首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In human placentation, events of implantation and early blastocyst development are mediated by fetal trophoblastic cells which penetrate into the maternal endometrium and myometrium. Although highly regulated in its biological behavior, trophoblast simulates a malignant neoplasm by virtue of invading the uterine wall and uterine spiral arteries and by embolizing throughout the systemic circulation. This process is at least in part dependant on the regulated production of proteolytic enzymes to degrade extracellular matrix. The most abundant extracellular protein is connective tissue type (interstitial) collagen. The uterine remodeling during the establishment of the embryo requires collagenase which catalyzes the intial step in the breakdown of collagen. This study demonstrates the presence of interstitial collagenase in villous and extravillous trophoblast of first trimester placenta using immunocytochemical methods on light microscopic and ultrastructural levels. Intracytoplasmic staining for interstitial collagenase was present in cyto- and syncytiotrophoblast covering the chorionic villi as well as in extravillous intermediate trophoblast invading spiral arteries in the placental bed. Furthermore, outgrowth cultures of chorionic villi were studied with the immunogold method. Gold labelling was associated with the cell surface of trophoblastic cells as well as with fibrillary collagen like proteins of newly synthesized extracellular matrix. We speculate that interstitial collagenase plays a role in the degradation of uterine collagen within the developing human placenta.  相似文献   

2.
Fibulin-5 is a secreted extracellular matrix glycoprotein and displays a diverse panel of biological functions, which can be segregated into elastogenic as well as extra-elastogenic functions. While elastogenic functions of fibulin-5 include essential roles in early steps of elastic fibre assembly, extra-elastogenic functions are widespread. Depending on the cell type used, fibulin-5 mediates cell adherence via a subset of integrins, antagonizes angiogenesis and inhibits migration as well as proliferation of endothelial and smooth muscle cells. In this study, we focused on the spatiotemporal expression of fibulin-5 in the human placenta. With progressing gestation, placental fibulin-5 expression increased from first trimester towards term. At term, placental fibulin-5 mRNA expression is lower when compared with other well-vascularized organs such as lung, kidney, heart, uterus and testis. In first trimester, placenta immunohistochemistry localized fibulin-5 in villous cytotrophoblasts and extravillous cytotrophoblasts of the proximal cell column. In term placenta, fibulin-5 was detected in the endothelial basement membrane and adventitia-like regions of vessels in the chorionic plate and stem villi. Cell culture experiments with the villous trophoblast-derived cell line BeWo showed that fibulin-5 expression was downregulated during functional differentiation and intercellular fusion. Moreover, cultivation of BeWo cells under low oxygen conditions impaired intercellular fusion and upregulated fibulin-5 expression. The spatiotemporal shift from the trophoblast compartment in first trimester to the villous vasculature at term suggests a dual role of fibulin-5 in human placental development.  相似文献   

3.
HtrA1 is a secreted multidomain protein with serine protease activity. In light of increasing evidence implicating this protein in the regulation of skeletal development and pathology, we investigated the role of HtrA1 in osteoblast mineralization and identified domains essential for this activity. We demonstrate increased HtrA1 expression in differentiating 2T3 osteoblasts prior to the appearance of mineralization. HtrA1 is subsequently down-regulated in fully mineralized cultures. The functional role of HtrA1 in matrix calcification was investigated using three complementary approaches. First, we transfected a full-length HtrA1 expression plasmid into 2T3 cells and showed that overexpression of HtrA1 delayed mineralization, reduced expression of Cbfa1 and collagen type I mRNA, and prevented BMP-2-induced mineralization. Second, knocking down HtrA1 expression using short interfering RNA induced mineral deposition by 2T3 cells. Third, by expressing a series of recombinant HtrA1 proteins, we demonstrated that the protease domain and the PDZ domain are essential for the inhibitory effect of HtrA1 on osteoblast mineralization. Finally, we tested whether HtrA1 cleaves specific matrix proteins that are known to regulate osteoblast differentiation, mineralization, and/or BMP-2 activity. Full-length recombinant HtrA1 cleaved recombinant decorin, fibronectin, and matrix Gla protein. Both the protease domain and the PDZ domain were necessary for the cleavage of matrix Gla protein, whereas the PDZ domain was not required for the cleavage of decorin or fibronectin. Type I collagen was not cleaved by recombinant HtrA1. These results suggest that HtrA1 may regulate matrix calcification via the inhibition of BMP-2 signaling, modulating osteoblast gene expression, and/or via the degradation of specific matrix proteins.  相似文献   

