, Akt.  相似文献   

11.
The ErbB receptor family is implicated in the malignant transformation of several tumor types and is overexpressed frequently in breast, ovarian, and other tumors. The mechanism by which CI-1033 and gemcitabine, either singly or in combination, kill tumor cells was examined in two breast lines, MDA-MB-453 and BT474; both overexpress the ErbB-2 receptor. CI-1033, a potent inhibitor of the ErbB family of receptor tyrosine kinases, reduced levels of activated Akt in MDA-MB-453 cells. This effect alone, however, did not induce apoptosis in these cells. Gemcitabine treatment resulted in a moderate increase in the percentage of apoptotic cells that was accompanied by activation of p38 and MAPK (ERK1/2). CI-1033 given 24 h after gemcitabine produced a significant increase in the apoptotic fraction over treatment with either drug alone. During the combined treatment p38 remained activated, whereas Akt and activated MAPK were suppressed. Substitution of CI-1033 with the phosphatidylinositol 3-kinase inhibitor LY294002 and the MAPK/ERK kinase inhibitor PD 098059 in combination with gemcitabine produced the same results as the combination of CI-1033 and gemcitabine. p38 suppression by SB203580 prevented the enhanced cell kill by CI-1033. In contrast to MDA-MB-453, BT474 cells exhibited activated p38 under unstressed conditions as well as activated Akt and MAPK. Treatment of BT474 cells with CI-1033 inhibited both the phosphorylation of Akt and MAPK and resulted in a 47% apoptotic fraction. Gemcitabine did not cause apoptosis in the BT474 cells. These data indicate that suppression of Akt and MAPK in the presence of activated p38 results in cell death and a possible mechanism for the enhanced apoptosis produced by the combination of CI-1033 and gemcitabine in MDA-MB-453 cells. Furthermore, tumors that depend on ErbB receptor signaling for survival and exhibit activated p38 in the basal state may be susceptible to apoptosis by CI-1033 as a single agent.  相似文献   

12.
Heavy metals are important regulators of cell apoptosis. Manganese (Mn(2+)) is a potent inducer of apoptosis in different cell types, but the precise mechanisms that mediate such effects are not well defined. We previously reported that Mn(2+) was a potent apoptotic agent in human B cells, including lymphoma B cell lines. We show here that Mn(2+)-induced cell death in human B cells is associated with caspase-8-dependent mitochondrial activation leading to caspase-3 activity and apoptosis. We used specific caspase-8 interfering shRNAs to reduce caspase-8 expression, and this also reduced Mn(2+)-induced caspase-3 activation and apoptosis. Mn(2+)-triggered caspase-8 activation is associated with a specific pathway, which is independent of Fas-associated death domain protein, and dependent on the sequential activation of p38-mitogen-activated protein kinase (p38 MAPK) and mitogen- and stress-response kinase 1 (MSK1). Inhibition of p38 activity using either pharmacological inhibitors or dominant-negative mutant forms of p38 blocked Mn(2+)-mediated phosphorylation of MSK1 and blocked subsequent caspase-8 activation. However, specific inhibitors and the expression of a dominant-interfering mutant of MSK1 only inhibited caspase-8 activation, but not p38 activity. These findings suggest a novel model for the regulation of caspase-8 during Mn(2+)-induced apoptosis based on the sequential activation of p38 MAPK, MSK1, caspase-8 and mitochondria, respectively.  相似文献   

13.
It has been shown that endogenous production of reactive oxygen species (ROS) during T cell activation regulates signaling events including MAPK activation. Protein tyrosine phosphatases (PTPs) have been regarded as targets of ROS which modify the catalytic cysteine residues of the enzymes. We have analyzed the interplay between the inhibition of PTPs and the activation of MAPK by H(2)O(2). Stimulation of Jurkat T cells with H(2)O(2) induces the phosphorylation of ERK, p38, and JNK members of MAPK family. H(2)O(2) stimulation of T cells was found to inhibit the PTP activity of CD45, SHP-1, and HePTP. Transfection of cells with wtSHP-1 decreased H(2)O(2)-induced ERK and JNK phosphorylation without affecting p38 phosphorylation. Transfection with wtHePTP inhibited H(2)O(2)-induced ERK and p38 phosphorylation without inhibiting JNK phosphorylation. The Src-family kinase inhibitor, PP2, inhibited the H(2)O(2)-induced phosphorylation of ERK, p38, and JNK. The phospholipase C (PLC) inhibitor, U73122, or the protein kinase C (PKC) inhibitor, Ro-31-8425, blocked H(2)O(2)-induced ERK phosphorylation, whereas the same treatment did not inhibit p38 or JNK phosphorylation. Taken together, these results suggest that inhibition of PTPs by H(2)O(2) contributes to the induction of distinct MAPK activation profiles via differential signaling pathways.  相似文献   

