首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 912 毫秒
1.
The activity of the enzyme ribulose bisphosphate carboxylase(RuBPCase) was estimated after rapidly extracting it from intactwheat leaves pretreated under different light and CO2 levels.No HCO3 was added to the extraction buffer since it isshown to inhibit RuBPCase. The activity increased as light intensityor CO2 concentration during pretreatment was increased. Enzymeactivity increased as temperature during pretreatment was decreased.Light activation did not affect the affinity of RuBPCase forCO2. A Km of 30 µM CO2 under air level O2 was determined.CO2, light and temperature are three main limiting factors ofphotosynthesis. It seems that the activity of RuBPCase is regulatedby these factors according to the requirements for CO2 fixation.  相似文献   

2.
Pascopyrum smithii (C3) andBouteloua gracilis (C4) are importantforage grasses native to the Colorado shortgrass steppe. Thisstudy investigated photosynthetic responses of these grassesto long-term CO2enrichment and temperature in relation to leafnonstructural carbohydrate (TNC) and [N]. Glasshouse-grown seedlingswere transferred to growth chambers and grown for 49 d at twoCO2concentrations (380 and 750 µmol mol-1) at 20 and 35°C, and two additional temperatures (25 and 30 °C) at750 µmol mol-1CO2. Leaf CO2exchange rate (CER) was measuredat a plant's respective growth temperature and at two CO2concentrationsof approx. 380 and 700 µmol mol-1. Long-term CO2enrichmentstimulated CER in both species, although the response was greaterin the C3,P. smithii . Doubling the [CO2] from 380 to 750 µmolmol-1stimulated CER ofP. smithii slightly more in plants grownand measured at 30 °C compared to plants grown at 20, 25or 35 °C. CO2-enriched plants sometimes exhibited lowerCER when compared to ambient-grown controls measured at thesame [CO2], indicating photosynthetic acclimation to CO2growthregime. InP. smithii , such reductions in CER were associatedwith increases in TNC and specific leaf mass, reductions inleaf [N] and, in one instance, a reduction in leaf conductancecompared to controls. InB. gracilis , photosynthetic acclimationwas observed more often, but significant changes in leaf metabolitelevels from growth at different [CO2] were generally less evident.Temperatures considered optimal for growth (C3: 20 °C; C4:35 °C) sometimes led to CO2-induced accumulations of TNCin both species, with starch accumulating in the leaves of bothspecies, and fructans accumulating only inP. smithii. Photosynthesisof both species is likely to be enhanced in future CO2-enrichedand warmer environments, although responses will sometimes beattenuated by acclimation. Acclimation; blue grama (Bouteloua gracilis (H.B.K.) Lag ex Steud.); leaf nitrogen concentration; nonstructural carbohydrates; photosynthesis; western wheatgrass (Pascopyrum smithii (Rydb.) Love)  相似文献   

3.
Mesophyll resistance to photosynthetic carboxylation (r'm) wasused as a criterion for leaf integrity. It was measured, at25 °C, in the light, before and after periods of high temperature(3 h at 38 °C) in the dark. During the high temperatureperiods, respiration (RD) of attached leaves of Xanthium strumariumwas suppressed from 27%-36% by either low [O2] (1.04% or 0.21%v.v.) or high [CO2] (840 µl 1–1) in the ambientair. Neither treatment affected rates of RD or photo-respirationduring the second period at 25 °C. There was no significant increase of r'm when RD was not suppressedduring the high temperature treatment. When RD was suppressedat high temperatures, r'm increased from about 3s cm–1before, to about 26 s cm–1 after the high temperaturetreatment. The increase depended upon the degree of suppression. It is concluded that increased RD at high temperature in Xanthiumleaves is partly the result of an increase of energy demandingmaintenance. The subsequent rate of carbon dioxide fixationis reduced when this increase of maintenance-induced respirationis inhibited.  相似文献   

