首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 896 毫秒
1.
The presynaptic muscarinic autoreceptor of Torpedo marmorata electric organ has been characterised by radioligand binding studies using the subtype-selective antagonists pirenzepine, (+)-telenzepine, methoctramine, and AF-DX 116. The presynaptic receptor had relatively high affinity for the M1 antagonists pirenzepine and (+)-telenzepine (Ki = 35 and 7 nM, respectively) and lower affinities for the M2 antagonists AF-DX 116 and methoctramine (Ki = 311 and 277 nM, respectively). Comparison of these binding data with those from an M2 receptor (rat heart membranes) assayed under identical conditions and with data in the recent literature suggests that the Torpedo muscarinic autoreceptor has a pharmacology most similar to the M1 pharmacological subtype of muscarinic acetylcholine receptor.  相似文献   

2.
The rat M1 muscarinic receptor gene was cloned and expressed in a rat cell line lacking endogenous muscarinic receptors. Assignment of the cloned receptors to the M1 class was pharmacologically confirmed by their high affinity for the M1-selective muscarinic antagonist pirenzepine and low affinity for the M2-selective antagonist AF-DX-116. Guanylyl imidodiphosphate [Gpp(NH)p] converted agonist binding sites on the receptor, from high-affinity to the low-affinity state, thus indicating that the cloned receptors couple to endogenous G-proteins. The cloned receptors mediated both adenylate cyclase inhibition and phosphoinositide hydrolysis, but by different mechanisms. Pertussis toxin blocked the inhibition of adenylate cyclase (indicating coupling of the receptor to inhibitory G-protein), but did not affect phosphoinositide turnover. Furthermore, the stimulation of phosphoinositide hydrolysis was less efficient than the inhibition of adenylate cyclase. These findings demonstrate that cloned M1 receptors are capable of mediating multiple responses in the cell by coupling to different effectors, possibly to different G-proteins.  相似文献   

3.
The muscarinic antagonists pirenzepine and telenzepine were derivatized as alkylamino derivatives at a site on the molecules corresponding to a region of bulk tolerance in receptor binding. The distal primary amino groups were coupled to the cross-linking reagent meta-phenylene diisothiocyanate, resulting in two isothiocyanate derivatives that were found to inhibit muscarinic receptors irreversibly and in a dose-dependent fashion. Preincubation of rat forebrain membranes with an isothiocyanate derivative followed by radioligand binding using [3H]N-methylscopolamine diminished the Bmax value, but did not affect the Kd value. The receptor binding site was not restored upon repeated washing, indicating that irreversible inhibition had occurred. IC50 values for the irreversible inhibition at rat forebrain muscarinic receptors were 0.15 nM and 0.19 nM, for derivatives of pirenzepine and telenzepine, respectively. The isothiocyanate derivative of pirenzepine was non-selective as an irreversible muscarinic inhibitor, and the corresponding derivative prepared from telenzepine was 5-fold selective for forebrain (mainly m1) vs. heart (m2) muscarinic receptors.  相似文献   

4.
The M1-selective muscarinic antagonists aprophen, caramiphen, carbetapentane, 2-DAEX, dicyclomine, hexahydrosiladifenidol, iodocaramiphen, nitrocaramiphen, oxybutynin and trihexyphenidyl potently inhibited binding to sigma sites in brain. Both basic ester and non-ester structural type compounds which exhibit affinity for the muscarinic receptor also demonstrated affinity for the sigma site, while the classical antimuscarinic agents atropine and QNB, and the tricyclic pirenzepine, were ineffective in binding to this site. We also observed a significant correlation between the Ki values for sigma compounds to inhibit [3H]pirenzepine binding and their IC50 values to inhibit carbachol-stimulated phosphoinositide turnover. These observations may aid in elucidating the relationship of sigma binding to inhibition of phosphoinositide turnover stimulated by cholinergic agonists.  相似文献   

