首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The manganese superoxide dismutase gene (sodM) is very highly expressed in Aspergillus oryzae. To elucidate the basis for this high-level expression, deletion analysis of the promoter was undertaken using β-glucuronidase (GUS) as a reporter. Deletion of a 63-bp sequence from −200 to −138 in the 1,038-bp sodM promoter caused a drastic decrease in GUS activity. In addition, an electrophoretic gel mobility shift assay (EMSA) implicated a 30-bp element from −209 to −178 containing cis-element(s) in the high-level expression. The results of fine structure deletion analysis of this region were consistent with the EMSA results. To confirm these findings, we constructed enhanced sodM promoters by incorporating tandem repeats of this region, which resulted in an approximate twofold increase in expression relative to the native sodM promoter.  相似文献   

2.
《Gene》1998,207(2):127-134
The DNA (glaB) and a cDNA-encoding glucoamylase produced in solid-state culture of Aspergillus oryzae were cloned using oligodeoxyribonucleotide probes derived from internal amino acid sequences of the enzyme. Comparison of the nucleotide sequences of a genomic DNA fragment with its cDNA showed the glaB gene carried three exons interrupted by two introns and had an open reading frame encoding 493 aa residues. The 5′-flanking region had a TATA box at nt −87 from the start codon and two putative CAAT sequences at nt −276 and −288. The glaB gene shared 57% homology at the aa level with the glaA gene which was cloned previously from A. oryzae. Interestingly, the glucoamylase encoded by the glaB gene had no C-terminal domain such as that proposed to have starch binding activity in Aspergillus glucoamylases. Introduction of cDNA of the glaB gene to Saccharomyces cerevisiae caused the secretion of active glucoamylase to culture medium and introduction of the glaB gene to A. oryzae increased glucoamylase productivity in solid-state culture. Northern blot analysis showed the glaB gene was expressed in solid-state culture, but not in submerged culture.  相似文献   

3.
Proteoid roots are a unique adaptation that allow white lupin (Lupinus albus L. var Ultra) to survive under extreme phosphorus (P) deficient conditions. The cascade of events that signals P-deficiency induced gene expression in proteoid roots remains unknown. Through promoter::GUS analysis we showed that expression of acid phosphatase (LaSAP1) in P-deficient proteoid roots depends on DNA located from ?465 bp to ?345 bp 5′ of the ATG start codon and that the P1BS (PHR1 Binding Site) element, located at ?160 bp, also contributes regulatory control. DNA located within the ?414 bp to ?250 bp region of the LaSAP1 promoter was bound by nuclear proteins isolated from P-sufficient normal roots in electrophoretic mobility shift assays (EMSA), suggesting negative regulation. Competition experiments were performed with unlabeled oligonucleotides to further delineate the region of the LaSAP1 promoter bound by P-sufficient normal root nuclear proteins to a motif spanning ?361 bp to ?346 bp. The promoter motif characterized through EMSA spanning ?361 bp to ?345 bp was used as “bait” in a yeast one-hybrid (Y1H) experiment and 31 putative DNA binding proteins were isolated. Taken together, our results increase understanding of P-deficiency signaling by identifying regulatory regions and putative regulatory proteins for LaSAP1 expression.  相似文献   

4.
5.
6.
7.
In our previous research, we showed that the cyclin-dependent kinase regulatory subunit (CKS2) in maize (Zea mays L.) was induced by water deficit and cold stress. To elucidate its expression patterns under adversity, we isolated and characterized its promoter (PZmCKS2). A series of PZmCKS2-deletion derivatives, P0–P3, from the translation start code (?1,455, ?999, ?367, and ?3 bp) was fused to the β-glucuronidase (GUS) reporter gene, and each deletion construct was analyzed by Agrobacterium-mediated steady transformation into Arabidopsis. Leaves were then subjected to dehydration, cold, abscisic acid (ABA), salicylic acid (SA), and methyl jasmonic acid (MeJA). Sequence analysis showed that several stress-related cis-acting elements (MBS, CE3, TGA element, and ABRE) were located within the promoter. Deletion analysis of the promoter, PZmCKS2, suggested that the ?999 bp promoter region was required for the highest basal expression of GUS, and the ?367 bp sequence was the minimal promoter for ZmCKS2 activation by low temperature, ABA, and MeJA. The cis-acting element ABRE was necessary for promoter activation by exogenous ABA.  相似文献   

8.
9.
10.
The ?93 SNP of MLH1 gene is associated with MLH1 gene methylation in endometrial and colorectal cancers. We undertook luciferase reporter assay and electrophoretic mobility shift assay (EMSA) to test whether the ?93 SNP affects the MLH1 gene expression. The luciferase activity for ?93A plasmid is significantly lower than ?93G plasmid. In EMSA experiments, the ?93A and ?93G probes have different binding affinity to nuclear proteins of JEG3 cells. Our data indicate that ?93 SNP affects MLH1 gene expression by altering protein binding to the promoter of MLH1 gene.  相似文献   

11.
12.
13.
14.
The promoter of a pollen-specific gene TaPSG719 was isolated from wheat (Triticum aestivum L.) by inverse-PCR (IPCR). Sequence analysis revealed that the promoter contains two cis-acting elements (AGAAA and GTGA) known to confer anther/pollen-specific gene expression which suggests that the promoter of TaPSG719 gene is a pollen-specific one. To ascertain the regulatory function of TaPSG719 promoter, two deleted fragments (?1,776 to ?1 bp and ?1,019 to ?1 bp) were fused to the β-glucuronidase (GUS) gene and transformed into tobacco plants. Similar GUS expression patterns were observed in all transformed plants and its activity was detected exclusively in pollen. No GUS activity in any other floral or vegetative tissue was observed. The results confirm that TaPSG719 promoter is pollen-specific and active during the middle stages of pollen development till anther matured, and it can drive pollen-specific gene expression across the species.  相似文献   

15.
16.
17.
18.
19.
The promoter region (?309 to +44) of the Brassica napus storage protein gene napA was studied in transgenic tobacco by successive 5′ as well as internal deletions fused to the reporter gene GUS (β-glucuronidase). The expression in the two main tissues of the seed, the endosperm and the embryo, was shown to be differentially regulated. This tissue-specific regulation within the seed was found to affect the developmental expression during seed development. The region between ?309 to ?152, which has a large effect on quantitative expression, was shown to harbour four elements regulating embryo and one regulating endosperm expression. This region also displayed enhancer activity. Deletion of eight bp from position ?152 to position ?144 totally abolished the activity of the napA promoter. This deletion disrupted a cis element with similarity to an ABA-responsive element (ABRE) overlapping with an E-box, demonstrating its crucial importance for quantitative expression. An internal deletion of the region ?133 to ?120, resulted in increased activity in both leaves and endosperm and a decreased activity in the embryo. Within this region, a cis element similar to the (CA)n element, found in other storage protein promoters, was identified. This suggest that the (CA)n element is important for conferring seed specificity by serving both as an activator and a repressor element.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号