首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: Circular dichroism (CD) spectroscopy has become established as a key method for determining the secondary structure contents of proteins which has had a significant impact on molecular biology. Many excellent mathematical protocols have been developed for this purpose and their quality is above question. However, reference database sets of proteins, with CD spectra matched to secondary structure components derived from X-ray structures, provide the key resource for this task. These databases were created many years ago, before most CD spectrophotometers became standardized and before it was commonplace to validate X-ray structures prior to publication. The analyses presented here were undertaken to investigate the overall quality of these reference databases in light of their extensive usage in determining protein secondary structure content from CD spectra. RESULTS: The analyses show that there are a number of significant problems associated with the CD reference database sets in current use. There are disparities between CD spectra for the same protein collected by different groups. These include differences in magnitudes, peak positions or both. However, many current reference sets are now amalgamations of spectra from these groups, introducing inconsistencies that can lead to inaccuracies in the determination of secondary structure components from the CD spectra. A number of the X-ray structures used fall short on the validation criteria now employed as standard for structure determination. Many have substantial percentages of residues in the disallowed regions of the Ramachandran plot. Hence their calculated secondary structure components, used as a foundation for the reference databases, are likely to be in error. Additionally, the coverage of secondary structure space in the reference datasets is poorly correlated to the secondary structure components found in the Protein Data Bank. A conclusion is that a new reference CD database with cross-correlated, machine-independent CD spectra and validated X-ray structures that cover more secondary structure components, including diverse protein folds, is now needed. However, that reasonably accurate values for the secondary structure content of proteins can be determined from spectra is a testament to CD spectroscopy being a very powerful technique.  相似文献   

2.
Comparative studies of the secondary structures of six model proteins, adsorbed onto aluminum hydroxide gel (Alhydrogel) or in aqueous solution, were carried out by Fourier transform infrared (FTIR) spectroscopy. The analysis of high-quality spectra of all six model proteins, with a broad range of secondary structure compositions, obtained at 15 mg/ml by the conventional method and at 0.5 and 1.0 mg/ml adsorbed to Alhydrogel revealed that adsorption onto hydrophilic surfaces of aluminum hydroxide particles did not alter the secondary structures of the proteins. The results of this study suggest that adsorbing proteins to Alhydrogel provides a means of obtaining FTIR spectra to study secondary structure and conformational changes of proteins in aqueous solution at very low concentrations. The new procedure effectively lowers the concentration requirement for FTIR studies of proteins in aqueous solutions by at least 40-fold, as compared with the conventional FTIR method. It permits FTIR study of proteins to be carried out in the same concentration range as is used for circular dichroism and fluorescence, thereby making it possible to compare structural information obtained by three commonly used techniques in protein biophysical characterization.  相似文献   

3.
MOTIVATION: Circular Dichroism (CD) spectroscopy is a long-established technique for studying protein secondary structures in solution. Empirical analyses of CD data rely on the availability of reference datasets comprised of far-UV CD spectra of proteins whose crystal structures have been determined. This article reports on the creation of a new reference dataset which effectively covers both secondary structure and fold space, and uses the higher information content available in synchrotron radiation circular dichroism (SRCD) spectra to more accurately predict secondary structure than has been possible with existing reference datasets. It also examines the effects of wavelength range, structural redundancy and different means of categorizing secondary structures on the accuracy of the analyses. In addition, it describes a novel use of hierarchical cluster analyses to identify protein relatedness based on spectral properties alone. The databases are shown to be applicable in both conventional CD and SRCD spectroscopic analyses of proteins. Hence, by combining new bioinformatics and biophysical methods, a database has been produced that should have wide applicability as a tool for structural molecular biology.  相似文献   