5.
The study reports the functional affinity of an amidino derivative of pirenzepine, guanylpirenzepine, for muscarinic receptors mediating relaxation of rat duodenum, inhibition of rabbit vas deferens twitch contraction (both receptors previously classified as M1), guinea pig negative inotropism (M2) and ileal contraction (M3). Unlike pirenzepine, guanylpirenzepine discriminated between duodenum and vas deferens receptors, with a 30-fold greater affinity for the former subtype. The unique selectivity pattern of guanylpirenzepine (duodenum greater than vas deferens greater than ileum greater than atrium) renders it a promising tool for the classification of muscarinic receptor subtypes.  相似文献   

6.
The differential effects of muscarinic agents on inositol phospholipid hydrolysis and the role in this process of putative muscarinic receptor subtypes (M1 and M2) were investigated in three regions of guinea pig brain. Addition of the agonist oxotremorine-M to slices of neostriatum, cerebral cortex, or hippocampus incubated in the presence of myo-[2-3H]inositol and Li+ resulted in a large accumulation of labeled inositol phosphates (733, 376, and 330% of control, respectively). In each tissue, the principal product formed was myo-inositol 1-phosphate (59-86%), with smaller amounts of glycerophosphoinositol and inositol bisphosphate. Only trace amounts of inositol trisphosphate could be detected. Regional differences were observed in the capacity of certain partial agonists to evoke inositol lipid hydrolysis, the most notable being that of bethanechol, which was four times more effective in the neostriatum than in either the cerebral cortex or hippocampus. In addition, the full agonists, oxotremorine-M and carbamoylcholine, were more potent stimulators of inositol phosphate release in the neostriatum than in the cerebral cortex. The putative M1 selective agonist 4-m-chlorophenylcarbamoyloxy-2-butynyl trimethyl ammonium chloride had little stimulatory effect in any brain region, whereas the putative M1 selective antagonist pirenzepine blocked the enhanced release of inositol phosphates with high affinity in the cerebral cortex and hippocampus (Ki = 12.1 and 13.9 nM; "M1") but with a lower affinity in the neostriatum (Ki = 160 nM; "M2"). In contrast to its differential effects on stimulated inositol lipid hydrolysis, no regional differences were observed in the capacity of pirenzepine to displace [3H]quinuclidinyl benzilate, a muscarinic antagonist, bound to membrane fractions. Atropine, an antagonist that does not discriminate between receptor subtypes, inhibited the enhanced release of inositol phosphates with similar affinities in the three regions (Ki = 0.40-0.60 nM). The results indicate that by measurement of inositol lipid hydrolysis, regional differences in muscarinic receptor coupling characteristics become evident. These differences, which are not readily detected by radioligand binding techniques, might be accounted for by either the presence of functionally distinct receptor subtypes, or alternatively, by regional variations in the efficiency of muscarinic receptor coupling to inositol lipid hydrolysis.  相似文献   

7.
R Hammer  A Giachetti 《Life sciences》1982,31(26):2991-2998
The heterogeneity of muscarinic receptors was examined in sympathetic ganglia and atria by “in vitro” binding techniques and functional studies. As tools we have used the classical antagonist atropine, the selective antagonist pirenzepine and the unique muscarinic agonist McN-A-343. In binding studies atropine showed similar affinities to muscarinic sites in ganglionic and atrial membranes with dissociation constants of 1.1 and 3.2 nM, respectively. In contrast, pirenzepine displayed a distinctly different binding profile. In atria it bound to an homogenous population of low affinity sites (diss. const. 620 nM) while in ganglia it revealed the presence of two sites: a major population of high affinity sites (diss. const. 11 nM) and a minor one of lower affinity (diss. const. 280 nM). The functional correlate of the receptor properties in the two tissues was studied in the pithed rat by measuring A) the increase of arterial pressure evoked by McN-A-343 through selective activation of muscarinic receptors in ganglia and B) the bradycardia elicited by acetylcholine release in the heart through vagal stimulation. Mirroring the “in vitro” binding data atropine inhibited both muscarinic responses in the same narrow range of doses (2–30 μg/kg i.v.) whereas pirenzepine showed similar potency to atropine in inhibiting ganglionic stimulation (ED50 4.1 μg/kg i.v.) but was almost two orders of magnitude weaker in blocking vagal bradycardia (ED50 172 μg/kg i.v.). These data suggest that McN-A-343 and pirenzepine act selectively on a common muscarinic receptor subtype, a finding which agrees with the view that muscarinic receptors are heterogenous and that excitatory ganglionic receptors (Ml) are distinguishable from those (M2) present in effector organs like smooth muscle and heart.  相似文献   

