共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the initial process of the enzymatic degradation of solution-grown lamellar single crystals of bacterial poly[(R)-3-hydroxybutyrate] (P(3HB)) with an extracellular polyhydroxybutyrate (PHB) depolymerase purified from Alcaligenes faecalis T1. We used a hydrolytic-activity-disrupted mutant of the PHB depolymerase in order to avoid the influence of hydrolytic reaction in the system. The effect of addition of the mutant enzyme upon the P(3HB) single crystals was investigated by turbidimetric assay, high-performance liquid chromatography (HPLC), and atomic force microscopy (AFM). Suspension turbidity of the P(3HB) single crystals increased after addition of the mutant enzyme having no hydrolytic activity. No soluble product from the P(3HB) single crystals with the mutant enzyme was detected by HPLC. AFM observation of the P(3HB) single crystals adsorbed on highly ordered pyrolytic graphite revealed that the mutant enzyme yielded a lot of lengthwise crystal fragments from the P(3HB) single crystals. On the basis of these results, we concluded that the mutant enzyme disturbs the molecular packing of the P(3HB) polymer chain around the loose chain packing region in the single crystal, resulting in the fragmentation. Therefore, it is suggested that the enzymatic degradation of P(3HB) single crystals with a wild-type PHB depolymerase progresses via three steps: (1) adsorption of the enzyme onto the surface of the single crystal; (2) disturbance of the molecular packing of P(3HB) polymer chain in the single crystal by the adsorbed enzyme; and (3) hydrolysis of the disturbed polymer chain by the adsorbed enzyme. 相似文献
2.
Fiber morphology and crystalline structure of poly[(R)-3-hydroxybutyrate] (P(3HB)) and stereocomplexed poly(lactide) (PLA) nanofibers were investigated by using scanning and transmission electron microscopies and X-ray and electron diffractions. In the P(3HB) nanofibers spun from less than 1 wt% 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) solution, planar zigzag conformation (beta-form) as well as 2(1) helix conformation (alpha-form) structure was formed. Based on the electron diffraction measurement of single P(3HB) nanofiber, it was revealed that the molecular chains of P(3HB) align parallel to the fiber direction. From the enzymatic degradation test of P(3HB) nanofiber, it was shown that beta-form molecular chains are degraded more preferentially than alpha-form chains. Stereocomplexed PLA nanofibers were electrospun from 1 wt% poly(l-lactide)/poly(d-lactide) (PLLA/PDLA) solution in HFIP, which contains equal amounts of PLLA and PDLA. While as-spun stereocomplexed PLA nanofiber was amorphous, PLA nanofiber annealed at 100 degrees C contained only racemic crystal. It was supposed that the crystallization behavior of stereocomplexed PLA in the nanofiber is affected by the electrospinning process, which forcibly exerts the strain onto the polymer chains. 相似文献
3.
Hiraishi T Hirahara Y Doi Y Maeda M Taguchi S 《Applied and environmental microbiology》2006,72(11):7331-7338
Poly[(R)-3-hydroxybutyrate] (PHB) depolymerase from Ralstonia pickettii T1 (PhaZ(RpiT1)) adsorbs to denatured PHB (dPHB) via its substrate-binding domain (SBD) to enhance dPHB degradation. To evaluate the amino acid residues participating in dPHB adsorption, PhaZ(RpiT1) was subjected to a high-throughput screening system consisting of PCR-mediated random mutagenesis targeted to the SBD gene and a plate assay to estimate the effects of mutations in the SBD on dPHB degradation by PhaZ(RpiT1). Genetic analysis of the isolated mutants with lowered activity showed that Ser, Tyr, Val, Ala, and Leu residues in the SBD were replaced by other residues at high frequency. Some of the mutant enzymes, which contained the residues replaced at high frequency, were applied to assays of dPHB degradation and adsorption, revealing that those residues are essential for full activity of both dPHB degradation and adsorption. These results suggested that PhaZ(RpiT1) adsorbs on the surface of dPHB not only via hydrogen bonds between hydroxyl groups of Ser in the enzyme and carbonyl groups in the PHB polymer but also via hydrophobic interaction between hydrophobic residues in the enzyme and methyl groups in the PHB polymer. The L441H enzyme, which displayed lower dPHB degradation and adsorption abilities, was purified and applied to a dPHB degradation assay to compare it with the wild-type enzyme. The kinetic analysis of the dPHB degradation suggested that lowering the affinity of the SBD towards dPHB causes a decrease in the dPHB degradation rate without the loss of its hydrolytic activity for the polymer chain. 相似文献
4.