4.
Yamashita, T. 1987. Modulated degradation of ribulose ftisphosphatecarboxylase in leaves on top-pruned shoots of the mulberry tree(Morus alba L.).—J. exp. Bot. 38: 1957–1964. The effects of pruning shoot tops on the synthesis and degradationof ribulose 1,5–Wsphosphate carboxylase (RuBPCase) inleaves on remaining shoots were investigated in mulberry trees.Leucine labelled with 14C was fed to leaf discs from field-grownmulberry trees and 14C incorporation into RuBPCase was examined.Proportion of 14C in RuBPCase to leucine–14C absorbedby leaf discs was remarkably lowered by top-pruning, thoughoccasionally a slight increase was observed soon after pruning.Yet RuBPCase content in leaves on top-pruned shoots became progressivelyhigher than that in leaves on intact shoots. Changes in 14Cin Ru1BPCase in leaves of mulberry saplings previously fed 14CO2were followed. Following 14CO2 feeding, the attainment of themaximal level of 14C in RuBPCase was retarded by top-pruning.The highest level of 14C in RuBPCase was maintained in leaveson top-pruned shoots but decreased in leaves on intact shoots.Specific radioactivity in RuBPCase continued to increase inleaves on top-pruned shoots even after attaining a maximum levelin the control leaves. These facts suggest that the increasein RuBPCase by top-pruning results from a cessation of its degradationfor the remobilization of nitrogen for newly developing leaveson shoot tops. Key words: RuBP carboxylase, shoot pruning, mulberry (Morus alba)  相似文献   

5.
The ontogenic changes in several component processes of photosynthesiswere measured in chickpeas. Gas exchange characteristics ofintact leaves were studied to analyse the effects of ambientconditions under which chickpeas are usually grown. The CO2assimilation rate per unit leaf area remained fairly high duringthe vegetative stage, reaching a peak at early pod-fill anddeclining subsequently throughout pod development. The intercellularCO2 partial pressure (C1) remained more or less constant (195µbar) during vegetative growth and the early stages ofseed-filling. With falling RWC and PAR interception, the stomatalconductance declined more rapidly than the CO2 assimilationrate resulting in a value of C1 less than that normally existingunder ambient conditions. From the A/C1-analysis, CO2 assimilationduring pod-filling appears to be limited by the RuBP-regenerationcapacity because the carboxylation efficiency and in vitro RuBPCaseactivity were initially unaffected. However, as leaves aged,the carboxylation efficiency and in vitro RuBPCase activitydecreased abruptly with increasing leaf temperatures above 30°C, and the C1 was greater than normally existing values(195 µbar), suggesting an increased mesophyll limitationof photosynthesis. It is suggested that a decline in the CO2assimilation rate of leaves during pod development and an acceleratedsenescence are induced by adverse ambient conditions, particularlyplant water stress and high leaf temperature. Key words: Cicer arietinum L., gas exchange, photosynthesis, ribulose-1,5-bisphosphate carboxylase  相似文献   

6.
The influence of temperature on photosynthesis and transpirationwas studied in ten varieties of Lolium perenne, L. multiflorum,Dactylis glomerata, and Festuca arundinacea from three climaticorigins grown in three different controlled environments (15?C, 72 W m-2 visible irradiation, 16-h photoperiod; 25 ?C, 72W m-2 visible irradiation, 16-h photoperiod; and 25 ?C, 180W m-2 visible irradiation, 16-h photoperiod) and in the glasshousein July/August. The optimum temperature for photosynthesis was influenced primarilyby growth environment; growth at low temperature (15 ?C) resultedin a low optimum temperature, which differed little from varietyto variety. The maximum CO2-exchange rate was influenced bygrowth environment and by variety. Within a variety, plantsgrown at higher light intensity or lower temperature had a greaterCO2-exchange rate. Seven varieties showed a negative correlationbetween the optimum leaf temperature and the maximum CO2-exchangerate. Activation energies for photosynthesis were influencedby growth environment only. There were marked varietal differences in the values of leafresistances (ra + rt) obtained from transpiration data at theoptimum leaf temperature for CO2 exchange. In Lolium, and Dactylisthe Mediterranean varieties had higher leaf resistances thanthe Northern varieties with the maritime varieties intermediate.In general the Dactylis varieties had higher resistances thanthe corresponding Lolium and Festuca varieties. Only at highgrowth temperatures was (ra+rl) insensitive to temperature;otherwise an activation energy of about 10 kcal/mole was observed.A negative correlation was found between mean varietal diffusionresistances (ra+rl), and corresponding maximum CO2-exchangerates.  相似文献   