4.
A Perczel  K Park  G D Fasman 《Proteins》1992,13(1):57-69
A recently developed algorithm, called Convex Constraint Analysis (CCA), was successfully applied to determine the circular dichroism (CD) spectra of the pure beta-pleated sheet in globular proteins. On the basis of X-ray diffraction determined secondary structures, the original data set used (Perczel, A., Hollosi, M., Tusnady, G. Fasman, G.D. Convex constraint analysis: A natural deconvolution of circular dichroism curves of proteins, Prot. Eng., 4:669-679, 1991), was improved by the addition of proteins with high beta-pleated sheet content. The analysis yielded CD curves of the pure components of the main secondary structural elements (alpha-helix, antiparallel beta-pleated sheet, beta-turns, and unordered conformation), as well as a curve attributed to the "aromatic contribution" in the wavelength range of 195-240 nm. Upon deconvolution the curves obtained were assigned to various secondary structures. The calculated weights (percentages determining the contributions of each pure component curve in the measured CD spectra of a given protein) were correlated with the X-ray diffraction determined percentages in an assignment procedure and were evaluated. The Pearson product correlation coefficients (R) are significant for all five components. The new pure component curves, which were obtained through deconvolution of the protein CD spectra alone, are promising candidates for determining the percentages of the secondary structural components in globular proteins without the necessity of adopting an X-ray database. The CD spectrum of the CheY protein was interesting because it has the characteristic shape associated with the alpha-helical structure, but upon analysis yielded a considerable amount of beta-sheet in agreement with the X-ray structure.  相似文献   

5.
Hering JA  Innocent PR  Haris PI 《Proteomics》2004,4(8):2310-2319
Fourier transform infrared (FTIR) spectroscopy is an attractive tool for proteomics research as it can be used to rapidly characterize protein secondary structure in aqueous solution. Recently, a number of secondary structure prediction methods based on reference sets of FTIR spectra from proteins with known structure from X-ray crystallography have been suggested. These prediction methods, often referred to as pattern recognition based approaches, demonstrated good prediction accuracy using some error measure, e.g., the standard error of prediction (SEP). However, to avoid possible adverse effects from differences in recording, the analysis has been mostly based on reference sets of FTIR spectra from proteins recorded in one laboratory only. As a result, these studies were based on reference sets of FTIR spectra from a limited number of proteins. Pattern recognition based approaches, however, rely on reference sets of FTIR spectra from as many proteins as possible representing all possible band shape variation to be related to the diversity of protein structural classes. Hence, if we want to build reliable pattern recognition based systems to support proteomics research, which are capable of making good predictions from spectral data of any unknown protein, one common goal should be to build a comprehensive protein infrared spectra databank (PISD) containing FTIR spectra of proteins of known structure. We have started the process of developing a comprehensive PISD composed of spectra recorded in different laboratories. As part of this work, here we investigate possible effects on prediction accuracy achieved by a neural network analysis when using reference sets composed of FTIR spectra from different laboratories. Surprisingly low magnitude of difference in SEPs throughout all our experiments suggests that FTIR spectra recorded in different laboratories may be safely combined into one reference set with only minor deterioration of prediction accuracy in the worst case.  相似文献   

6.
Selected regions of infarred (ir) and circular dichroism (CD) spectral data from 10 proteins were combined and analyzed by a factor analysis method. The regions consisted of the area normalized amide I region from 1700 to 1600 cm-1 for the ir spectra and from 178 to 240 nm for the CD spectra. Each CD spectrum was scaled by a factor of 0.5 before appending the data to the ir spectral data. The scaling factor was deemed necessary to account for relative intensity differences between the ir and CD data and provided nearly optimum agreement between secondary structure estimated by the combined approach to secondary structure determined by X-ray crystallography. The ir/CD combined approach to estimation of helix, beta-sheet, beta-turn, and other or undefined secondary structure agreed with X-ray crystallographic determined structure better than estimation using data from either method alone. Correlation coefficients between X-ray and ir/CD combined secondary structure determinations were 0.99 for helix, 0.90 for beta-sheet, 0.70 for beta-turn, and 0.78 for other structure. The four most significant eigenvectors or basis spectra from eigenanalysis of the ir/CD data are presented as well as generalized inverse spectra for four secondary structures.  相似文献   