Kinetics and mechanism of heterogeneous hydrolysis of poly[(R)-3-hydroxybutyrate] film by PHA depolymerases 总被引:2,自引:0,他引:2
Katsuyuki Mukai Kenji Yamada Yoshiharu Doi 《International journal of biological macromolecules》1993,15(6):361-366
The kinetics and mechanism of enzymatic degradation on the surface of poly[(R)-3-hydroxybutyrate] (P[(R)-3HB]) film have been studied using three types of extracellular poly(hydroxyalkanoate) (PHA) depolymerases from Alcaligenes faecalis, Pseudomonas pickettii and Comamonas testosteroni. The monomer and dimer of 3-hydroxybutyric acid were produced during the course of the enzymatic degradation of P[(R)-3HB] film, and the rate of production was determined by monitoring the increase in absorbance at 210 nm on a spectrophotometer. The rate of enzymatic degradation increased to a maximum value with the concentration of PHA depolymerase, followed by a gradual decrease. The kinetic data were accounted for in terms of a heterogeneous enzymatic reaction, involving enzymatic degradation on the surface of P[(R)-3HB] film via two steps of adsorption and hydrolysis by a PHA depolymerase with binding and catalytic domains. The kinetic results suggest that the properties of the catalytic domains are very similar among the three PHA depolymerases, but that those of the binding domains are strongly dependent on the type of depolymerase. 相似文献
5.
Different recombinant R-3-hydroxybutyryl-CoA (3-HB) synthesis pathways strongly influenced the rate and accumulation of the biopolymer poly[(R)-3-hydroxybutyrate] (PHB) in Saccharomyces cerevisiae. It has been previously shown that expression of the Cupriavidus necator PHB synthase gene leads to PHB accumulation in S. cerevisiae [Leaf, T., Peterson, M., Stoup, S., Somers, D., Srienc, F., 1996. Saccharomyces cerevisiae expressing bacterial polyhydroxybutyrate synthase produces poly-3-hydroxybutyrate. Microbiology 142, 1169-1180]. This finding indicates that native S. cerevisiae expresses genes capable of synthesizing the correct stereochemical substrate for the synthase enzyme. The effects of variations of 3-HB precursor pathways on PHB accumulation were investigated by expressing combinations of C. necator PHB pathway genes. When only the PHB synthase gene was expressed, the cells accumulated biopolymer to approximately 0.2% of their cell dry weight. When the PHB synthase and reductase gene were co-expressed, the PHB levels increased approximately 18 fold to about 3.5% of the cell dry weight. When the beta-ketothiolase, reductase and synthase genes were all expressed, the strain accumulated PHB to approximately 9% of the cell dry weight which is 45 fold higher than in the strain with only the synthase gene. Fluorescent microscopic analysis revealed significant cell-to-cell heterogeneity in biopolymer accumulation. While the population average for the strain expressing three PHB genes was approximately 9% of the cell dry weight, some cells accumulated PHB in excess of 50% of their cell volume. Other cells accumulated no biopolymer. In addition, the recombinant strain was shown to co-produce ethanol and PHB under anaerobic conditions. These results demonstrate that the technologically important organism S. cerevisiae is capable of accumulating PHB aerobically and anaerobically at levels similar to some bacterial systems. The easily assayed PHB system also creates a convenient means of probing in vivo the presence of intracellular metabolites which could be useful for studying the intermediary metabolism of S. cerevisiae. 相似文献
6.
Uniaxial drawing and mechanical properties of poly[(R)-3-hydroxybutyrate]/poly(L-lactic acid) blends
Blends of poly(L-lactic acid) (PLLA) with two kinds of poly[(R)-3-hydroxybutyrate] (PHB) having different molecular weights, commercial-grade bacterial PHB (bacterial-PHB) and ultrahigh molecular weight PHB (UHMW-PHB), were prepared by the solvent-casting method and uniaxially drawn at two drawing temperatures, around PHB's T(g) (2 degrees C) for PHB-rich blends and around PLLA's T(g) (60 degrees C) for PLLA-rich blends. Differential scanning calorimetry analysis showed that this system was immiscible over the entire composition range. Mechanical properties of all of the samples were improved in proportion to the draw ratio. Although PLLA domains in bacterial-PHB-rich blends remained almost unstretched during cold drawing, a good interfacial adhesion between two polymers and the reinforcing role of PLLA components led to enhanced mechanical properties proportionally to the PLLA content at the same draw ratio. On the contrary, in the case of UHMW-PHB-rich blends, the minor component PLLA was found to be also oriented by cold drawing in ice water due to an increase in the interfacial entanglements caused by the very long chain length of the matrix polymer. As a result, their mechanical properties were considerably improved with increasing PLLA content compared with the bacterial-PHB system. Scanning electron microscopy observations on the surface and cross-section revealed that a layered structure with uniformly oriented microporous in the interior was obtained by selectively removal of PLLA component after simple alkaline treatment. 相似文献
7.