4.
U M Moll  B L Lane 《Histochemistry》1990,94(5):555-560
In human placentation, events of implantation and early blastocyst development are mediated by fetal trophoblastic cells which penetrate into the maternal endometrium and myometrium. Although highly regulated in its biological behavior, trophoblast simulates a malignant neoplasm by virtue of invading the uterine wall and uterine spiral arteries and by embolizing throughout the systemic circulation. This process is at least in part dependant on the regulated production of proteolytic enzymes to degrade extracellular matrix. The most abundant extracellular protein is connective tissue type (interstitial) collagen. The uterine remodeling during the establishment of the embryo requires collagenase which catalyzes the initial step in the breakdown of collagen. This study demonstrates the presence of interstitial collagenase in villous and extravillous trophoblast of first trimester placenta using immunocytochemical methods on light microscopic and ultrastructural levels. Intracytoplasmic staining for interstitial collagenase was present in cyto- and syncytiotrophoblast covering the chorionic villi as well as in extravillous intermediate trophoblast invading spiral arteries in the placental bed. Furthermore, outgrowth cultures of chorionic villi were studied with the immunogold method. Gold labelling was associated with the cell surface of trophoblastic cells as well as with fibrillary collagen like proteins of newly synthesized extracellular matrix. We speculate that interstitial collagenase plays a role in the degradation of uterine collagen within the developing human placenta.  相似文献   

5.
The purpose of this study was to examine the expression of hemeoxygenases HO-1 and HO-2, which are responsible for the production of carbon monoxide (CO), in the human placenta and placental bed and to determine the role of inhibitors of HO on placental perfusion pressure. We hypothesized that HO is expressed within the placenta and that invading cytotrophoblast cells (CTB) express HO isoforms. The expression of HO-1 and HO-2 was studied on placenta and placental bed biopsies, obtained using a transcervical sampling technique, from normal human pregnancies between 8 and 19 wk gestation and at term. In the placenta, HO-2 immunostaining was prominent in syncytiotrophoblast in the first trimester and reduced toward term (P<0.0005). HO-2 endothelial immunostaining was weak in the first trimester, but increased by term (P<0.0005). Within the placental bed, HO-2 was expressed by CTB in cell columns, the cytotrophoblast shell, and cell islands. Both intravascular CTB and interstitial CTB expressed HO-2. HO-1 immunostaining was low in the placenta but intense on the CTB within the placental bed. A striking feature was the absence of HO-1 from the proximal layers of cell columns, with strong expression on the more distal CTB layers of the cell columns. In placental perfusion studies, a significant dose-dependent increase in perfusion pressure was observed in the presence of zinc protoporphyrin, an inhibitor of HO. These results suggest a role for CO in placental function, trophoblast invasion, and spiral artery transformation. Hemeoxygenase expression in human placenta and placental bed implies a role in regulation of trophoblast invasion and placental function.  相似文献   

6.
The placenta is a multifunctional organ that protects the fetus from toxic compounds and the MRPs contribute to this function. The expression of MRP1, MRP2, MRP3, and MRP5 was compared in human placental tissue and in BeWo cells by real-time RT-PCR analysis; protein expression was assessed by Western blot. MRP1 and MRP3 were the most abundantly expressed genes in placenta but only MRP1 was highly expressed in the BeWo cells. Expression of MRP1 increased 4-fold in the third as compared with first trimester placental samples, and increased 20-fold with polarization of BeWo cells. MRP2, MRP3, and MRP5 were weakly expressed both in placenta and BeWo cells. Protein expression followed mRNA quantification for MRP1 and MRP5 but not for MRP2 and MRP3. These data indicated that MRP1 and MRP5 increase with trophoblast maturation, suggesting a particular role for these proteins in the organ functional development.  相似文献   