7.
Acclimation of Lolium temulentum to enhanced carbon dioxide concentration   总被引:2,自引:0,他引:2  
Acclimation of single plants of Lolium temulentum to changing[CO2] was studied on plants grown in controlled environmentsat 20°C with an 8 h photoperiod. In the first experimentplants were grown at 135 µ;mol m–2 s–1 photosyntheticphoton flux density (PPFD) at 415µl l–1 or 550µll–1 [CO2] with some plants transferred from the lowerto the higher [CO2] at emergence of leaf 4. In the second experimentplants were grown at 135 and 500 µmol m–2 s–1PPFD at 345 and 575 µl l–1 [CO2]. High [CO2] during growth had little effect on stomatal density,total soluble proteins, chlorophyll a content, amount of Rubiscoor cytochrome f. However, increasing [CO2] during measurementincreased photosynthetic rates, particularly in high light.Plants grown in the higher [CO2] had greater leaf extension,leaf and plant growth rates in low but not in high light. Theresults are discussed in relation to the limitation of growthby sink capacity and the modifications in the plant which allowthe storage of extra assimilates at high [CO2]. Key words: Lolium, carbon dioxide, photosynthesis, growth, stomatal density  相似文献   

8.
SAMISH  Y.; KOLLER  D. 《Annals of botany》1968,32(4):687-694
An estimate of photorespiration is obtained from the relationshipbetween the net exchange of CO2 of the leaf and the internalCO2 concentration, i.e. within the mesophyll intercellular spaces.The latter is obtained by calculation, taking into account thecombined epidermal and boundary-layer resistances between thebulk atmosphere and the mesophyll intercellular spaces. Thelinear part of this relationship (at low CO2 concentrations)is extrapolated to zero internal concentration, at which noneof the intercellular photorespired CO2 is available for reassimilation.The calculated output of CO2 under such conditions providesan estimate of photorespiration, but, by failing to take intoaccount intracellular reassimilation of photorespired CO2 underestimatesactual photorespiration. As the slope of this linear relationshiprepresents the mesophyll (intracellular) resistance to CO2 uptake,this procedure was used to recalculate published data on effectsof light intensity and of oxygen concentration on net photosynthesis.The analysis showed that increased oxygen concentration anddecreased light intensity reduced photosynthesis largely byincreasing mesophyll resistance to CO2 uptake. It is suggestedthat the CO2 compensation point () is a function of both photorespiration(L) and mesophyll resistance (rm): = L. rm.  相似文献   

9.
Effects of atmospheric CO2 enrichment to a level above 600 parts10–6 on leaf and canopy gas exchange characteristics wereinvestigated in Trifolium repens, using an open system for gasexchange measurement. The cuvettes of the system served as growthchambers, allowing continuous measurement in a semi-controlledenvironment of ±350 and ±600 parts 10–6CO2, respectively. Carbon balance data were compared with cropyield and effects on the canopy level were compared with measuredleaf responses of photosynthesis and stomatal behaviour. Photosyntheticstimulation by high CO2 was stronger at the canopy level (103%on average) than for leaves (90% in full light), as a consequenceof accelerated foliage area development. The latter increasedabsolute water consumption by 16%, despite strong stomatal closure.The overall result was a 63% improvement in canopy water useefficiency (WUE), while leaf WVE increased almost 3-fold insaturating light. The stomatal response was such that, whilethe internal CO2 concentration in the leaf, ch increased withrising atmospherical CO2 concentration, ca, ci/ca was somewhatdecreased. Total canopy resistance, Rc, was generally lowerat high CO2 levels, despite higher leaf resistance. Higher canopyCO2 loss at night and faster light extinction in a larger-sizedhigh CO2 canopy were major drawbacks which prevented a furtherincrease in dry matter production (the harvest index was increasedby a factor 1.83). Key words: CO2 enrichment, canopy CO2 exchange, carbon balance, water use efficiency, leaf and canopy resistance  相似文献   

