首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Corynebacterium glutamicum, a Gram-positive bacterium, has been widely used for the industrial production of amino acids, such as glutamate and lysine, for decades. Due to several characteristics – its ability to secrete properly folded and functional target proteins into culture broth, its low levels of endogenous extracellular proteins and its lack of detectable extracellular hydrolytic enzyme activity – C. glutamicum is also a very favorable host cell for the secretory production of heterologous proteins, important enzymes, and pharmaceutical proteins. The target proteins are secreted into the culture medium, which has attractive advantages over the manufacturing process for inclusion of body expression – the simplified downstream purification process. The secretory process of proteins is complicated and energy consuming. There are two major secretory pathways in C. glutamicum, the Sec pathway and the Tat pathway, both have specific signal peptides that mediate the secretion of the target proteins. In the present review, we critically discuss recent progress in the secretory production of heterologous proteins and examine in depth the mechanisms of the protein translocation process in C. glutamicum. Some successful case studies of actual applications of this secretory expression host are also evaluated. Finally, the existing issues and solutions in using C. glutamicum as a host of secretory proteins are specifically addressed.  相似文献   

2.
3.
Genes encoding the basic protease of Dichelobacter nodosus (bprV) and the subtilisin of Bacillus subtilis (aprE) were cloned and expressed in Corynebacterium glutamicum. In each case, enzymatically active protein was detected in the supernatants of liquid cultures. While the secretion of subtilisin was directed by its own signal peptide, the natural signal peptide of the bprV basic protease did not facilitate secretion. A hybrid aprE-bprV gene in which the promoter and signal peptide coding sequences of subtilisin replaced those of bprV could be expressed, and basic protease was secreted by C. glutamicum. Expression of these proteases in C. glutamicum provides an opportunity to compare protein secretion from this gram-positive host with that from other gram-positive and gram-negative bacteria.  相似文献   

4.
Lysine secretion in wild-type Corynebacterium glutamicum was investigated by means of dipeptide feeding during short-term fermentation. It could be shown that important properties of lysine excretion, e. g. dependence on membrane potential and the internal Michaelis constant (K m), are not different for the producing strain DG 52-5 and the wild type. The main difference seems to refer to regulatory properties of the lysine excretion carrier activity. The transport of lysine in the wild type is regulated by the presence and kind of carbon sources. These differences in transport activity are not due to changes in the driving force. A possible distinction between phosphotransferase system (PTS) and non-PTS carbon sources with respect to the observed regulatory phenomena is discussed.  相似文献   

5.
周宁一 《微生物学通报》2016,43(11):2539-2539
正自从1957年Kinoshita等首次描述谷氨酸棒杆菌(Corynebacterium glutamicum)为谷氨酸产生菌[1]以来,其已成为用于氨基酸生产的主要菌株。目前,全世界每年利用谷氨酸棒杆菌生产约100万t L-谷氨酸用于食品调味剂和约45万t L-赖氨酸用作食品添加剂[2]。通过谷氨酸棒状杆菌发酵获得谷氨酸的发酵水平已较高,通过进一步优化工艺来提高产量具有较大困难[3]。  相似文献   

6.
Previous studies have demonstrated the involvement of a carrier system in glutamate secretion by Corynebacterium glutamicum under biotin limitation (Hoischen, C. and Kr?mer, R. (1989) Arch. Microbiol. 151, 342-347). In a detailed analysis of the export process we found secretion to be independent of secondary forces: (i) glutamate was secreted at high rate even when external glutamate exceeded the internal concentration, (ii) movement of neither protons nor potassium or chloride ions was found to be coupled to glutamate secretion, and (iii) secretion continued unaffected after breakdown of the membrane potential. Instead, under conditions leading to variation of glutamate secretion activity, a correlation of secretion rate and the intracellular ATP-pool was observed. Thus, ATP or a related high-energy metabolite is thought to be involved in the activity of the glutamate secretion system.  相似文献   

7.
Both ThyA and ThyX proteins catalyze the transfer of the methyl group from methylenetetrahydrofolate (CH(2) H(4) -folate) to dUMP, forming dTMP. To estimate the relative steady state expression levels of ThyA and ThyX, Western blot analysis was performed using ThyA or ThyX antiserum on total protein from the wild-type, ΔthyX, and thyX-complemented strains of Corynebacterium glutamicum. The level of ThyA decreased gradually during the stationary growth phase but that of ThyX was maintained steadily. Whereas the expression level of ThyA in a ΔsigB strain was comparable to that of the wild-type, the level of ThyX was significantly diminished in the deletion mutant and was restored to that of the wild-type in the complemented strain, indicating that the level of ThyX was regulated by SigB. Growth of the C.?glutamicum ΔsigB strain was dependent upon coupling activity of dihydrofolate reductase (DHFR) with ThyA for the synthesis of thymidine, and thus showed sensitivity to the inhibition of DHFR by the experimental inhibitor, WR99210-HCl. These results suggested that the relative levels of ThyA and ThyX differ in response to different growth phases and that SigB is necessary for maintenance of the level of ThyX during transition into the stationary growth phase.  相似文献   