7.
It has been proposed that tumor suppressor genes may have a role in the mechanisms of proliferation and differentiation during human placental development. The Retinoblastoma gene family is a well known family of tumor suppressor genes. Many studies have pointed out a role of this family not only in cell cycle progression, but also during development and differentiation. On the light of these observations we have investigated the immunohistochemical expression pattern of the Retinoblastoma family members, p107 and Rb2/p130 in human placenta samples in first trimester and full-term placental sections. p107 and pRb2/p130 showed the most abundant expression levels during the first trimester of gestation and progressively declined to being barely detectable in the placenta by late gestation. These results indicate that the expression of the above genes is modulated during placental development and suggest a mechanism for controlling trophoblast proliferation.  相似文献   

8.
Placental villous development requires the co-ordinated action of angiogenic factors on both endothelial and trophoblast cells. Like vascular endothelial growth factor (VEGF), VEGF-C increases vascular permeability, stimulates endothelial cell proliferation and migration. In the present study, we investigated the expression of VEGF-C and its receptors VEGFR-3 and VEGFR-2 in normal and intrauterine growth-restricted (IUGR) placenta. Immunolocalisation studies showed that like VEGF and VEGFR-1, VEGF-C, VEGFR-3 and VEGFR-2 co-localised to the syncytiotrophoblast, to cells in the maternal decidua, as well as to the endothelium of the large placental blood vessels. Western blot analysis demonstrated a significant decrease in placental VEGF-C and VEGFR-3 protein expression in severe IUGR as compared to gestationally-matched third trimester pregnancies. Conditioned medium from VEGF-C producing pancreatic carcinoma (Suit-2) and endometrial epithelial (Hec-1B) cell lines caused an increased association of the phosphorylated extracellular signal regulated kinase (ERK) in VEGFR-3 immunoprecipitates from spontaneously transformed first trimester trophoblast cells. VEGF121 caused dose-dependant phosphorylation of VEGFR-2 in trophoblast cells as well as stimulating DNA synthesis. In addition, premixing VEGF165 with heparin sulphate proteoglycan potentiated trophoblast proliferation and the association of phospho-ERK with the VEGFR-2 receptor. VEGF165-mediated DNA synthesis was inhibited by anti-VEGFR-2 neutralising antibody. The results demonstrate functional VEGFR-2 and VEGFR-3 receptors on trophoblast and suggest that the decreased expression of VEGF-C and VEGFR-3 may contribute to the abnormal villous development observed in IUGR placenta.  相似文献   

9.
Molecular heterogeneity of creatine kinase isoenzymes   总被引:4,自引:0,他引:4  
The [32P]phosphoamino acids in proteins of first trimester and term-cultured human placentas have been separated and their relative amounts were measured. A significant phosphorylation of tyrosine residues could be detected in the cultured placental tissue at different stages of gestation. The phosphotyrosine accounts for 2-4% of the total acid-stable phosphate in the phosphoamino acids after partial acid hydrolysis. The difference in the extent of [32P]tyrosine in various placentas seems to be a function of biological variation of the individual placentas, rather than a function of placental age and stage of gestation. In contrast, a significant difference in the phosphorylation ratio of serine and threonine could be measured between first trimester and term placentas. As more evidence is accumulating that protein phosphorylation of tyrosine is involved in the processes of cellular growth and proliferation, our findings of the relatively high tyrosine phosphorylation in human placenta strongly suggest that this type of protein phosphorylation may play an important role in the placental growth and development. Furthermore, these findings may correlate with the existence of the endogenous RNA virus-like particles found in normal human placenta.  相似文献   

10.
Changes of expression of contractile proteins (smooth muscle cell α-actin and myosin) and of type IV collagen in villous stroma of human placenta were studied at the diagnosed placental insufficiency (PI) in III trimester of pregnancy. The study revealed pronounced disturbances of expression of contractile proteins and type IV collagen at PI. It is shown that in perivascular sheaths of vessels of stem and intermediate villi there is present a much greater amount of cells expressing smooth muscle actin and myosin. These cells are arranged by the denser concentric layers and more compactly than in norm and fill the intervascular space inside the villi. The width of perivascular sheaths of vessels is higher, while vascular lumens are lower than in norm. In terminal villi the capillary walls are thickened and the number of pericytes immunopositive against the smooth muscle cell α-actin and myosin as well as type IV collagen is increased. The change of synthesis of the cytoskeletal contractile proteins and type IV collagen is shown to lead to structural disturbances of villi of different types and of perivascular areas and vessels, which doubtlessly indicates their participation in pathogenesis of placental dysfunction and of disturbance of placental hemodynamics.  相似文献   

