首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
An experimental artificial reef (AR) was built in Peter the Great Bay (Sea of Japan) to compensate for the biotope of Zostera destroyed by sea urchins. After eight years, the number of fish species on the AR increased from 5 to 18 and the fish biomass increased from 3.07 up to 37.1 g/m2. Nonmigrating species (Opisthocentrus, young-of-the-year rockfishes, elegant sculpin) formed the bulk of the population; and migrant species (flounders, frog and great sculpins, sea raven) made up the greater portion of the biomass (up to 34 g/m2). Cage reefs are recommended to compensate for destroyed habitats, particularly Zostera beds.Original Russian Text Copyright ¢ 2005 by Biologiya Morya, Markevich.  相似文献   

2.
Causes of the eelgrass wasting disease: Van der Werff's changing theories   总被引:1,自引:0,他引:1  
The 1930's wasting disease among the North Atlantic population of eelgrass,Zostera marina, is still an ecological and historical enigma, despite several attractive theories. Van der Werff investigated the die-back of eelgrass in the thirties in the Dutch Wadden Sea, and he considered the micro-organismLabyrinthula as the possible cause of the disease. In 1980, Grevelingen lagoon, harbouring an extensive population ofZostera marina, experienced a major decline of the area covered by the submerged macrophyte. Speculations about the cause of this dramatic decline induced us to think that the wasting disease had struck again. Van der Werff investigated the Grevelingen population and found bothLabyrinthula and a Chaetophoracean endophytic alga to be presumably responsible for the decline. During the quest for the ultimate cause of the wasting disease the question remains whether both micro-organisms are the cause of the disease or simply an effect of decomposition processes triggered by other factors.  相似文献   

3.
The role of hoplonemerteans in the ecology of seagrass communities   总被引:4,自引:3,他引:1  
Seagrasses of the world harbor a rich and varied fauna, but a review of the literature revealed that little has been done to evaluate the ecological importance of nemerteans in such communities. Monostiliferous hoplonemerteans are common inhabitants of some seagrasses, e.g. eelgrass (Zostera), but generally they are seldom collected or identified or are apparently absent in other species such as schoalgrass (Halodule) or turtlegrass (Thalassia). Nineteen species of hoplonemerteans (four families) have been identified from eelgrass beds around the world; they exist mainly as epifauna, and all except two species are probably suctorial feeders. Some palaeonemerteans (2 species) and heteronemerteans (4 species) are also associated with eelgrass, but mainly as infauna. Suctorial nemerteans (4 species in 3 families) from eelgrass beds located along the mid-Atlantic coast of the United States feed in the laboratory on a variety of amphipod species that inhabit eelgrass. Tubicolous species (e.g. Corophium) seem to be preferred. Zygonemertes virescens feeds on nine species of amphipods belonging to six families, and is the only species to feed on isopods (3 species). Analyses of field studies on the occurrence of hoplonemerteans in eelgrass beds in Virginia and New Jersey, along with available information on the food habits of these worms, were used as a basis for demonstrating their potential importance as predators of peracarids in seagrass systems. More careful methods for collecting and identifying worms, continued studies on food preferences and rates of predation, and emphasis on the population dynamics of worms and prey, are recommended in order to evaluate the role of suctorial hoplonemerteans in the ecology of seagrasses.  相似文献   

4.
Hayashida  Fumio 《Hydrobiologia》2000,421(1):179-185
The vertical distribution and population structure of eelgrass beds were surveyed in Iwachi Bay, along the Pacific coast of central Japan. Samplings were conducted from May through November 1977 by SCUBA. Eelgrass was distributed between 3 and 11 m in depth. The relative light intensity at 12 m depth was 11% at the lower range. The highest population density was 290 shoots/m2 in September and the fresh weight of biomass was 888 g/m2 in July at 7 m depth. The maximum mean leaf area index was about 3 at 10 m depth in July. The ratio of reproductive shoots to the total shoots was about 36% at 7 m depth in June. Eelgrass showed good growth at 7–10 m depth, which is comparatively deeper than other eelgrass habitations. The high values of water transparency and sunshine duration, as well as solar radiation compared with other localities was believed to contribute to the growth of eelgrass in deeper waters in Iwachi Bay.  相似文献   