Enzymatic modification of a microbial polyester was achieved by the ring-opening polymerization of epsilon-caprolactone (CL) with low-molecular weight telechelic hydroxylated poly[( R)-3-hydroxybutyrate] (PHB-diol) as initiator and Novozym 435 (immobilized Candida antarctica Lipase B) as catalyst in anhydrous 1,4-dioxane or toluene. The ring-opening polymerization was investigated at different conditions with two different types of PHB-diols: PHB-diol(P), containing a primary OH and a secondary OH end groups, and PHB-diol(M), consisting of 91% PHB-diol(P) and 9% PHB-diol containing two secondary OH end groups. The reactions were followed by GPC analyses of the resulting polymers at different time points, and the optimal conditions were established to be 70 degrees C at a weight ratio of CL/enzyme/solvent of 8:1:24. The ring-opening polymerization of CL with PHB-diol(M) (Mn of 2380, NMR) at the molar ratio of 50:1 under the optimal conditions in 1,4-dioxane gave the corresponding poly[HB(56 wt %)-co-CL(44 wt %)] with Mn (NMR) of 3900 in 66% yield. Polymerization of CL and PHB-diol(P) ( Mn of 2010, NMR) at the same condition in toluene gave the corresponding poly[HB(28 wt %)-co-CL(72 wt %)] with Mn (NMR) of 7100 in 86% yield. Both polymers were characterized by (1)H and (13)C NMR and IR analyses as di-block copolyesters containing a PHB block with a secondary OH end group and a poly(epsilon-caprolactone) (PCL) block with a primary OH end group. NMR analyses and control experiments suggested no formation of random copolymers and no change of the PHB block during the reaction. The enzymatic ring-opening polymerization was selectively initiated by the primary OH group of PHB-diol, whereas the secondary OH group remained as an end group in the final polymers. The thermal properties of the di-block poly(HB-co-CL)s were analyzed by DSC, with excellent T g values for the elastomer domain: poly[HB(56 wt %)- co-CL(44 wt %)] with M n (NMR) of 3900 demonstrated a T g of -57 degrees C, Tm of 145, 123, and 53 degrees C; and poly[HB(28wt%)-co-CL(72wt%)] with Mn (NMR) of 7100 gave a Tg of -60 degrees C, Tm of 147 and 50 degrees C. Thus, the selective enzymatic ring-opening polymerization with PHB-diol as macro-initiator provides a new method for the preparation of PHB-based block copolymers as biomaterials with good thermoplastic properties and novel structures containing functional end groups. 相似文献
8.
Uniaxially oriented films with high tensile strength were processed from ultrahigh-molecular-weight poly[(R)-3-hydroxybutyrate] (P(3HB)) by a method combining hot-drawing near the melting point of the polymer and two-step-drawing at room temperature. In a two-step-drawn and subsequently annealed film, P(3HB) molecular chains fall into two states: 2/1 helix (alpha-form) and planar zigzag (beta-form) conformations. The mechanism for generating the beta-form during two-step-drawing was investigated by time-resolved synchrotron wide- and small-angle X-ray scattering measurements (WAXD and SAXS), together with the measurement of stress-strain curves. It was found that the improvement of mechanical properties is due to not only the orientation of molecular chains but also the generation of the beta-form during the drawing. The crystal and molecular structures of the alpha-form remained unchanged until the yield point of the stress-strain curve. At the yield point, the long period obtained from SAXS doubled and a new reflection indicative of the beta-form was observed on the equatorial line in WAXD. The intensity of the reflection from the beta-form increased with an increase in the two-step-drawing ratio at room temperature. The SAXS pattern changed from a two-point reflection along the meridian to a cross pattern with streaking on the equatorial line, demonstrating the close alignment of shish-kebab structures. The reflection intensity, crystal orientation and crystal size of the alpha-form decreased during two-step-drawing. Based on these results, the beta-form is mainly introduced from the orientation of free molecular chains in the amorphous regions between alpha-form lamellar crystals, but the structural transformation of molecular chains also occurs from the alpha-form to the beta-form at the deformed lamellar crystals. 相似文献
9.