11.
12.
Alteration of the Bcl-2:Bax ratio in the placenta as pregnancy proceeds   总被引:12,自引:0,他引:12  
The placenta is the primary site of nutrient and gas exchange between mother and foetus. During human placental development, proliferation, differentiation and apoptosis occur at different stages. In order to clarify some of the molecular mechanisms underlying these events, we investigated the pattern of expression of two members of the Bcl-2 family in human placenta samples and compared them to the level of apoptosis detected by the TUNEL method.In particular, we evaluated the expression of Bcl-2 and Bax and their ratio during the first and third trimester. We found that Bcl-2 was generally expressed at low levels during the entire gestational period. On the other hand, Bax was low during the first trimester but increased towards the end of gestation. In accordance with the change of ratio of these two molecules, the increase of apoptotic cells was observable in the third trimester. These data indicate that Bcl-2 and Bax are spatio-temporally regulated during placental development and that the different expression of the above mentioned genes is at least in part responsible for the delicate balance between cell proliferation and programmed cell death in the human placenta during pregnancy.  相似文献   

13.
The [32P]phosphoamino acids in proteins of first trimester and term-cultured human placentas have been separated and their relative amounts were measured. A significant phosphorylation of tyrosine residues could be detected in the cultured placental tissue at different stages of gestation. The phosphotyrosine accounts for 2–4% of the total acid-stable phosphate in the phosphoamino acids after partial acid hydrolysis. The difference in the extent of [32P]tyrosine in various placentas seems to be a function of biological variation of the individual placentas, rather than a function of placental age and stage of gestation. In contrast, a significant difference in the phosphorylation ratio of serine and threonine could be measured between first trimester and term placentas. As more evidence is accumulating that protein phosphorylation of tyrosine is involved in the processes of cellular growth and proliferation, our findings of the relatively high tyrosine phosphorylation in human placenta strongly suggest that this type of protein phosphorylation may play an important role in the placental growth and development. Furthermore, these findings may correlate with the existence of the endogenous RNA virus-like particles found in normal human placenta.  相似文献   

14.
Tissue fibronectin is an endogenous ligand for galectin-1   总被引:5,自引:0,他引:5  
A 14K ß-galactoside-binding lecttn (galectin-1) ispresent in many animal tissues. In a search for endogenous ligands,we surveyed galectin-1-binding proteins in human placenta. Extractof human placenta with 2 M urea was applied to a Sepharose 4Bcolumn conjugated with galectin-1 purified from frog (Rana catesbeiana)eggs. Two major proteins eluted with 100 mM lactose from thecolumn-bound fraction showed apparent molecular masses of 220and 180 kDa on SDS-PAGE under reducing conditions. Western blottinganalysis using monoclonal antibodies indicated that these proteinswere fibronectin and laminin, respectively. Most placenta] andamniotic fibronectins bound strongly to the column, whereasalmost all plasma fibronectin passed through the column. Thegalectin-1, fibronectin and laminin were immunohistochemicallyshown to be co-localized in the extracellular matrix of placentaltissue. In a cell attachment assay, rhabdosarcoma cells adheredto a plate coated with placental fibronectin, even in the presenceof GRGDS peptide, if galectin-1 were also present This adhesiveeffect of galectin-1 was inhibited by lactose. These resultsindicate that tissue fibronectin, as well as laminin, serveas endogenous ligands for galectin-1, suggesting that galectin-1may play a role in assembly of the extracellular matrix, orin the control of cell adhesion based on lectin-extracellularmatrix interaction. extracellular matrix fibronectin galectin laminin placenta  相似文献   

15.
The interaction of transforming growth factor beta (TGF beta) with extracellular matrix macromolecules was examined by using radiolabeled TGF beta and various matrix macromolecules immobilized on nitrocellulose. TGF beta bound to collagen IV with greater affinity than to other extracellular matrix macromolecules tested. Neither laminin nor fibronectin, both of which bind type IV collagen, interfered with the binding of TGF beta to type IV collagen. TGF beta 2 competed effectively with TGF beta 1 for binding to type IV collagen. The biological effect of TGF beta was tested by an assay based on inhibition of proliferation of an osteoblast cell line, MC3T3-E1. The results demonstrated that the effect of TGF beta 1 was sustained when cells were grown on type IV collagen compared to cells grown on laminin, collagen type I, and plastic. These results demonstrate that extracellular matrix components may function as an affinity matrix for binding and immobilizing soluble growth and differentiation factors. In view of the demonstrated role of basement membranes in development the present results imply an important function for transforming growth factor beta bound to collagen IV in local regulation of cell proliferation and differentiation.  相似文献   