5.
Summary Macrophytes in Lake Grevelingen comprise macroalgae (Ulva, Enteromorpha, Chaetomorpha) and eelgrass (Zostera marina). In terms of production of organic matter far out the largest share comes from eelgrass. Eelgrass showed an enormous increase after the closure of the dam in 1971: in 1968 the phanerogam covered an area of 1200 ha, and in 1978 this area was 4400 ha (Fig. 3).  相似文献   

6.
The present distribution of the invasive brown alga Sargassum muticum in the southwest Netherlands is updated. Populations of the alga were found to remain at their 1985 level in Lake Grevelingen, with a small eastward expansion into the Eastern Scheldt estuary. A new population for the brackish, non-tidal Lake Veere is reported. Within Lake Grevelingen S. muticum forms a persistent, extensive canopy of 100% cover (4,442.5 ± 525.6 g fresh wt m–2, 640.3 ± 75.8 g dry wt m–2) that has a marked effect upon the penetration of photosynthetically active radiation (PAR) (reduced by 97% at 0.1 m). Surface sea water temperatures can be elevated by 2.7 °C above water not associated with a Sargassum canopy; furthermore, the dense canopy shades and hence reduces water temperatures below 0.1 m depth. Productivity studies indicate that assimilation occurs in the upper levels of the canopy (57.09 µg C mg dry wt–1 m–2 at a mean PAR rate of 106.7 J cm–2 h–1). Self-shading and a resultant decrease in the rate of assimilation was evident below the canopy.  相似文献   

7.
The transport and establishment of non-indigenous species in coastal marine environments are increasing worldwide, yet few studies have experimentally addressed the interactions between potentially dominant non-native species and native organisms. We studied the effects of the introduced mussel Musculista senhousia on leaf and rhizome growth and shoot density of eelgrass Zostera marina in San Diego Bay, California. We added M. senhousia over a natural range in biomass (0–1200 g dry mass/m2) to eelgrass in transplanted and established beds. The effects of the non-indigenous mussel varied from facilitation to interference depending on time, the abundance of M. senhousia, and the response variable considered. Consistent results were that mussel additions linearly inhibited eelgrass rhizome elongation rates. With 800 g dry mass/m2 of M. senhousia, eelgrass rhizomes grew 40% less than controls in two eelgrass transplantations and in one established eelgrass bed. These results indicate that M. senhousia, could both impair the success of transplantations of eelgrass, which spread vegetatively by rhizomes, and the spread of established Z. marina beds to areas inhabited by M. senhousia. Although effects on leaf growth were not always significant, in August in both eelgrass transplantations and established meadows leaf growth was fertilized by mussels, and showed a saturation-type relationship to sediment ammonium concentrations. Ammonium concentrations and sediment organic content were linear functions of mussel biomass. We found only small, non-consistent effects of M. senhousia on shoot density of eelgrass over 6-month periods. In established eelgrass beds, but not in transplanted eelgrass patches (≈0.8 m in diameter), added mussels suffered large declines. Hence, eelgrass is likely to be affected by M. senhousia primarily where Z. marina beds are patchy and sparse. Our study has management and conservation implications for eelgrass because many beds are already seriously degraded and limited in southern California where the mussel is very abundant. Received: 31 May 1997 / Accepted: 4 September 1997  相似文献   

8.
The composition and abundance of the macroscopic biota of a sandy-bottom Zostera marina community at a depth of 3–5 m were studied in Tvärminne, S Finland, in 1968–1971. Zostera occurred contagiously and very sparsely, 6 ± 2 shoots · m−2, ash-free dry weight (AFDW) 2 ± 1 g · m−2 (95% confidence interval). Totals of 45 plant and 70 animal taxa were found. Fucus vesiculosus (80%) and Zostera marina (11%) dominated the plant biomass, 16.5 ± 17.8 g · m−2 in June 1971. At this time animal density was 8540 ± 830 ind. · m−2 (0.6-mm mesh) and AFDW 17.3 ± 5.0 g · m−2, 80–90% of the latter consisting of Macoma baltica, Mya arenaria, Corophium volutator, Nereis diversicolor and Hydrobia spp. The same percentage of animal density was made up by Hydrobia spp., M. baltica, C. volutator and Pygospio elegans. Normal analysis by classification of the samples suggested that the community was spatially rather homogeneous in 1971. Inverse analysis, based on interspecific correlations, revealed three distributional groups of species. These groups corresponded to the compositional subdivisions suggested by normal analysis. The community was subdivided into strata characterized by (D) deposit feeders, (Z) Zostera marina and (F) Fucus vesiculosus. The periodicity of the biota in the Zostera-characterized stratum was investigated. The principal dominants, especially Fucus, Zostera and Macoma, showed no distinct seasonal or interannual differences in 1968–1971, which made the community seem very stable. Yet, the species diversity of plants varied with the abundance of filamentous algae. Animal species diversity and mean animal density reached their seasonal minima in late summer, when the parental stocks of many invertebrates were dying and the summer's offspring were often still too small to be obtained by our methods. The recruitment of many important animal species failed in 1968 as compared with the other years.  相似文献   