The change in the surface structure of poly[(R)-3-hydroxybutyrate] [PHB] films upon the enzymatic hydrolysis was analyzed by attenuated total reflection infrared [ATR/IR] spectrometry. As enzymes, PHB depolymerases isolated from Ralstonia pickettii T1 and Pseudomonas stutzeri were used. By curve decomposition of the carbonyl stretching band of ATR/IR spectra, the change in the surface crystallinity of PHB films by exposure to buffer containing 0, 1, and 4 microg of PHB depolymerases was estimated. It has been widely believed that the enzymatic hydrolysis first occurs in the amorphous phase, followed by the degradation in the crystalline phase, and extracellular PHB depolymerase can degrade only polymer chains in the surface layer of the film. Therefore, the surface crystallinity had been expected to increase upon the enzymatic degradation. However, the results were contrary to this expectation. The surface crystallinity was decreased by the enzymatic attack. Because ATR/IR spectrometry is sensitive to a small change in molecular structure of the sample surface, the decrease in the crystallinity shown by ATR/IR experiments probably does not indicate the complete loss of regularity of the crystalline phase. Because the chains at crystalline surface are more mobile than those inside the crystals, the C=O band for crystalline surface may appear at a position similar to those of the amorphous or interfacial phase in ATR/IR spectra of PHB. Only the chains inside the crystals may contribute to the C=O band of the crystalline phase. Thus, we rather suppose that the decrease in the crystalline peak of the ATR/IR spectra reflects the change in chain mobility or the increase of crystalline surface area by cracking of lamellas at the surface layers of PHB films or both. 相似文献
10.
Hiraishi T Kikkawa Y Fujita M Normi YM Kanesato M Tsuge T Sudesh K Maeda M Doi Y 《Biomacromolecules》2005,6(5):2671-2677
Atomic force microscopy (AFM) was used to study the formation and growth of poly[(R)-3-hydroxybutyrate] (PHB) structures formed in the enzymatic polymerization of (R)-3-hydroxybutyryl coenzyme A [(R)-3-HBCoA] in vitro. Poly(3-hydroxyalkanoate) (PHA) synthase (PhaC(Re)) from Ralstonia eutropha, a class I synthase, was purified by one-step purification and then used for in vitro reactions. Before the reaction, PhaC(Re) molecules were deposited on highly oriented pyrolytic graphite (HOPG) and observed as spherical particles with an average height of 2.7 +/- 0.6 nm and apparent width of 24 +/- 3 nm. AFM analysis during the initial stage of the reaction, that is, after a small amount of (R)-3-HBCoA had been consumed, showed that the enzyme molecules polymerize (R)-3-HBCoA and form flexible 3HB polymer chains that extend from the enzyme particles, resulting in the formation of an enzyme-nascent PHB conjugate. When a sufficient amount of (R)-3-HBCoA was used as substrate, the reaction rapidly increased after the first minute followed by a slow increase in rate, and substrate was completely consumed after 4 min. After 4 min, spherical granules continued to grow in size to form clusters over 10 um in width, and in later stages of cluster formation, the cluster developed small projections with a size of approximately 100-250 nm, suggesting qualitative changes of the PHB clusters. Moreover, the high-resolution AFM images suggested that globular structures of approximately 20-30 nm apparent width, which corresponds to the size of PhaC(Re), were located on the surface of the small PHB granule particles. 相似文献
11.