7.
《Biophysical journal》2020,118(7):1665-1678
We have developed a computational method of atomistically refining the structural ensemble of intrinsically disordered peptides (IDPs) facilitated by experimental measurements using circular dichroism spectroscopy (CD). A major challenge surrounding this approach stems from the deconvolution of experimental CD spectra into secondary structure features of the IDP ensemble. Currently available algorithms for CD deconvolution were designed to analyze the spectra of proteins with stable secondary structures. Herein, our work aims to minimize any bias from the peptide deconvolution analysis by implementing a non-negative linear least-squares fitting algorithm in conjunction with a CD reference data set that contains soluble and denatured proteins (SDP48). The non-negative linear least-squares method yields the best results for deconvolution of proteins with higher disordered content than currently available methods, according to a validation analysis of a set of protein spectra with Protein Data Bank entries. We subsequently used this analysis to deconvolute our experimental CD data to refine our computational model of the peptide secondary structure ensemble produced by all-atom molecular dynamics simulations with implicit solvent. We applied this approach to determine the ensemble structures of a set of short IDPs, that mimic the calmodulin binding domain of calcium/calmodulin-dependent protein kinase II and its 1-amino-acid and 3-amino-acid mutants. Our study offers a, to our knowledge, novel way to solve the ensemble secondary structures of IDPs in solution, which is important to advance the understanding of their roles in regulating signaling pathways through the formation of complexes with multiple partners.  相似文献   

8.
Whitmore L  Wallace BA 《Biopolymers》2008,89(5):392-400
Circular dichroism (CD) spectroscopy has been a valuable method for the analysis of protein secondary structures for many years. With the advent of synchrotron radiation circular dichroism (SRCD) and improvements in instrumentation for conventional CD, lower wavelength data are obtainable and the information content of the spectra increased. In addition, new computation and bioinformatics methods have been developed and new reference databases have been created, which greatly improve and facilitate the analyses of CD spectra. This article discusses recent developments in the analysis of protein secondary structures, including features of the DICHROWEB analysis webserver.  相似文献   

9.
Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), and electron microscopy (EM) have been used simultaneously to follow the temperature-induced formation of amyloid fibrils by bovine insulin at acidic pH. The FTIR and CD data confirm that, before heating, insulin molecules in solution at pH 2.3 have a predominantly native-like alpha-helical structure. On heating to 70 degrees C, partial unfolding occurs and results initially in aggregates that are shown by CD and FT-IR spectra to retain a predominantly helical structure. Following this step, changes in the CD and FTIR spectra occur that are indicative of the extensive conversion of the molecular conformation from alpha-helical to beta-sheet structure. At later stages, EM shows the development of fibrils with well-defined repetitive morphologies including structures with a periodic helical twist of approximately 450 A. The results indicate that formation of fibrils by insulin requires substantial unfolding of the native protein, and that the most highly ordered structures result from a slow evolution of the morphology of the initially formed fibrillar species.  相似文献   

10.
Vibrational circular dichroism (VCD) studies are reported for two unrelated recombinant growth factor proteins: epidermal growth factor and basic fibroblast growth factor (bFGF). NMR, electronic CD, and bFGF X-ray studies indicate that these two proteins are primarily composed of beta-sheet and loop secondary structure elements with no detectable alpha-helices. Two reports on solution conformation of these proteins using FTIR absorption spectroscopy with subsequent resolution enhancement confirmed the presence of a large fraction of a beta-sheet conformation but in addition indicated the presence of large absorption bands in the 1650-1656 cm-1 region, which are typically assigned to alpha-helices. The VCD spectra of both proteins have band shapes that strongly resemble those of other high beta-sheet fraction proteins, such as the trypsin family of proteins. Quantitative analysis of the VCD spectra also indicates that these proteins are predominantly in beta-sheet and extended ("other") conformations with very little alpha-helix fraction. These results agree with the CD interpretation and affirm that the FTIR peaks in the region 1650-1656 cm-1 can be assigned to loops. This study provides an example of the limitations of using FTIR frequencies alone for examination of protein secondary structure.  相似文献   