9.
Summary During five 28-hours measurements in 1981, the oxygen production and consumption in an eelgrass community in saline Lake Grevelingen were investigated using light plexiglass enclosures. Applying a conversion factor of 0.29 the amount of carbon fixed and the amount of organic carbon mineralized were estimated. Gross and net production were estimated over 24-hours periods.There appeared to be a good correlation between production and insolation on the water surface. For every measurement period the production as a function of light and aboveground eelgrass biomass in the enclosure were calculated. This showed a maximum of 5.10–6 mg C.J.–1 g dry weight–1 in April and minimum of 1.4.10–6 mg C.J.–1 g–1 in August.Using the calculated production coefficients, the insolation and the eelgrass biomass the gross production, net production and consumption during the growing season of 1976 were calculated. Gross production amounted to 340 gC.m–2, and net production came to 130 g C.m–2. Approximately 60 gC.m–2 was respired by the eelgrass plants while the remaining 150 gC.m–2 was consumed or mineralized by other organisms on the sampling spot. Approximately 120 g C.m–2.yr–1 was transported by wind and wave action towards the eastern part of the lake where it became anaerobically degraded. This resulted in the formation of sulfide and methane.Communication no. 236 of the Delta Institute for Hydrobiological Research, Yerseke, The Netherlands.  相似文献   

10.
Consumption, production, and respiration of fish communities utilizing two eelgrass beds in a shallow estuarine system near Beaufort, North Carolina have been estimated for 1971–1972: annual production was 21.7 kcal/m2 in each bed with pinfish accounting for 45 and 68% of the production in the Phillips Island and Bogue Sound beds, respectively. Annual community respiration was 57.9 and 69.7 kcal/m2 in the two beds with pinfish accounting for 62.6 and 26.7% of the total in the Bogue Sound and Phillips Island beds, respectively. Estimation of the annual food energy consumed by the eelgrass fish community using the Winberg and daily ration methods gave values within 6% of each other.Energy turnover was high (2.8), and the efficiency of energy dissipation low for the two eelgrass fish communities, suggesting that the resident fish populations were adapted to the temperature extremes within the bed. High ecological efficiencies of 0.24 and 0.23 and the high overall efficiency of the eelgrass system (production/solar radiation) of 0.0051 and 0.0086% indicate that the eelgrass beds are efficient systems for converting consumed energy and solar radiation into fish.  相似文献   

11.
The biomass, productivity (14C), and photosynthetic response to light and temperature of eelgrass, Zostera marina L. and its epiphytes was measured in a shallow estuarine system near Beaufort, North Carolina, during 1974. The maximum of the biomass (above-ground) was measured in March; this was followed by a general decline throughout the rest of the year. The average biomass was 105.0 g dry wt m?2; 80.3 g dry wt m?2 was eelgrass and 24.7 g dry wt m?2 was epiphytes. The productivity of eelgrass averaged 0.88 mg C g?1 h?1 which was similar to that of the epiphytes, 0.65 mg C g?1 h?1. Eelgrass and epiphyte productivity was low during the spring and early summer, gave a maximum during late summer and fall, and declined during the winter; this progression was probably due to environmental factors associated with tidal heights. On an areal basis, the average annual productivity was 0.9 g C m?2 day?1 for eelgrass and 0.2 g C m?2 day?1 for the epiphytes. Rates of photosynthesis of both eelgrass and epiphytes increased with increasing temperature to an asymptotic value at which the system was light saturated. Both eelgrass and epiphytes had a temperature optimum of < 29 °C. A negative response to higher temperatures was also reflected in biomass measurements which showed the destruction of eelgrass with increasing summer temperatures. The data suggest that the primary productivity cycles of macrophytes and epiphytes are closely interrelated.  相似文献   