10.
The CO2 compensation point at 25 °C and 250 µEinsteinsm–2 s–1 wasmeasured for 27 bryo-phyte species, andwas found to be in the range of 45–160 µl CO2 I–1air. Under the same conditions Zea mays gave a value of 11 µlI–1 and Horde um vulgare 76 µI–1. The rate of loss of photosyntheticallyfixed 14CO2 in the light and dark in six bryophytes (three mosses,two leafy liverworts, one thalloid liverwort) was determinedin CO2-free air and 100% O2. The rate of 14CO2 evolution inthe light was less than that in the dark in CL2-free air, butin 100% O2 the rate in the light increased, so that in all butthe leafy liverworts it was greater than that in the dark. Raisingthe temperature tended to increase the rate of 14CO2 evolutioninto CO2-free air both in the light and dark, so that the light/dark(L/D) ratio did not greatly vary. The lower rate of loss of14CO2 in the light compared tothe dark could be due to partialinhibition of ‘dark respiration’ reactions in thelight, a low rate of glycolate synthesis and oxidation, or partialreassimilation of the 14CO2 produced, or a combination of someor all of these factors.  相似文献   

11.
Carbon dioxide and water vapour exchanges of the second leafof Zea mays in controlled environment cuvettes were measuredin an open gas-exchange system, during and following subjectionto low temperature stress. Photosynthetic CO2 assimilation (Fc)decreased markedly with decrease in leaf temperature so thatFc at 5 °C was c. 7% of Fc at 20 °C. Fc continued todecline if leaf temperature was maintained at 5 °C, andwhen returned to 20 °C the leaf could not regain its previousFc. This chill-induced reduction in the capacity of the leafto assimilate CO2 was proportional to the duration of the chilland increased with water vapour pressure deficit and photonflux density (In). Six hours at 5 °C decreased Fc on returnto 20 °C, relative to Fc prior to treatment, by c. 10% indarkness and by c. 50% in a photon flux density approachingfull-sunlight (Ip = 1.5 mmol m–2 s–1). The degreeof reduction in Fc following chill treatment showed an almostlinear dependence on both the length and temperature of thechill. Chill treatments resulted in a decrease in both stomataland mesophyll conductances. Examination of the responses ofFc to light and CO2 concentration suggested that chill damageto the capacity for CO2 assimilation resulted from effects onboth the light and CO2 limited processes within photosynthesis. Key words: Chilling, Photosynthesis, Zea mays, Light-temperature interaction  相似文献   

12.
The rate of net photosynthesis (P) of whole plant stands oftomato (Lycopersicon esculentum Mill.), cucumber (Cucumis sativusL.) and sweet pepper (Capsicum annuum L.) was measured in sixlong-term experiments in large greenhouses under normal operatingconditions and CO2-concentrations between 200 and 1200 µmolmol-1. The objective was to quantify the responses to lightand carbon dioxide and to obtain data sets for testing simulationmodels. The method of measuring canopy photosynthesis involvedan accurate estimation of the greenhouse CO2 balance, usingnitrous oxide (N2O) as tracer gas to determine, on-line, theexchange rate between greenhouse and outside air. The estimatedrelative error in the observed P was about ± 10%, exceptthat higher relative errors could occur under particular conditions. A regression equation relating P to the photosynthetically activeradiation, the CO2 concentration and the leaf area index explained83-91% of the variance. The main canopy photosynthesis characteristicscalculated with the fitted regression equations were: canopyPmax 5-9 g m-2 h-1 CO2 uptake; ratio Pmax/LAI 1·5-3 gm-2 h-1; light compensation point 32-86 µmol s-1 m-2;light use efficiency (quantum yield) at low light 0·06-0·10µmol µmol-1 and CO2 compensation point 18-54 µmolmol-1. The results were related to the prevailing conditions.Copyright1994, 1999 Academic Press Canopy photosynthesis, Capsicum annuum L., carbon dioxide, CO2, CO2 balance, CO2 use efficiency, cucumber, Cucumis sativus L., glasshouse, greenhouse, light use efficiency, Lycopersicon esculentum Mill., sweet pepper, tomato, tracer gas  相似文献   