8.
Radioligand binding was conducted on airways of the rat and human, surgically subdivided into trachea, lung airways, and parenchyma. 3H-QNB bound uniformly to receptors in separate sections of the rat and human airway. Receptor densities generally were ranked: lung airways greater than trachea greater than parenchyma. Receptor subtypes were identified mostly by pirenzepine displacement of bound 3H-QNB. The rat trachea, and rat and human lung airways had a uniformly low affinity for pirenzepine while rat and human parenchyma demonstrated both high and low affinity pirenzepine binding. Inhibition of methacholine-stimulated smooth muscle contraction by the M1 receptor antagonist, pirenzepine, and M2 receptor antagonist, gallamine, was studied in rat trachea and bronchus in vitro. Schild plot pA2 values were compatible with low potency antagonism, thereby favoring the presence of M3 receptors at these smooth muscle sites. Reserpine treatment of rats (0.5 mg kg-1 day-1 for 7 days) produced a decrease in peak tension in response to methacholine without changing the muscarinic receptor character (Kd 3H-QNB), population density (Bmax in fmol mg-1 protein), or function (methacholine EC50). These results indicate that muscarinic receptor heterogeneity exists in the airway of both laboratory rat and man. While the muscarinic receptor subserving airway smooth muscle contraction appears to be the M3 subtype, decreased contractile responses to methacholine by trachea and bronchus from reserpine-treated rats were receptor independent.  相似文献   

9.
Effect of some selective muscarinic receptor agonists and antagonists was investigated on learning acquisition in an active-avoidance paradigm in rats which records an anticipatory conditioned avoidance apart from the classical conditioned avoidance response. The muscarinic M1 agonists, arecholine, pilocarpine and McN-A-343, facilitated learning acquisition, which was attenuated by the selective M1 antagonist, pirenzepine. On the other hand, M2 receptor agonist, carbachol, and physostigmine, induced a dose-related dual response, with lower doses retarding and higher doses facilitating the learning acquisition. The former effect was attenuated by gallamine, a muscarinic M2 antagonist, while the latter response was inhibited by pirenzepine, indicating that these putative M2 receptor agonist lose their receptor specificity on dose increment. The selective M2 receptor antagonists, gallamine and AF-DX 116, facilitated learning acquisition, which was inhibited by pirenzepine and the acetylcholine synthesis inhibitor hemicholinium. The results support the cholinergic hypothesis of learning and memory and indicate that M1 receptor agonists and M2 receptor antagonists are likely to prove beneficial in memory deficits. The data also indicates that the clinical dose of some drugs, like physostigmine, needs to be carefully established for optimum therapeutic benefit.  相似文献   

10.
Human M1 muscarinic receptor chimeras were designed (i) to allow detection of their interaction with the fluorescent antagonist pirenzepine labelled with Bodipy [558/568], through fluorescence resonance energy transfer, (ii) to investigate the structure of the N-terminal extracellular moiety of the receptor and (iii) to set up a fluorescence-based assay to identify new muscarinic ligands. Enhanced green (or yellow) fluorescent protein (EGFP or EYFP) was fused, through a linker, to a receptor N-terminus of variable length so that the GFP barrel was separated from the receptor first transmembrane domain by six to 33 amino-acids. Five fluorescent constructs exhibit high expression levels as well as pharmacological and functional properties superimposable on those of the native receptor. Bodipy-pirenzepine binds to the chimeras with similar kinetics and affinities, indicating a similar mode of interaction of the ligand with all of them. From the variation in energy transfer efficiencies determined for four different receptor-ligand complexes, relative donor (EGFP)-acceptor (Bodipy) distances were estimated. They suggest a compact architecture for the muscarinic M1 receptor amino-terminal domain which may fold in a manner similar to that of rhodopsin. Finally, this fluorescence-based assay, prone to miniaturization, allows reliable detection of unlabelled competitors.  相似文献   