12.
The wax and wane of the eelgrass (Zostera marina L.) population in Grevelingen lagoon (East Atlantic; The Netherlands) has been documented for over 25 years, together with quantitative and semi-quantitative data on environmental variables. The population expanded after the closure of the Grevelingen estuary in 1971, but declined from 4600 ha surface area in 1978 to less than 100 ha in 1993. There is little causal evidence which factors are responsible for the observed dynamics of the population. The incomplete picture emerging from the data is that of an extremely impoverished eelgrass population, living under constant oligo-mesotrophic marine conditions. Both the sexual and the vegetative modes of reproduction are severely stressed by environmental variables, most likely a combination of low temperatures, high salinity, low dissolved silicate and low ammonium concentrations. Survival of the population asks for the restoration of moderate estuarine conditions.Contribution No. 2180 of the Netherlands Institute of Ecology, Nieuwersluis, The Netherlands.  相似文献   

13.
Genetic structure and diversity can reveal the demographic and selective forces to which populations have been exposed, elucidate genetic connections among populations, and inform conservation strategies. Beds of the clonal marine angiosperm Zostera marinaL. (eelgrass) in Chesapeake Bay (Virginia, USA) display significant morphological and genetic variation; abundance has fluctuated widely in recent decades, and eelgrass conservation is a major concern, raising questions about how genetic diversity is distributed and structured within this metapopulation. This study examined the influence of bed age (<65years versus<6years) and size (>100ha versus<10ha) on morphological and genetic (allozyme) structure and diversity within Chesapeake Bay eelgrass beds. Although both morphology and genetic diversity varied significantly among individual beds (F ST=0.198), neither varied consistently with bed age or size. The Chesapeake eelgrass beds studied were significantly inbred (mean F IS=0.680 over all beds), with inbreeding in old, small beds significantly lower than in other bed types. Genetic and geographic distances within and among beds were uncorrelated, providing no clear evidence of isolation by distance at the scale of 10's of km. These results suggest that local environmental conditions have a greater influence on plant morphology than do bed age or size. They support the hypotheses that eelgrass beds are established by multiple founder genotypes but experience little gene flow thereafter, and that beds are maintained with little loss of genetic diversity for up to 65 years. Since phenotypic and genotypic variation is partitioned among beds of multiple ages and sizes, eelgrass conservation efforts should maximize preservation of diversity by minimizing losses of all beds.  相似文献   

14.
The dried peripheral area of pond Idumban (62 ha) increased from 3.2 ha in January to 3 1.9 ha in April. Pila globosa, which were abundant in the littoral area, did not commence aestivation during this period, perhaps due to low temperature and/or high dissolved oxygen content. The number of aestivating snails averaged 0.5/m2 in May, 1973 (3.6% of the total population) and it increased to 1.1/M2 in September (26.2%). Biomass of the snail increased from 3.5 to 19.9 g dry weight (including shell)/M2. Number of aestivating snails increased from 0.4/m2 (5.2% of the total population) in May 1974 to 0.8/m2 (11.1%) in July and the biomass from 4.1 g/m2 to 10.7 g/m2. Availability of dried area for aestivation increased from 5.3 to 23.7 ha in 1973 and from 13.5 to 30.2 ha in 1974.Monthly observations made on the marked snails forced to aestivate at 7.5, 15.0, 22.5 and 30.0 cm depth in the pond during May, revealed that temperature above 35°C and moisture below 5% were critical. Mortality and weight loss decreased in the snails forced to aestivate at increasing depth. Random observations indicated that 83% of the aestivating snails buried themselves at 15 cm depth in the pond. On the whole, 98,480 snails (592 Kg) and 115,270 (758 Kg) died during aestivation in 1973 and 1974 respectively. Of the total weight loss, the energy lost via metabolism contributed only a small fraction of 2.2% (12 Kg) and 2.1% (15 Kg) during these years. Considering the total aestivation area, the snails which succumbed averaged only 0.4/m2/year (2.5 g/m2/year). On an average, dry substance equivalent to about 2.6 mg dry weight/ g dry weight of snail/ day (3.7 gcal/ g live snail/ day) was lost on metabolism by the aestivating snails, i.e. the metabolic level of the aestivating snail was about 1 / 18th of that of the actively feeding snail.  相似文献   