11.
We have expanded our reference set of proteins used in the estimation of protein secondary structure by CD spectroscopy from 29 to 37 proteins by including 3 additional globular proteins with known X-ray structure and 5 denatured proteins. We have also modified the self-consistent method for analyzing protein CD spectra, SELCON3, by including a new selection criterion developed by W. C. Johnson, Jr. (Proteins Struct. Funct. Genet. 35, 307-312, 1999). The secondary structure corresponding to the denatured proteins was approximated to be 90% unordered, owing to the spectral similarity of the denatured proteins and unordered structures. We examined the thermal denaturation of ribonuclease T1 by CD using both the original and expanded sets of reference proteins and obtained more consistent results with the expanded set. The expanded set of reference proteins will be helpful for the determination of protein secondary structure from protein CD spectra with higher reliability, especially of proteins with significant unordered structure content and/or in the course of denaturation.  相似文献   

12.
Rigler P  Ulrich WP  Hovius R  Ilegems E  Pick H  Vogel H 《Biochemistry》2003,42(47):14017-14022
High signal-to-noise Fourier transform infrared (FTIR) spectra of the 5-hydroxytryptamine (serotonin) receptor (5-HT(3)R) and the nicotinic acetylcholine receptor (nAChR) were obtained by microscope FTIR spectroscopy using micrometer-sized, fully hydrated protein films. Because this novel procedure requires only nanogram quantities of membrane proteins, which is 4-5 orders of magnitude less than the amount of protein typically used for conventional FTIR spectroscopy, it opens the possibility to access the structure and dynamics of many important mammalian receptor proteins. The secondary structure of detergent-solubilized 5-HT(3)R determined by curve fitting of the amide I band yielded 36% alpha-helix, 33% beta-strand, 15% beta-turn, and 16% nonregular structures, which remained unchanged upon reconstitution in lipid membranes. From hydrogen-deuterium exchange, the secondary structure of the water-accessible part of 5-HT(3)R was determined as 14% alpha-helix, 16% beta-strand, 26% beta-turn, and 14% nonregular structures. Interestingly, we found that both the overall and the water-accessible nAChR secondary structures were nearly identical to those of 5-HT(3)R, in agreement with predicted structures of this class of receptors. This is the first time that structural investigations were obtained for two closely related ligand-gated ion channels under strictly identical experimental conditions.  相似文献   

13.
The relationship among protein oligomerization, secondary structure at the interface, and the interfacial behavior was investigated for spread layers of native pulmonary surfactant associated proteins B and C. SP-B and SP-C were isolated either from butanol or chloroform/methanol lipid extracts that were obtained from sheep lung washings. The proteins were separated from other components by gel exclusion chromatography or by high performance liquid chromatography. SDS gel electrophoresis data indicate that the SP-B samples obtained using different solvents showed different oligomerization states of the protein. The CD and FTIR spectra of SP-B isolated from all extracts were consistent with a secondary structure dominated by alpha-helix. The CD and FTIR spectra of the first SP-C corresponded to an alpha-helical secondary structure and the spectra of the second SP-C corresponded to a mixture of alpha-helical and beta-sheet conformation. In contrast, the spectra of the third SP-C corresponded to antiparallel beta-sheets. The interfacial behavior was characterized by surface pressure/area (pi-A) isotherms. Differences in the oligomerization state of SP-B as well as in the secondary structure of SP-C all produce significant differences in the surface pressure/area isotherms. The molecular cross sections determined from the pi-A isotherms and from dynamic cycling experiments were 6 nm(2)/dimer molecule for SP-B and 1.15 nm(2)/molecule for SP-C in alpha-helical conformation and 1.05 nm(2)/molecule for SP-C in beta-sheet conformation. Both the oligomer ratio of SP-B and the secondary structure of SP-C strongly influence organization and behavior of these proteins in monolayer assemblies. In addition, alpha-helix --> beta-sheet conversion of SP-C occurs simply by an increase of the summary protein/lipid concentration in solution.  相似文献   