13.
Photosynthesis by developing embryos of oilseed rape (Brassica napus L.)   总被引:1,自引:0,他引:1  
The aim of this study was to assess the photosynthetic potentialof developing seeds of oilseed rape (Brassica napus L.) andto compare photosynthetic properties of embryo plastids withthose of leaf chloroplasts from the same species. Measurementsof CO2-dependent O2 evolution show that developing seeds ofB. napus are photosynthetically active in vitro. Essentially,all of the photosynthetic activity of the developing seed isaccounted for by the embryo. The rate of photosynthesis by developingembryos increased until the onset of desiccation, after whichit declined, so that by maturity embryos were no longer photosyntheticallyactive. Photosynthetic activity was positively correlated withchlorophyll content throughout development. Comparison of thephotosynthetic characteristics of leaf and embryo chloroplastsrevealed that rates of uncoupled electron transport were 2.5-foldgreater in those from the embryo. Light-saturated rates of CO2-dependentO2 evolution, per unit chlorophyll, and CO2 saturation pointswere similar for chloroplasts from both tissues. However, light-saturationpoints and chlorophyll a/b ratios were lower for embryo thanfor leaf choroplasts. Embryos and embryo chloroplasts also containedconsiderably less ribulose 1,5-bisphosphate carboxylase/oxygenaseprotein per unit total protein, than leaves. Although excisedembryos were capable of high rates of CO2-dependent O2 evolution(90–100 mol mg–1 chlorophyll h–1) under asaturating photosynthetic photon flux density (PPFD), low transmittanceof light through the silique wall (30%), together with the highPPFD required to achieve light compensation points in developingseeds (500 mol m–2 s–1), suggests that photosynthesisin vivo is unlikely to make a net contribution to carbon economyunder normal environmental conditions. Key words: Embryo, development, photosynthesis, chloroplast, Brassica napus L.  相似文献   

14.
Equipment is described which delivers air with concentrationsof CO2 and water vapour closely controlled in the ranges 0 to2500 ppm and 5 to 15 mb respectively, at flow rates of up to10 1 min-1, to each four leaf chambers. The leaf temperatureis controlled to ±0.5 °C and, with a light intensityof 0.3 cal cm-2 min-1 visible radiation (0.4 to 0.7 µm)leaf temperature can be maintained at 17.5 °C.The apparatusused to measure the concentration differences between the watervapour and CO2 entering and leaving the leaf chamber (used tocalculate transpiration, photosynthetic, and respiration rates)is described in detail.Results of tests, which show the necessityfor mounting a fan within the leaf chamber, are reported.Typicallight- and CO2-response curves are given for kale leaves (Brassicaoleracca var. acephala) and an attempt is made to quantify theerrors in the measurement of photosynthesis and transpiration.  相似文献   