15.
Morphometry,Primary productivity and Energy flow in a Tropical Pond   总被引:1,自引:0,他引:1  
Monthly changes in the morphometric features of pond Idumban reveal that total and littoral areas progressively decreased from 62.4 and 15.4 ha in October-November-December to 6.8 and 2.6 ha in September. The dominant macrophytic producers in the littoral area of the pond were Chara fragilis, Hydrilla verticillata and Ceratophyllum demersum, which flourished from October for a period of 8 to 10 months, exhibiting a typical exponential or J-shaped population growth curve. Biomass of Ch. fragilis increased to the maximum of about 420 g dry weight/m2 in April, H. verticillata to 260 g/m2 in June–July and that of Ce. demersum to 140 g/m2 in April–May. In terms of unit weight, H. verticillata proved to be the most efficient, producing 156 mg dry substance/g plant/day; however, the mean values obtained for 1973-74 were 93, 54 and 53 mg/g/day for H. verticillata, Ch. fragilis and Ce. demersum; the corresponding NPP values 50, 29 and 30 mg/g/day. The GPP and NPP values, expressed in g dry weight/m2/day, were 7 and 4 for H. verticillata, 8 and 4 for Ch. fragilis, 3 and 2 for Ce. demersum. These values, expressed in mg C/m2/day, averaged to 8.2 and 4.6 for all the macrophytes and suggest that the macrophytes were photosynthetically faster and more efficient than phytoplankton. Total gross productivity for Idumban pond amounts to 1773 and 1449 ton (dry weight) for 1973 and 74, respectively: the corresponding values for the NPP were 953 and 825 ton. In other words, 44% of the GPP is lost on plant respiration. Plants equivalent to 56 ton (6% of NPP) are exposed to death in the periphery of the littoral area. The population of Pila globosa proved to be the dominant consumer of these macrophytes. Mean predation amounted to 64 ton/annum for Pila and 200 ton/ annum for other consumer animals. Solar energy known to enter the pond is 1,956,000 Kcal/m2/year. Of this, 24,682 Kcal/m2/year was fixed by the macrophytes, i.e. the photosynthetic efficiency is 1.3%. Of the total GPP, NPP amounted to 13,696 Kcal/m2/year; the net primary production efficiency is 56%. Consumption of the macrophytes by Pila population amounted to 2,943 Kcal/m year and the exploitation efficiency is only 21%.  相似文献   

16.
Monthly changes in density and biomass of a Pila globosa population were estimated in the littoral area of the pond Idumban. Mean density of active snail was 10.4, equivalent to 76 g dry weight/m2 during 1973 and 6.5, equivalent to 45 g/m2 during 1974. Total population size of the snail decreased from 9.2 × 106 individuals, equivalent to 6.5 ton during 1973 to 6.3 × 106 snails, equivalent to 4.4 ton during 1974. The period from December to May represented the time of abundance and active growth. Mortality assessed from marking and recapture as well as from monthly changes in population density, averaged to 2.7 snails/m2/month or 20% of the density. Growth estimated by marking and recapture suggested that the snail required a period of over 4 years to attain a body (wet) weight of 35 g. Laboratory experiments revealed that young (<4 g), intermediate (4 g><24 g) and old (>24 g) P. globosa grew at the rate of 4.0, 1.5 and 0.3 mg dry weight/g live weight/day. Using these values and the size-wise population density data, net productivity of the snail was estimated as 74 and 40 g/m2/year in 1973 and 74, respectively. The snail exhibited an efficiency of 70% for absorption and 10% for conversion. Using these values, it was further possible to estimate rates of feeding and absorption for the population. Consumption amounted to 1039 g/m2 in 1973 and 560 g/m2 in 1974. The efficiencies of exploitation, gross and net productions were 21, 7 and 10%, respectively; ecological efficiency amounted to 1.4% only.  相似文献   