14.
Circular dichroism (CD) spectroscopy is a widely used technique for the evaluation of protein secondary structures that has a significant impact for the understanding of molecular biology. However, the quantitative analysis of protein secondary structures based on CD spectra is still a hard work due to the serious overlap of the spectra corresponding to different structural motifs. Here, Tchebichef image moment (TM) approach is introduced for the first time, which can effectively extract the chemical features in CD spectra for the quantitative analysis of protein secondary structures. The proposed approach was applied to analyze reference set and the obtained results were evaluated by the strict statistical parameters such as correlation coefficient, cross‐validation correlation coefficient and root mean squared error. Compared with several specialized prediction methods, TM approach provided satisfactory results, especially for turns and unordered structures. Our study indicates that TM approach can be regarded as a feasible tool for the analysis of the secondary structures of proteins based on CD spectra. An available TMs package is provided and can be used directly for secondary structures prediction.  相似文献   

15.

Background  

Circular Dichroism (CD) spectroscopy is a widely used method for studying protein structures in solution. Modern synchrotron radiation CD (SRCD) instruments have considerably higher photon fluxes than do conventional lab-based CD instruments, and hence have the ability to routinely measure CD data to much lower wavelengths. Recently a new reference dataset of SRCD spectra of proteins of known structure, designed to cover secondary structure and fold space, has been produced which includes low wavelength (vacuum ultraviolet – VUV) data. However, the existing algorithms used to calculate protein secondary structures from CD data have not been designed to take optimal advantage of the additional information in these low wavelength data.  相似文献   

16.
A new algorithm, called convex constraint analysis, has been developed to deduce the chiral contribution of the common secondary structures directly from experimental CD curves of a large number of proteins. The analysis is based on CD data reported by Yang, J.T., Wu, C.-S.C. and Martinez, H.M. [Methods Enzymol., 130, 208-269 (1986)]. Application of the decomposition algorithm for simulated protein data sets resulted in component spectra [B (lambda, i)] identical to the originals and weights [C (i, k)] with excellent Pearson correlation coefficients (R) [Chang, C.T., Wu, C.-S.C. and Yang, J.T. (1978) Anal. Biochem., 91, 12-31]. Test runs were performed on sets of simulated protein spectra created by the Monte Carlo technique using poly-L-lysine-based pure component spectra. The significant correlational coefficients (R greater than 0.9) demonstrated the high power of the algorithm. The algorithm, applied to globular protein data, independent of X-ray data, revealed that the CD spectrum of a given protein is composed of at least four independent sources of chirality. Three of the computed component curves show remarkable resemblance to the CD spectra of known protein secondary structures. This approach yields a significant improvement in secondary structural evaluations when compared with previous methods, as compared with X-ray data, and yields a realistic set of pure component spectra. The new method is a useful tool not only in analyzing CD spectra of globular proteins but also has the potential for the analysis of integral membrane proteins.  相似文献   

17.
The major maize storage proteins (alpha zeins) are deposited as an insoluble mass in the protein bodies of the endosperm. Because they are insoluble in water, most structural studies are performed in alcohol solutions. To solve the question raised by several authors about denaturation of the alpha zein structure by alcohol, we analyze the secondary structure of alpha zeins prepared with and without solubilization in alcohol (corn gluten meal and protein bodies with high concentrations of alpha zeins and traces of beta zeins). The secondary structures of alpha zeins are analyzed in the solid state by Fourier transform IR spectroscopy (FTIR) in KBr pellets and solid-state 13C-NMR spectroscopy. The proportion of secondary structures obtained by FTIR of alpha zeins prepared with and without solubilization in alcohol yield almost identical proportions of alpha helices and beta sheets. The proportion of alpha helices (43%) agrees with that measured by circular dichroism in an alcohol solution. However, the proportion of beta sheets (28%) is higher than the one measured by the same technique. Gluten and protein body samples with high beta zein content showed higher beta sheet and lower alpha helix proportions than that obtained for alpha zein preparations. The solid-state 13C-NMR spectra show the carbonyl peak for the alpha zeins at delta 176 and for the sample rich in beta zeins at delta 172, which demonstrates the presence of a high content of alpha helices and beta sheets, respectively. These results indicate that alcohol solubilization does not affect the conformation of alpha zeins, validating the secondary structure measurements in solution.  相似文献   