11.
Functionalized congeners of the M1-selective muscarinic antagonist telenzepine (4,9-dihydro-3-methyl-4-[(4-methyl-1-piperazinyl)acetyl]-10H- thieno[3,4-b][1,5]benzodiazepin-10-one) were developed and found to bind to the receptor with affinities (Ki values) in approximately the nanomolar range. The derivatives contain a 10-aminodecyl group, which provides a nucleophilic functionality for further derivatization. The attachment of a spacer chain to the distal piperazinyl nitrogen was based on previous findings of enhanced affinity at muscarinic receptors in an analogous series of alkylamino derivatives of pirenzepine [J. Med. Chem. (1991) 34, 2133-2145]. The telenzepine derivatives contain prosthetic groups for radioiodination, protein cross-linking, photoaffinity labeling, and fluorescent labeling and biotin for avidin complexation. The affinity for muscarinic receptors in rat forebrain (mainly m1 subtype) was determined in competitive binding assays vs [3H]-N-methylscopolamine. A (p-aminophenyl)-acetyl derivative for photoaffinity labeling had a Ki value of 0.29 nM at forebrain muscarinic receptors (16-fold higher affinity than telenzepine). A biotin conjugate displayed a Ki value of 0.60 nM at m2-receptors and a 5-fold selectivity versus forebrain. The high affinity of these derivatives makes them suitable for the characterization of muscarinic receptors in pharmacological and spectroscopic studies, for peptide mapping, and for histochemical studies.  相似文献   

12.
Recent studies have demonstrated that the majority of muscarinic receptors in rabbit peripheral lung homogenates bind pirenzepine with high affinity (putative M1 subtype). In experiments of AF-DX 116 inhibiting [3H](-)quinuclidinyl benzilate or [3H]pirenzepine, we found similar inhibitory constants for AF-DX 116 binding in rat heart and rabbit peripheral lung that were 4-fold smaller (i.e. of higher affinity) than the inhibitory constant for rat cerebral cortex. This result demonstrates heterogeneity of the M1 muscarinic receptor subtype between peripheral lung and cerebral cortex.  相似文献   

13.
The effect of pirenzepine on carbamylcholine (carbachol)-stimulated pepsinogen secretion was compared with that of atropine in the isolated guinea pig gastric glands. Pirenzepine and atropine caused a dose dependent inhibition of carbachol-stimulated pepsinogen secretion. Moreover, pirenzepine as well as atropine produced a rightward shift in the dose response curve of carbachol-stimulated pepsinogen secretion but did not alter the maximum increase in pepsinogen secretion. Results therefore demonstrate that pirenzepine acts as a specific receptor antagonist in the interaction of carbachol with its receptor on gastric chief cells. However, pirenzepine was 50 times less potent than atropine in inhibiting pepsinogen secretion. Half maximal inhibitory concentration of pirenzepine was 2 X 10(-5) M when a maximally effective concentration of carbachol was used, while that of atropine was 4 X 10(-7) M. Results, therefore, suggest that muscarinic receptor on gastric chief cells to which pirenzepine binds may be an intermediate affinity type.  相似文献   

14.
Characterization of muscarinic receptor subtypes in human tissues   总被引:5,自引:0,他引:5  
The affinities of selective, pirenzepine and AF-DX 116, and classical, N-methylscopolamine and atropine, muscarinic cholinergic receptor antagonists were investigated in displacement binding experiments with [3H]Pirenzepine and [3H]N-methylscopolamine in membranes from human autoptic tissues (forebrain, cerebellum, atria, ventricle and submaxillary salivary glands). Affinity estimates of N-methylscopolamine and atropine indicated a non-selective profile. Pirenzepine showed differentiation between the M1 neuronal receptor of the forebrain and the receptors in other tissues while AF-DX 116 clearly discriminated between muscarinic receptors of heart and glands. The results in human tissues confirm the previously described selectivity profiles of pirenzepine and AF-DX 116 in rat tissues. These findings thus reveal the presence also in man of three distinct muscarinic receptor subtypes: the neuronal M1, the cardiac M2 and the glandular M3.  相似文献   