17.
The assessment of the status of eelgrass (Zostera marina) beds at the bay-scale in turbid, shallow estuaries is problematic. The bay-scale assessment (i.e., tens of km) of eelgrass beds usually involves remote sensing methods such as aerial photography or satellite imagery. These methods can fail if the water column is turbid, as is the case for many shallow estuaries on Canada’s eastern seaboard. A novel towfish package was developed for the bay-scale assessment of eelgrass beds irrespective of water column turbidity. The towfish consisted of an underwater video camera with scaling lasers, sidescan sonar and a transponder-based positioning system. The towfish was deployed along predetermined transects in three northern New Brunswick estuaries. Maps were created of eelgrass cover and health (epiphyte load) and ancillary bottom features such as benthic algal growth, bacterial mats (Beggiatoa) and oysters. All three estuaries had accumulations of material reminiscent of the oomycete Leptomitus, although it was not positively identified in our study. Tabusintac held the most extensive eelgrass beds of the best health. Cocagne had the lowest scores for eelgrass health, while Bouctouche was slightly better. The towfish method proved to be cost effective and useful for the bay-scale assessment of eelgrass beds to sub-meter precision in real time.  相似文献   

18.
Summary The seasonal succession of the plankton in the marine brackish Lake Grevelingen, a closed sea arm in the S.W.-Netherlands, comprises the initial stagessensu Margalef and is characterized by predominantly small phytoplankton (flagellates, diatoms) and zooplankton (rotifers, tintinnids, copepods), maintaining relatively high levels of production from early spring (February) to late summer (September). The structure of the plankton in the course of seasonal succession is in agreement with the concepts of Margalef.Simplification of the pelagic food web in Lake Grevelingen has occurred as a consequence of the elimination of the tides. Some examples are given in relation to the composition of the phyto- and zooplankton and of its significance. The occurrence of rotifer-dominated zooplankton blooms in early spring is emphasized.Closed sea arms such as Lake Grevelingen, showing the same morphometry as the previous tidal estuary, contain extended shallow areas which influence strongly the pelagic zone. The abundance in the zooplankton of larval stages of several littoral-benthic species demonstrate these influences clearly. The shallows of the lake, occupied by eelgrass beds (Zostera marina) in summer, influence the pelagic zone in several ways: large quantities of detritus are given off after the growing season, sheltered habitats are supplied for small pelagic animals, and eelgrass leaves represent a substrate for epifauna species.Contribution no. 168 of the Delta Institute for Hydrobiological Research.  相似文献   

19.
Summary The Mediterranean coralCladocora caespitosa often occurs in large beds, i.e. populations of hemispherical clonies with stock densities varying between 1.9 and 4 coloneis ·m−2. Laboratory measurements of volume, skeleton weight, surface and number of corallites per colony, coupled with mean annual growth rates evaluated through sclerochronology, allowed for the estimation of biomass, skeleton bulk density, calcimass (carbonate standing stock) and secondary production (both organic and inorganic) of twoC. caespitosa beds at 4 and 9 m depth. The mean colony biomass varied between 0.73 and 0.99 kg dw ·m−2, corresponding to a calcimass between 2 and 5 kg CaCO3·m−2. Organic secondary production was 215.5–305.4 g dw of polyps ·m−2·y−1, while the potential (mineral) production was 1.1–1.7 kg CaCO3·m−2·y−1, for the year 1996–1997. These values show thatC. caespitosa is one of the major carbonate producers within the Mediterranean and one of the major epibenthic species originating stable carbonate frameworks both in recent and past times.  相似文献   

20.
Tang  S.  Graba-Landry  A.  Hoey  A. S. 《Coral reefs (Online)》2020,39(2):467-473

Macroalgal beds have been suggested to be an important settlement habitat for a diversity of reef fishes, yet few studies have considered how the composition or structure of macroalgal beds may influence fish settlement. The aim of this study was to investigate how the physical characteristics of Sargassum beds, a common macroalga on inshore coral reefs, influence the abundance of recently-settled rabbitfishes (Siganidae) on Orpheus Island, Great Barrier Reef. The abundance of recently-settled rabbitfish (< 3 cm total length), the density and height of Sargassum thalli, and benthic composition were quantified within replicate 1-m2 quadrats across 15 mid-reef flat sites. A total of 419 recently-settled rabbitfish from three species (Siganus doliatus, S. lineatus and S. canaliculatus) were recorded across 150 quadrats (range 0–16 individuals m−2), with S. doliatus accounting for the majority (85.2%) of individuals recorded. The abundance of S. doliatus and S. lineatus was greatest at moderate Sargassum densities (ca. 20–30 holdfasts m−2) and generally increased with Sargassum height and the cover of ‘other’ macroalgae. These findings demonstrate the potential importance of the physical characteristics of macroalgal beds to the settlement of rabbitfishes on inshore reef flats.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号