Thin films of ultrahigh molecular weight poly[(R)-3-hydroxybutyrate] (P(3HB)) were sheared and isothermally crystallized at 100 degrees C. Transmission electron microscopy and atomic force microscopy (AFM) observations revealed that thick fibrous textures, on which lamellae are overgrown normal to the long axis of the fibril, run parallel to the shearing direction. A selected area electron diffraction pattern taken from the fibrils exhibits a fiber pattern of P(3HB) alpha-modification, and the crystallographic c-axis (chain axis) of P(3HB) is set parallel to the long axis of the fibril. In situ AFM observations of enzymatic degradation for the thin film were performed with an extracellular P(3HB) depolymerase from Ralstonia pickettii T1 in a buffer solution. The film surface and thickness became rougher and thinner, respectively, with time after adding the enzyme. During the degradation, fine shish-kebab structures appeared gradually. This fact supports that the amorphous region in the film is preferentially degraded rather than the crystalline one by the depolymerase. The in situ AFM observations also revealed that one thick fibril in the original film is composed of three different states, namely, finer fibril (shish), stacked lamellae (kebab) in edge-on state, and the surrounding amorphous phase. 相似文献
12.
Time-dependent adsorption behavior of poly(3-hydroxybutyrate) (PHB) depolymerase from Ralstonia pickettiiT1 on a polyester surface was studied by complementary techniques of quarts crystal microbalance (QCM) and atomic force microscopy (AFM). Amorphous poly(l-lactide) (PLLA) thin films were used as adsorption substrates. Effects of enzyme concentration on adsorption onto the PLLA surface were determined time-dependently by QCM. Adsorption of PHB depolymerase took place immediately after replacement of the buffer solutions with the enzyme solutions in the cell, followed by a gradual increase in the amount over 30 min. The amount of PHB depolymerase molecules adsorbed on the surface of amorphous PLLA thin films increased with an increase in the enzyme concentration. Time-dependent AFM observation of enzyme molecules was performed during the adsorption of PHB depolymerase. The phase response of the AFM signal revealed that the nature of the PLLA surface around the PHB depolymerase molecule was changed due to the adsorption function of the enzyme and that PHB depolymerase adsorbed onto the PLLA surface as a monolayer at a lower enzyme concentration. The number of PHB depolymerase molecules on the PLLA surface depended on the enzyme concentration and adsorption time. In addition, the height of the adsorbed enzyme was found to increase with time when the PLLA surface was crowded with the enzymes. In the case of higher enzyme concentrations, multilayered PHB depolymerases were observed on the PLLA thin film. These QCM and AFM results indicate that two-step adsorption of PHB depolymerase occurs on the amorphous PLLA thin film. First, adsorption of PHB depolymerase molecules takes place through the characteristic interaction between the binding domain of PHB depolymerase and the free surface of an amorphous PLLA thin film. As the adsorption proceeded, the surface region of the thin film was almost covered with the enzyme, which was accompanied by morphological changes. Second, the hydrophobic interactions among the enzymes in the adlayer and the solution become more dominant to stack as a second layer. 相似文献
13.
Poly(ester urethane)s with poly[(R)-3-hydroxybutyrate] (PHB) as the hard and hydrophobic segment and poly(ethylene glycol) (PEG) as the soft and hydrophilic segment were synthesized from telechelic hydroxylated PHB (PHB-diol) and PEG using 1,6-hexamethylene diisocyanate as a nontoxic coupling reagent. Their chemical structures and molecular characteristics were studied by gel permeation chromatography, 1H NMR, and Fourier transform infrared spectroscopy. Results of differential scanning calorimetry and X-ray diffraction indicated that the PHB segment and PEG segment in the poly(ester urethane)s formed separate crystalline phases with lower crystallinity and a lower melting point than those of their corresponding precursors, except no PHB crystalline phase was observed in those with a relatively low PHB fraction. Thermogravimetric analysis showed that the poly(ester urethane)s had better thermal stability than their precursors. The segment compositions were calculated from the two-step thermal decomposition profiles, which were in good agreement with those obtained from 1H NMR. Water contact angle measurement and water swelling analysis revealed that both surface hydrophilicity and bulk hydrophilicity of the poly(ester urethane)s were enhanced by incorporating the PEG segment into PHB polymer chains. The mechanical properties of the poly(ester urethane)s were also assessed by tensile strength measurement. It was found that the poly(ester urethane)s were ductile, while natural source PHB is brittle. Young's modulus and the stress at break increased with increasing PHB segment length or PEG segment length, whereas the strain at break increased with increasing PEG segment length or decreasing PHB segment length. 相似文献
14.