15.
According to molecular biological and pharmacological criteria, rat heart membranes normally express only one muscarinic receptor subtype. The selective antagonists pirenzepine and AF-DX 116 bind to this receptor with a single affinity: low and high, respectively. We report here that an endogenous, intracellular factor alters the affinity of selective antagonists for muscarinic receptors in the heart. Thus, when the intracellular fluid is added back to rat heart membranes, both pirenzepine and AF-DX 116 bind to two receptor sites. Approximately 30% of the receptors bind pirenzepine with high affinity and AF-DX 116 with low affinity. Thus, while cardiac muscarinic receptors are coded for by a single mRNA and are therefore genetically homogeneous, the resulting receptor protein might behave like a mixture of receptor subtypes in intact tissues due to the influence of intracellular factors on receptor conformation.  相似文献   

16.
An in vitro preparation was developed to study vagus nerve-stimulated (preganglionic) and field-stimulated (post-ganglionic) contraction of the rabbit main stem bronchus and to compare the inhibitory effects of muscarinic antagonists on that contraction. The maximal contractile responses (20 V, 0.5 ms, 64 Hz) for either field or vagal stimulation were completely abolished by atropine (60 nM). Hexamethonium (0.1 mM) abolished the response to vagal stimulation but did not affect the field-stimulated response. To compare the effectiveness of atropine and pirenzepine as antagonists at the nerve-smooth muscle junction, inhibition studies of field-stimulated contractions were performed. Pirenzepine was 102- to 178-fold less potent than atropine when compared at the inhibitory concentration of antagonist that produced 25, 50, and 75% inhibition (IC25, IC50, and IC75, respectively), indicating that the muscarinic receptor at the nerve-smooth muscle junction is a muscarinic receptor with low affinity for pirenzepine (M2 subtype). Atropine had similar inhibitory effects on vagal- and field-stimulated contractions. In contrast, pirenzepine was more potent in inhibiting vagally stimulated contraction than field-stimulated contraction, especially at the IC25 where pirenzepine was only 8- to 22-fold less potent than atropine in inhibiting vagally stimulated contraction. These data suggest that an M1 subtype of muscarinic receptor modulates excitatory neurotransmission through bronchial parasympathetic ganglia.  相似文献   

17.
A series of derivatives of the known M1 selective muscarinic receptor agonist McN-A-343 (1) was designed with the aim of investigating the effects of structural variations on both the butynyl chain and the phenyl ring of 1. The butynyl chain was replaced with an aromatic spacer, and the effects of such a modification on the stereoelectronic properties of the molecules were theoretically studied and considered compatible with muscarinic receptor affinity. Substituents on the phenyl ring of 1 were selected so as to vary their electronic and hydrophobic properties. This design strategy did not produce muscarinic M1 receptor agonists more potent than the prototype 1, even if some analogues displayed functional selectivity for different muscarinic receptor subtypes. Compounds 3 and 7 were selective agonists towards muscarinic M3 receptors, while compounds 14, 16 and 18 were selective muscarinic M2 receptor agonists. The most interesting derivative was 8, a full agonist at muscarinic M3 receptors devoid of activity at both muscarinic M1 and M2 subtypes. The pharmacological profile of the series was further characterized by studying the anticholinesterase and miotic activities of some representative compounds. Compounds 3-8 turned out to be weak acetylcholinesterase inhibitors, while derivatives 4, 6, 8 and 11 were able to significantly reduce the pupillary diameter in rabbit, indicating 8 as an effective miotic agent.  相似文献   