14.
Less information is available concerning the molecular mechanisms of cell survival after hypoxia in hepatocytes. Therefore, this study examined the effect of hypoxia on DNA synthesis and its related signal cascades in primary cultured chicken hepatocytes. Hypoxia increased [3H] thymidine incorporation, which was increased significantly after 0-24 h of hypoxic exposure. Indeed, the percentage of cell population in the S phase was increased in hypoxia condition. However, the release of LDH indicating cellular injury was not changed under hypoxic conditions. Hypoxia increased Ca2+ uptake and PKC translocation from the cytosol to the membrane fraction. Among the PKC isoforms, hypoxia stimulated the translocation of PKC alpha and epsilon. Hypoxia also phosphorylated the p38 and p44/42 mitogen-activated protein kinases (MAPKs), which were blocked by the inhibition of PKC. On the other hand, hypoxia increased Akt and mTOR phosphorylation, which was blocked in the absence of intra/extracellular Ca2+. The inhibition of PKC/MAPKs or PI3K/Akt pathway blocked the hypoxia-induced [3H] thymidine incorporation. However, hypoxia-induced Ca2+ uptake and PKC translocation was not influenced by LY 294002 or Akt inhibitor and hypoxia-induced MAPKs phosphorylation was not changed by rapamycin. In addition, LY 294002 or Akt inhibitor has no effect on the phosphorylation of MAPKs. It suggests that there is no direct interaction between the two pathways, which cooperatively mediated cell cycle progression to hypoxia in chicken hepatocytes. Hypoxia also increased the level of the cell cycle regulatory proteins [cyclin D(1), cyclin E, cyclin-dependent kinase (CDK) 2, and CDK 4] and p-RB protein but decreased the p21 and p27 expression levels, which were blocked by inhibitors of upstream signal molecules. In conclusion, short time exposure to hypoxia increases DNA synthesis in primary cultured chicken hepatocytes through cooperation of Ca2+/PKC, p38 MAPK, p44/42 MAPKs, and PI3K/Akt pathways.  相似文献   

15.
Doxorubicin is the anthracycline with the widest spectrum of antitumor activity, and it has been shown that the antitumor activity is mediated in vivo by selective triggering of apoptosis in proliferating endothelial cells. We studied cultured human endothelial cells and observed that doxorubicin-induced apoptosis was mediated by p38 mitogen-activated protein kinase (MAPK). Doxorubicin-provoked apoptosis was significantly inhibited by expression of dominant negative p38 MAPK or pharmacological inhibition with SB203580. Furthermore, blocking phosphatidylinositol-3-kinase/Akt signaling significantly increased doxorubicin-induced caspase-3 activity and cell death, indicating that Akt is a survival factor in this system. Notably, we also found that doxorubicin-provoked apoptosis included p38 MAPK-mediated inhibition of Akt and Bad phosphorylation. Furthermore, doxorubicin-stimulated phosphorylation of Bad in cells expressing dominant negative p38 MAPK was impeded by the inhibition of PI3-K. In addition to the impact on Bad phosphorylation, doxorubicin-treatment caused p38 MAPK-dependent downregulation of Bcl-xL protein.  相似文献   

16.
17.
Our previous studies have shown that β-arrestin 2 plays an anti-apoptotic effect. However, the mechanisms by which β-arrestin contribute to anti-apoptotic role remain unclear. In this study, we show that a deficiency of either β-arrestin 1 or β-arrestin 2 significantly increases serum deprivation (SD)-induced percentage of apoptotic cells. β-arrestin 2 deficient-induced apoptosis was inhibited by transfection with β-arrestin 2 full-length plasmid, revealing that SD-induced apoptosis is dependent on β-arrestin 2. Furthermore, in the absence of either β-arrestin 1 or β-arrestin 2 significantly enhances SD-induced the level of pro-apoptotic proteins, including cleaved caspase-3, extracellular-signal regulated kinase 1/2 (ERK1/2) and p38, members of mitogen-activated protein kinases (MAPKs). In addition, a deficiency of either β-arrestin 1 or β-arrestin 2 inhibits phosphorylation of Akt. The SD-induced changes in cleaved caspase-3, ERK1/2 and p38 MAPKs, Akt, and apoptotic cell numbers could be blocked by double knockout of β-arrestin 1/2. Our study thus demonstrates that β-arrestin inhibits cell apoptosis through pro-apoptotic ERK1/2 and p38 MAPKs and anti-apoptotic Akt signaling pathways.  相似文献   

18.
Escherichia coli (E. coli) infections play an important and growing role in the clinic. In the present study, we investigated the involvement of members of the mitogen-activated protein kinase (MAPK) superfamily, including extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK, and caspase-3 and 9 activity in E. coli-induced apoptosis in human U937 cells. We found that E. coli induces apoptosis in U937 cell lines in a dose- and time-dependent manner, p38 MAPK and JNK were activated after 10 min of infection with E. coli. In contrast, ERK1/2 was down-regulated in a time-dependent manner. The levels of total (phosphorylation state-independent) p38 MAPK, JNK and ERK1/2 did not change in E. coli-infected U937 cells at all times examined. Moreover, exposure of U937 cells to E. coli led to caspase-3 and 9 activity. For the evaluation of the role of MAPKs, PD98059, SB203580 and SP600125 were used as MAPKs inhibitors for ERK1/2, p38 MAPK and JNK. Inhibition of ERK1/2 with PD98059 caused further enhancement in apoptosis and caspase-3 and 9 activity, while a selective p38 MAPK inhibitor, SB203580 and JNK inhibitor, SP600125 significantly inhibited E. coli-induced apoptosis and caspase-3 and 9 activity in U937 cells. The results were further confirmed by the observation that the caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK blocked E. coli-induced U937 apoptosis. Taken together, we have shown that E. coli increase p38 MAPK and JNK and decrease ERK1/2 phosphorylation and increase caspase-3 and 9 activity in U937 cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号