Novel biodegradable amphiphilic alternating block copolymers based on poly[(R)-3-hydroxybutyrate] (PHB) as biodegradable and hydrophobic block and poly(ethylene glycol) (PEG) as hydrophilic block (PHB-alt-PEG) were successfully synthesized through coupling reaction. Their chemical structures have been characterized by using gel permeation chromatography, (1)H nuclear magnetic resonance, and Fourier transform infrared spectroscopy. Differential scanning calorimetry (DSC) analysis revealed that both PHB and PEG blocks in PHB-alt-PEG block copolymers can crystallize to form separate crystalline phase except in those with a short PEG block (M(n) 600) only PHB crystalline phase has been observed. However, due to the mutual interference from each other, the melting transition of both PHB and PEG crystalline phases shifted to lower temperature with lower crystallinity in comparison with corresponding pure PHB and PEG. The crystallization behavior of PHB block and PEG block has also been studied by X-ray diffraction, and the results were in good agreement with those deduced from DSC study. The surface morphologies of PHB-alt-PEG block copolymer thin films spin-coated on mica have been visualized by atomic force microscopy with tapping mode, indicating formation of laterally regular lamellar surface patterns. Static water contact angle measurement revealed that surface hydrophilicity of these spin-coated thin films increases with increasing PEG block content. 相似文献
15.
PhaP is a major poly[(R)-3-hydroxybutyrate] [P(3HB)]-granule-associated protein. Its gene expression is controlled by an autoregulated repressor, PhaR, in Paracoccus denitrificans. The packing force of the P(3HB) granule by PhaP is greatly influenced by the number of PhaP molecules. In this study, the effects of DNA-binding-ability-reduced mutations of PhaR on morphological change in the cellular granule formation of P(3HB) were examined under a transmission electron microscope using an Escherichia coli recombinant system. Microscopic observation indicated that stronger packing of P(3HB) granules took place when the number of PhaP molecules was increased by reduction in the DNA-binding ability of PhaR. 相似文献
16.
Marchessault RH Dou H Ramsay J 《International journal of biological macromolecules》2011,48(2):271-275
Medium chainlength (mcl) polyhydroxyalkanoates (PHAs) are a class of polymers receiving attention because of their potential as renewable, biodegradable and high tech properties. Unlike most short chain PHAs, mcl-PHAs are low crystallinity and elastomeric in character. In this paper we wish to point out that in their broad properties mcl-PHAs might be classified as thermotropic liquid crystals with dynamic conformational disorder and long range orientational order. As the characterization of mcl-PHAs progresses, their similarities to liquid crystalline elastomers are noteworthy. Wunderlich coined the acronym CONDIS from the words "conformational disorder" to categorize this type of liquid crystal. Thermal analysis reveals a T(g) of -40 to -45°C with several T(m) peaks. The chemistry of the elastomer from (13)C NMR confirms the poly(3-hydroxynonanoate), PHN, composition of the starting material along with two other samples containing double bonds: PHNU-18 and PHNU-31 where the numeral stands for the percent of double bonds. 相似文献
17.
Ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] (P(3HB)) (Mw = 3-11 x 10(6)) was produced from glucose by a recombinant Escherichia coli XL1-Blue (pSYL105) harboring Ralstonia eutropha H16 polyhydroxyalkanoate (PHA) biosynthesis genes. Morphology of ultra-high-molecular-weight P(3HB) granules in the recombinant cells was studied by transmission electron microscopy. The recombinant E. coli contained several P(3HB) granules within a cell. Freeze-fracture morphology of ultra-high-molecular-weight P(3HB) granules showed the needle-type as that of P(3HB) granules in R. eutropha. Both the P(3HB) granules in wet cells and wet native granules isolated from the recombinant cells proved to be amorphous on the X-ray diffraction patterns. Mechanical properties of ultra-high-molecular-weight P(3HB) films were markedly improved by stretching over 400%, resulting from high crystallinity and highly oriented crystal regions. Biodegradability of the films of ultra-high-molecular-weight P(3HB) was tested with an extracellular polyhydroxybutyrate depolymerase from Alcaligenes faecalis T1. The rate of enzymatic erosion of P(3HB) films was not dependent of the molecular weight but was dependent of the crystallinity. In addition, it is demonstrated that all ultra-high-molecular-weight P(3HB) films were completely degraded at 25 degrees C in a natural river freshwater within 3 weeks. 相似文献
18.