18.
Agonist binding to multiple muscarinic receptors   总被引:3,自引:0,他引:3  
The binding of agonists to muscarinic cholinergic receptors is well described by a binding model of multiple affinity states (superhigh, high, and low) in most central and peripheral tissues. Although previous studies of the influences by divalent cations, guanine nucleotides, and sulfhydryl reagents support the concept that these regulators act through closely related sites to alter the relative proportions of muscarinic agonist affinity states, it has become apparent that muscarinic receptor subtypes (as defined with the nonclassical antagonist pirenzepine) are differentially affected by the regulators. For example, in tissues that have few high-affinity [3H]pirenzepine-binding sites (heart, ileum, cerebellum), magnesium ions promote the formation of a high agonist affinity state, whereas exposure of these tissues to the sulfhydryl reagent N-ethylmaleimide (NEM) or guanine nucleotides promotes the formation of a low agonist affinity state. Conversely, tissues rich in high-affinity [3H]pirenzepine-binding sites (cerebral cortex, corpus striatum, hippocampus) show little, if any, change in agonist binding site affinity when magnesium ions or guanine nucleotides are present. Furthermore, NEM enhances the muscarinic binding site affinity for agonists in these tissues. Taken together, these results support the concept of muscarinic receptor heterogeneity, as proposed from previous physiological studies, and indicate that the aforementioned regulators (guanine nucleotides, magnesium ions, NEM) differentially alter the agonist-binding properties of these muscarinic receptor subtypes.  相似文献   

19.
Muscarinic receptors in the rat cerebral cortex, cardiac atria and vas deferens were identified, quantitated, and characterized relative to phosphatidylinositol (PI) turnover as the functional response to stimulation of specific receptor subtypes. Receptor densities as determined by 3H-QNB binding were ranked: cerebral cortex greater than vas deferens greater than heart. Using displacement of 3H-QNB binding by the selective M1 and M2 muscarinic receptor antagonists pirenzepine and 11[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro- 6H-pyrido [2,3-b] [1,4] benzodiazepine-6-one (AF-DX 116) respectively, heterogeneous populations were found in the cerebral cortex and vas deferens. The M1 receptor subtype predominated in the former and the M2 predominated in the latter. An homogeneous M2 receptor population was present in the heart. Methacholine-stimulated accumulation of 3H inositol-1-phosphate was greater in the vas deferens than in the cerebral cortex, whereas PI turnover was not enhanced in cardiac atria. Reserpine treatment of rats (0.5 mg kg-1 day-1 for 7 days) increased muscarinic receptor density in the vas deferens coincident with a shift in the low affinity pKi for AF-DX 116 to a value comparable to high affinity binding, and abolished the enhanced PI hydrolysis. In the cerebral cortex, reserpine treatment shifted only the early portion of the methacholine dose-response curve to the right. These results are judged to be supportive of preferential coupling between the M3 muscarinic receptor subtype and PI turnover.  相似文献   

20.
Heterogeneity of the muscarinic receptor population in the rat central and peripheral lung was found in competition binding experiments against [3H]quinuclidinyl benzilate [( 3H]QNB) using the selective antagonists pirenzepine, AF-DX 116 and hexahydrosiladifenidol (HHSiD). Pirenzepine displaced [3H]QNB with low affinity from preparations of central airways indicating the absence of M1 receptors in the trachea and bronchi. Muscarinic receptors in the central airways are comprised of both M2 and M3 receptors since AF-DX 116, an M2-selective antagonist, bound with high affinity to 70% of the available sites while HHSiD, an M3-selective antagonist bound with high affinity to the remaining binding sites. In the peripheral lung, pirenzepine bound with high affinity to 14% of the receptor population, AF-DX 116 bound with high affinity to 79% of the binding sites while HHSiD bound with high affinity to 18% of the binding sites. The presence of M1 receptors in the peripheral airways but not in the central airways was confirmed using [3H]telenzepine, an M1 receptor ligand. [3H]Telenzepine showed specific saturable binding to 8% of [3H]QNB labeled binding sites in homogenates of rat peripheral lung, while there was no detectable specific binding in homogenates of rat trachea or heart. The results presented here demonstrate that there are three muscarinic receptor subtypes in rat lungs, and that the distribution of the different subtypes varies within the lungs. Throughout the airways, the dominant muscarinic receptor subtype is M2. In the trachea and bronchi the remaining receptors are M3, while in the peripheral lungs, the remaining receptors are both M1 and M3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号