15.
When leaf discs of Xanthium strumarium L. a C3 plant, or Zeamays L. a C4 plant, are incubated in 1-aminocyclopropane-l-carboxylicacid (ACC) in closed flasks, ethylene is released. The rateof ethylene release appears to be dependent on the levels oflight and CO2 available for photosynthesis in the tissues. In Xanthium the rate of ethylene release is lower in the lightthan in the dark regardless of the presence or absence of addedbicarbonate as a source of CO2. The inhibition of ethylene releaseis most apparent in the absence of added bicarbonate (i.e. atthe CO2 compensation point), and at light intensities sufficientto saturate photosynthesis (had the CO2 level in the test flaskbeen maintained). In contrast, light dramatically promotes therate of ethylene release from Zea leaf tissue when the CO2 levelis maintained above the CO2 compensation point. The rate ofethylene release from either Xanthium or Zea, incubated withor without added bicarbonate, does not appear to be alteredby further increasing the light intensity above the minimallevels sufficient to saturate photosynthesis. In the closed system used in these studies and at a light intensitysufficient to saturate photosynthesis, Xanthium and Zea leaftissue both appear to release comparable amounts of ethylenefrom ACC when the data is expressed on a chlorophyll basis.However, in Xanthium the rate of ethylene release is similarin light and dark, while in Zea the rate in the light is muchgreater than in the dark when the data is expressed either ona leaf area or on a chlorophyll basis. It is suggested thatthe different responses of these tissues to light/dark transientsmay reflect differences in their ability to metabolize ACC and/ordifferences in their ability to retain and metabolize ethyleneitself.  相似文献   

16.
The relationship between temperature and the distribution ofMiscanthusfloridulus(Labill) Warb andM. transmorrisonensisHayata alongaltitudinal gradients in central Taiwan was examined. Responsesof biomass accumulation, leaf characteristics and photosyntheticgas exchange to growth temperature (from 10 to 30 °C) ofM.floridulusfrom an altitude of 390 m and ofM. transmorrisonensisfrom2700 m were determined. There were differences between the twospecies in above-ground biomass, CO2uptake characteristics andleaf chlorophyll contents in response to growth temperature.The optimal temperatures for biomass accumulation were 30/25(day/night temperature) and 25/20 °C forM. floridulusandM.transmorrisonensis,respectively. Light saturated photosyntheticrates (Amax) were largest in plants grown at the optimal temperature.Growth at 15/10 and 10/10 °C compared to the optima reducedaccumulated biomass, leaf chlorophyll content and photosyntheticrate in both species with a greater reduction inM. floridulusthaninM. transmorrisonensis.We concluded that growth ofM. floridulusathigh altitude is limited by an inability to grow at temperatureslower than 15 °C, whileM. transmorrisonensisis able to growin chilling temperatures at higher altitudes.Copyright 1998Annals of Botany Company Miscanthus floridulus;M. transmorrisonensis; C4plants; chlorophyll content; leaf growth; photosynthetic gas exchange; biomass accumulation; temperature response.  相似文献   

17.
Dwarf french beans (Phaseolus vulgaris var. Canadian Wonder)were grown in chambers at 25?C with the roots aerated at 20per cent oxygen and tops variously maintained at: T1 O2 0.21;CO2 270?10–6: T2; O2 0.05, CO2, CO2 270?10–6: T3;O2 0.21; CO2 550?10–6. Experiment 1 (T1 and T2) lasted2 weeks: Experiment 2 (T1 T2 and T3) only one week. Hourly estimatesof CO2 uptake were made by gas analysis and weekly estimatesof fresh weight, dry matter in tops and roots, and leaf area,by sampling. Light intensity was 80 W m–2 of photosyntheticallyactive radiation. An attempt was made to explain the results in terms of a simplelight absorption model such that where dV/dt is the rate of CO2 uptake per plant, ßis the photosynthetic efficiency, I0 is the incident light intensity,f is the fraction of incident light absorbed by unit leaf layerand L is the leaf area index. The analysis showed that ß(T2)was at least double ß(T1), whilst f(T2) was smallerthan f(T1) at a given leaf area. The results also required thatthroughout the period of the experiment, fL(T1)=fL(T2) at anygiven time, i.e. the treatment with the larger leaf area (T2)has the smaller value of f, and therefore intercepts less lightper unit leaf area. This could be advantageous for plant growth,but requires further experiments. The photosynthetic rates per unit leaf are about 40 per centgreater in T2 than T1. Over the relatively short period of the experiment the resultsare adequately described by U=btn, where U is the accumulatedcarbon dioxide uptake, b is related to the photosynthetic efficiency(different for the differing treatments), and n is a constant(similar for all treatments). This relationship with time isbelieved to be a relationship with accumulated radiation, forthe light was constant throughout the experiments. Comparisons of carbon fixed (measured gas uptake) and dry matteraccumulation (sampling) show great scatter with an average valueof 0.43. The first week's results were generally smaller thanthis value and the second week's greater. Energy fixation as a fraction of photosynthetically active radiationon the ground area covered by the plants ranged from 3.5 to10 per cent. The results from treatment T3 were similar to T2 suggestingthat increasing CO2 concentration decreases the growth inhibitionat 21 per cent O2.  相似文献   