16.
Human first-trimester floating mesenchymal villi explanted onto gels of collagen I or Matrigel were observed to undergo de novo development of anchoring sites. These consisted of cytotrophoblast columns that formed by proliferation of stem villous cytotrophoblast cells, as revealed by whole-mount and thin-section microscopy and incorporation of bromodeoxyuridine into DNA. Column formation occurred exclusively at the distal tips of the villi. No column formation was observed in tissue explanted onto agarose. On Matrigel, the developing columns penetrated downwards into the matrix, whereas on collagen I, cytotrophoblast sheets spread across the surface of the gel and merged to form a shell. The developing columnar cytotrophoblast up-regulated integrins alpha1beta1 and alpha5beta1 and produced an extracellular matrix containing oncofetal fibronectin, as in vivo. Function-blocking antibodies were used to investigate the role of the integrin-fibronectin interaction in anchoring villus development on collagen I. Antibodies to fibronectin and the integrin subunits alpha5 and beta1, added at 24 h, all changed the pattern of cytotrophoblast outgrowth. Anti-fibronectin caused cell rounding within the cytotrophoblast sheet and increased the population of single cells at its periphery. Anti-integrin alpha5 caused rounding and redistribution of cells within the outgrowth. In the presence of anti-integrin beta1, cell-collagen interactions within the sheet were destabilized, often leading to the appearance of an annulus of aggregated cells at the periphery. These results show that 1) mesenchymal villi retain the potential to form anchoring sites until at least the end of the first trimester, 2) adhesion to a permissive extracellular matrix stimulates cytotrophoblast proliferation and differentiation along the extravillous lineage, 3) integrin alpha5beta1-fibronectin interactions contribute significantly to anchorage of the placenta to uterine extracellular matrix. We suggest that as the developing placenta ramifies, new sites of anchorage form whenever peripheral villi contact decidua. This process is predicted to contribute to the stability of the placental-decidual interface.  相似文献   

17.
The balance between cell death and cell proliferation and its regulation are essential features of many physiological processes and are particularly important in fetal morphogenesis and adult tissue homeostasis. Apoptosis is a type of cell suicide that is activated in two main ways: through a receptor-mediated pathway or through a mitochondrial pathway. We have investigated the immunohistochemical distribution of proteins belonging to these two pathways in human placenta during gestation by comparing their expression levels between the first and third trimester of gestation. In the first trimester, the receptor-mediated pathway prevails over the mitochondrial pathway with a moderate/intense expression of its three components, viz., Fas ligand (FasL), Fas, and caspase-8, and weak positivity of anti-apoptotic FLIP, these proteins being mainly localized in the cytotrophoblast compartment. In the third trimester of gestation, there is an increased expression of mitochondrial pathway proteins, viz., Apaf-1 and caspase-9. We have also investigated the expression level of caspase-3, the primary effector caspase of both pathways, and have observed that it is moderately expressed during gestation, being mainly localized in the cytotrophoblast during the first trimester and in both placental compartments during the third trimester of gestation. Thus, both pathways actively function in human placenta to execute cell death. By means of immunoelectron microscopy, we have further shown that, in human placenta, the two proteins of the mitochondrial pathway together with caspase-3 are localized both in the cytoplasm and in the nucleus. In particular, Apaf-1 and caspase-9 are distributed near to the nuclear envelope suggesting an important role for these two proteins in disrupting the nuclear–cytoplasmic barrier. This work was supported in part by the University of Naples Federico II (V.L.); the Second University of Naples; Regione Campania Funds AIRC (A.D.L.) and I.S.S.C.O (President H.E. Kaiser)  相似文献   