Enzymatic degradation processes of poly[(R)-3-hydroxybutyric acid] (P(3HB)) and poly[(R)-3-hydroxybutyric acid-co-(R)-3-hydroxyvaleric acid] (P(3HB-co-3HV)) single crystals in the presence of PHB depolymerase from Ralstonia pickettii T1 were studied by real-time and static atomic force microscopy (AFM) observations. Fibril-like crystals were generated along the long axis of single crystals during the enzymatic degradation, and then the dimensions of fibril-like crystals were analyzed quantitatively. The morphologies and sizes of fibril-like crystals were dependent on the molecular weight and copolymer composition of polymers. For all samples, the crystalline thickness gradually decreased toward a tip from the root of a fibril-like crystal after enzymatic degradation for 1 h. The thinning of fibril-like crystals may be attributed to the destruction of chain-packing structure toward crystallographic c axis by the adsorption of enzyme. From the real-time AFM images, it was found that at the initial stage of degradation the enzymatic erosion started from the disordered chain-packing region in single crystals to form the grooves along the a axis. The generated fibril-like crystals deformed at a constant rate along the a axis with a constant rate after the induction time. The erosion rate at the grooves along the a axis increased with a decrease of molecular weight and with an increase of copolymer composition. On the other hand, the erosion rate along the a axis, at the tip of the fibril-like crystal, was dependent on only the copolymer composition, and the value increased with an increase in the copolymer composition. The morphologies and sizes of fibril-like crystals were governed by both the erosion rates along the a axis at the grooves and tip of fibril-like crystals. In addition, we were able to estimated the overall enzymatic erosion rate of single crystals by PHB depolymerase from the volumetric analysis. 相似文献
19.
The gene expression for phasins (PhaP), which are predominantly polyhydroxyalkanoates (PHAs) granule-associated proteins, is regulated by a repressor protein of PhaR through the dual binding abilities of PhaR to the target DNAs and the granules. In this study, the binding functions of PhaR to poly[(R)-3-hydroxybutyrate] (P(3HB)) were investigated quantitatively by using a quartz crystal microbalance (QCM) technique. Adsorption of PhaR onto a melt-crystallized film of P(3HB) (cr-P(3HB)) was detected as a negative frequency shift of the QCM. The time course of the frequency changes observed for PhaR adsorption was composed of a quick frequency decrease at an initial stage and a subsequent slower frequency decrease for several hours, indicating multilayered adsorption of PhaR molecules onto cr-P(3HB). The initial rapid adsorption, which corresponds to direct adsorption of PhaR molecules onto a bare surface of cr-P(3HB), was a diffusion-controlled process. Strong interactions between PhaR and cr-P(3HB) were also observed as apparently irreversible adsorption. The comparative QCM measurement of PhaR adsorption onto various types of polymers with different aliphatic chemical structures revealed that PhaR was adsorbed onto the surfaces of polymers, including cr-P(3HB), mainly by nonspecific hydrophobic interactions. These results illustrate the high affinity and low specificity for adsorption of PhaR to P(3HB). 相似文献
20.
Hiroe A Tsuge K Nomura CT Itaya M Tsuge T 《Applied and environmental microbiology》2012,78(9):3177-3184
Ultrahigh-molecular-weight poly[(R)-3-hydroxybutyrate] [UHMW-P(3HB)] synthesized by genetically engineered Escherichia coli is an environmentally friendly bioplastic material which can be processed into strong films or fibers. An operon of three genes (organized as phaCAB) encodes the essential proteins for the production of P(3HB) in the native producer, Ralstonia eutropha. The three genes of the phaCAB operon are phaC, which encodes the polyhydroxyalkanoate (PHA) synthase, phaA, which encodes a 3-ketothiolase, and phaB, which encodes an acetoacetyl coenzyme A (acetoacetyl-CoA) reductase. In this study, the effect of gene order of the phaCAB operon (phaABC, phaACB, phaBAC, phaBCA, phaCAB, and phaCBA) on an expression plasmid in genetically engineered E. coli was examined in order to determine the best organization to produce UHMW-P(3HB). The results showed that P(3HB) molecular weights and accumulation levels were both dependent on the order of the pha genes relative to the promoter. The most balanced production result was achieved in the strain harboring the phaBCA expression plasmid. In addition, analysis of expression levels and activity for P(3HB) biosynthesis enzymes and of P(3HB) molecular weight revealed that the concentration of active PHA synthase had a negative correlation with P(3HB) molecular weight and a positive correlation with cellular P(3HB) content. This result suggests that the level of P(3HB) synthase activity is a limiting factor for producing UHMW-P(3HB) and has a significant impact on P(3HB) production. 相似文献