18.
Ribulose bisphosphate carboxylase (E.C.4.1.1.39) was purifiedfrom leaves of Triticum aestivum, Hordeum vulgare, Spinaceaoleracea, Petroselinum crispum, salad mustard-most likely Brassicanapus, Helianthus annuus, Solanum tuberosum, Beta vulgaris,Lolium perenne, Equisetum arvense, Zea mays, Ginkgo biloba,Pteris aquilina, Salix babylonica, Chamaecyparis lawsonianaand Atrichum undulatum by density gradient centrifugation andgel filtration or by ammonium sulphate fractionation, densitygradient centrifugation, ion-exchange chromatography and gelfiltration. Purified enzymes were freeze-dried and then storedat 0 °C to 4 °C. Portions of each enzyme preparationwere reactivated at 25 °C for 5 h in the presence of 10mM HCO2 and 20 mM MgCl2-RuBP carboxylase activities were measuredat four different concentrations of CO2 at 25 °C and pH8.2 in solutions equilibrated with pure nitrogen or air (21%O2, 79% N2). Km(CO2), Vmax and K1(O2) values were computed fromthe results. Significant differences were found in the Km(CO2)values for enzymes isolated from different species. Sensitivityof the enzymes to oxygen was less variable.  相似文献   

19.
It has been established that Kalanchoe blossfeldiana and Xanthiumpensylvanicum require CO2 during the light period of short daysfor successful photoperiodic induction of flowering, even ifall but the induced leaf are held in normal air. In X. pensylvanicumfloral induction in normal air was independent of the starchstatus of the leaves but when reserves were reduced, lack ofCO2 in the light suppressed floral induction to an even greaterextent. Injection into the induced leaf (Kalanchoe) or leaftip feeding (Xanthium) of carbohydrates, organic and amino acidsor several other metabolites failed to substitute for the CO2requirement for induction. A small response was produced by10 mg ml–1 sucrose in X. pensylvanicum while in normalair 25 parts 10–6 ATP reduced the time to flowering inK. blossfeldiana and 10–4 M proline was inhibitory. Anexperiment on the light requirement established a need for redlight ( max 660 nm) during photoperiods but red light alonedid not facilitate maximal induction. It is concluded that someearly, possibly labile, product of photosynthetic CO2 fixationis essential to floral induction in these species.  相似文献   

20.
Experiments are reported on the spatial distributions of isotopiccarbon within the mesophyll of detached leaves of the C3 plantVicia faba L. fed 14CO2 at different light intensities. Eachleaf was isolated in a cuvette and ten artificial stomata providedspatial continuity between the ambient atmosphere (0.03–0.05%v/v CO2) and the mesophyll from the abaxial leaf side. Paradermalleaf layers exhibited spatial profiles of radioactivity whichvaried with the intensity of incident light in 2 min exposures.At low light, when biochemical kinetics should limit CO2 uptake,sections through palisade cells contained most radioactivity.As the light intensity was increased to approximately 20% offull sunlight, peak radioactivity was observed in the spongycells near the geometric mid-plane of the mesophyll. The resultsindicate that diffusion of carbon dioxide within the mesophyllregulated the relative photosynthetic activity of the palisadeand spongy cells at incident photosynthetically active lightintensities as little as 110 µE m–2 s–1 whenCO2 entered only through the lower leaf surface. Key words: CO2 capture sites, Vicia faba L., Artificial stomata  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号