18.
Interaction between endometrial stromal cells and extracellular matrix (ECM) components has a crucial role in the development of endometriosis. Endometrial stromal cells attach to the mesothelial surface of peritoneum by means of integrins during their initial implantation and growth in endometriosis. Similarly, interaction between integrin and the extracellular matrix is also crucial for the remodeling of the endometrium during early pregnancy. We hypothesized that adhesion of endometrial stromal cells to the extracellular matrix could suppress the immunologic reaction to implanting endometrial cells by inducing the expression of Fas ligand (FasL), a mediator of the apoptotic pathway. Western blot analysis of human endometrial stromal cells plated onto fibronectin, laminin, and collagen IV revealed higher levels of FasL protein expression compared with endometrial stromal cells that plated to BSA-coated plates (control). Immunocytochemistry results from endometrial stromal cells plated to extracellular matrix proteins demonstrated a similar up-regulation of FasL expression. Eutopic endometrial stromal cells from women with endometriosis demonstrated higher FasL expression on control plates and those coated with extracellular matrix proteins compared with those from women without endometriosis. Disruption of actin cytoskeleton in endometrial stromal cells by treatment with cytochalasin D blocked the increase of FasL protein expression that occurred in response to adhesion to the extracellular matrix. These results suggest that attachment of endometrial stromal cells during retrograde menstruation to a new environment such as peritoneum with increased expression of laminin, fibronectin, and collagen IV could lead to an increase in FasL expression. Induction of FasL expression by adhesion of endometrial stromal cells to the extracellular matrix may take part in the development of a relative immunotolerance by inducing apoptosis of cytotoxic T lymphocytes, which will allow further development of ectopic implants.  相似文献   

19.
Fibrosis is a pathological situation in which excessive amounts of extracellular matrix (ECM) are deposited in the tissue. Myofibroblasts play a crucial role in the development and progress of fibrosis as they actively synthesize ECM components such as collagen I, fibronectin and connective tissue growth factor (CTGF) and cause organ fibrosis. Transforming growth factor beta 1 (TGF-β1) plays a major role in tissue fibrosis. Activin receptor-like kinase 1 (ALK1) is a type I receptor of TGF-β1 with an important role in angiogenesis whose function in cellular biology and TGF-β signaling is well known in endothelial cells, but its role in fibroblast biology and its contribution to fibrosis is poorly studied. We have recently demonstrated that ALK1 regulates ECM protein expression in a mouse model of obstructive nephropathy. Our aim was to evaluate the role of ALK1 in several processes involved in fibrosis such as ECM protein expression, proliferation and migration in ALK1+/+ and ALK1+/− mouse embryonic fibroblasts (MEFs) after TGF-β1 stimulations and inhibitors. ALK1 heterozygous MEFs show increased expression of ECM proteins (collagen I, fibronectin and CTGF/CCN2), cell proliferation and migration due to an alteration of TGF-β/Smad signaling. ALK1 heterozygous disruption shows an increase of Smad2 and Smad3 phosphorylation that explains the increases in CTGF/CCN2, fibronectin and collagen I, proliferation and cell motility observed in these cells. Therefore, we suggest that ALK1 plays an important role in the regulation of ECM protein expression, proliferation and migration.  相似文献   

20.
Placenta is a transient feto-maternal association that develops during mammalian pregnancies. Human placental tissue during the first trimester of pregnancy is an actively dividing and differentiating tissue, while near term, it represents a fully differentiated unit performing many life-sustaining functions for the fetus. Previous studies have demonstrated that the percentage of placental cells that undergo apoptosis is greater at full term as compared to the first trimester of pregnancy. In this study, we undertook a study aimed at gaining an insight into the kind of genes expressed in the two developmentally distinct stages of gestation ie, the first trimester and term using Differential Display RT-PCR. Cloning and sequencing of one of the differentially expressed cDNAs from term placental tissue revealed that it is a novel gene, referred to as T-18 in the text. In this study, we also examined the regulation of this gene during apoptosis in the human placenta. A model for analysis of placental apoptosis was established by incubating placental villi in serum-free culture medium. It was observed that apoptosis occurred rapidly following incubation of placental villi without tropic support, and the proposed free-radical scavenger, superoxide dismutase (SOD) suppressed apoptosis in the placenta. Interestingly, the levels of T-18 mRNA increased significantly during spontaneous induction of apoptosis and decreased when apoptosis was blocked by SOD. These data clearly suggest that there is a strong correlation between the expression of T-18 and placental apoptosis and that T-18, may play a significant role in this process. Furthermore, the establishment of a defined in vitro explant culture model should facilitate elucidation of factors, which regulate apoptosis in human placenta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号