18.
A new approach for evaluating the secondary structure of proteins by CD spectroscopy of overlapping peptide segments is applied to porcine adenylate kinase (AK1) and yeast guanylate kinase (GK3). One hundred seventy-six peptide segments of a length of 15 residues, overlapping by 13 residues and covering the complete sequences of AK1 and GK3, were synthesized in order to evaluate their secondary structure composition by CD spectroscopy. The peptides were prepared by solid phase multiple peptide synthesis method using the 9-fluorenylmethoxycarbonyl/tert-butyl strategy. The individual peptide secondary structures were studied with CD spectroscopy in a mixture of 30% trifluoroethanol in phosphate buffer (pH 7) and subsequently compared with x-ray data of AK1 and GK3. Peptide segments that cover α-helical regions of the AK1 or GK3 sequence mainly showed CD spectra with increasing and decreasing Cotton effects that were typical for appearing and disappearing α-helical structures. For segments with dominating β-sheet conformation, however, the application of this method is limited due to the stability and clustering of β-sheet segments in solution and due to the difficult interpretation of random-coiled superimposed β-sheet CD signals. Nevertheless, the results of this method especially for α-helical segments are very impressive. All α-helical and 71% of the β-sheet containing regions of the AK1 and GK3 could be identified. Moreover, it was shown that CD spectra of consecutive peptide content reveal the appearance and disappearance of α-helical secondary structure elements and help localizing them on the sequence string. © 1997 John Wiley & Sons, Inc. Biopoly 41: 213–231, 1997  相似文献   

19.
The mechanism of interaction between bovine serum albumin (BSA) and 2-naphthylamine (2-NA) in aqueous solution was investigated by fluorescence spectroscopy, circular dichroism (CD) spectra, and UV-vis spectroscopy. It was proved from fluorescence spectra that the fluorescence quenching of BSA by 2-NA was a result of the formation of complex between 2-NA and BSA, and the binding constants (K(a) ) as well as the numbers of binding sites for 2-NA in BSA were determined according to the modified Stern-Volmer equation. The results of synchronous fluorescence and CD spectra demonstrated 2-NA could decrease the amount of α-helix of BSA, leading to the loosening of protein skeleton. UV-vis spectroscopy and resonance light scattering spectra (RLS) results also suggested the conformation of BSA were changed and the BSA aggregation occured, which could induce toxic effects on the organism.  相似文献   

20.
The vacuum-ultraviolet circular dichroism (VUVCD) spectra of 16 globular proteins (insulin, lactate dehydrogenase, glucose isomerase, lipase, conalbumin, transferrin, catalase, subtilisin A, alpha-amylase, staphylococcal nuclease, papain, thioredoxin, carbonic anhydrase, elastase, avidin, and xylanase) were successfully measured in aqueous solutions at 25 degrees C from 260 to 160 nm under a high vacuum using a synchrotron-radiation VUVCD spectrophotometer. These proteins exhibited characteristic CD spectra below 190 nm that were related to their different secondary structures, which could not be detected with a conventional CD spectrophotometer. The component spectra of alpha-helices, beta-strands, turns, and unordered structures were obtained by deconvolution analysis of the VUVCD spectra of 31 reference proteins including the 15 proteins reported in our previous paper [Matsuo, K. et al. (2004) J. Biochem. 135, 405-411]. Prediction of the secondary-structure contents using the SELCON3 program was greatly improved, especially for alpha-helices, by extending the short-wavelength limit of CD spectra to 160 nm and by increasing the number of reference proteins. The numbers of alpha-helix and beta-strand segments, which were calculated from the distorted alpha-helix and beta-strand contents, were close to those obtained on X-ray crystallography. These results demonstrate the usefulness of synchrotron-radiation VUVCD spectroscopy for the secondary structure analysis of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号