8.
9.
10.
A unique feature of biotechnology is that we can harness the power of evolution to improve process performance. Rational engineering of microbial strains has led to the establishment of a variety of successful bioprocesses, but it is hampered by the overwhelming complexity of biological systems. Evolutionary engineering represents a straightforward approach for fitness‐linked phenotypes (e.g., growth or stress tolerance) and is successfully applied to select for strains with improved properties for particular industrial applications. In recent years, synthetic evolution strategies have enabled selection for increased small molecule production by linking metabolic productivity to growth as a selectable trait. This review summarizes the evolutionary engineering strategies performed with the industrial platform organism Corynebacterium glutamicum. An increasing number of recent studies highlight the potential of adaptive laboratory evolution (ALE) to improve growth or stress resistance, implement the utilization of alternative carbon sources, or improve small molecule production. Advances in next‐generation sequencing and automation technologies will foster the application of ALE strategies to streamline microbial strains for bioproduction and enhance our understanding of biological systems.  相似文献   

11.
The gene for staphylococcal nuclease (SNase), an extracellular enzyme of Staphylococcus aureus, was introduced into Corynebacterium glutamicum. The heterologous gene was expressed in this host organism, and SNase was efficiently exported to the culture medium. Amino-terminal sequencing of SNase secreted by C. glutamicum revealed that the signal peptide was apparently cleaved off at precisely the same position as in the original host, S. aureus. As with S. aureus, a second smaller form of SNase (A form), whose appearance is presumably the result of a secondary processing step, was found in the culture medium of the recombinant C. glutamicum strain. The A form was one residue shorter than the mature nuclease A produced by S. aureus. Variation of the sodium chloride concentration in the growth medium had a marked influence on the location and the processing of SNase by C. glutamicum. In a complex growth medium containing 4% sodium chloride, SNase was exclusively located in the supernatant, but a significant amount of the enzyme remained cell associated if the strain was grown in a low-salt medium. Also, high salt concentrations seemed to inhibit processing of the high-molecular-weight form of SNase (B form) to the smaller A form. Similarities and differences in the export and modes of processing of SNase by three different, nonrelated gram-positive host organisms are discussed. Finally, a versatile Escherichia coli-C. glutamicum tac-lacIq expression shuttle vector was constructed. With this vector, it was possible to achieve isopropyl-beta-D-galactopyranoside (IPTG)-inducible overexpression and secretion of SNase in C. glutamicum, whereby the expression level was dependent on the concentration of the inducer.  相似文献   

12.
即使细菌基因组的基因结构较为简单,但在注释过程中也可能出现基因遗漏的现象。当潜在基因在高质量数据库中没有显著同源序列时,基于知识库的基因预测方法就会遇到困难。本文希望通过系统扫描基因组所有可能ORF的蛋白质序列模式来搜索遗漏基因。为验证该方法的可行性,作者系统分析了重要的工业发酵微生物谷氨酸棒杆菌的基因组,发现了25个候选疑似基因。它们具有显著的蛋白质序列模式,但在Swiss-Prot中元显著同源序列,并且在GenBank中仍未注释。深入分析发现,25个候选疑似基因中19个为可能基因,3个为可能假基因,3个为疑似基因序列。这些结果说明本文的分析方法可以有效地用于无显著同源序列基因的搜索。  相似文献   

13.
The construction of microbial platform organisms by means of genome reduction is an ongoing topic in biotechnology. In this study, we investigated whether the deletion of single or multiple gene clusters has a positive effect on the secretion of cutinase from Fusarium solani pisi in the industrial workhorse Corynebacterium glutamicum. A total of 22 genome-reduced strain variants were compared applying two Sec signal peptides from Bacillus subtilis. High-throughput phenotyping using robotics-integrated microbioreactor technology with automated harvesting revealed distinct cutinase secretion performance for a specific combination of signal peptide and genomic deletions. The biomass-specific cutinase yield for strain GRS41_51_NprE was increased by ~ 200%, although the growth rate was reduced by ~ 60%. Importantly, the causative deletions of genomic clusters cg2801-cg2828 and rrnC-cg3298 could not have been inferred a priori. Strikingly, bioreactor fed-batch cultivations at controlled growth rates resulted in a complete reversal of the screening results, with the cutinase yield for strain GRS41_51_NprE dropping by ~ 25% compared to the reference strain. Thus, the choice of bioprocess conditions may turn a ‘high-performance’ strain from batch screening into a ‘low-performance’ strain in fed-batch cultivation. In conclusion, future studies are needed in order to understand metabolic adaptations of C. glutamicum to both genomic deletions and different bioprocess conditions.  相似文献   

14.
15.
Corynebacterium glutamicum grows on a variety of carbohydrates and organic acids as single or combined sources of carbon and energy. Here we show the ability of C. glutamicum to grow on ethanol with growth rates up to 0.24 h(-1) and biomass yields up to 0.47 g dry weight (g ethanol)(-1). Mutants of C. glutamicum deficient in phosphotransacetylase (PTA), isocitrate lyase (ICL) and malate synthase (MS) were unable to grow on ethanol, indicating that acetate activation and the glyoxylate cycle are essential for utilization of this substrate. In accordance, the expression profile of ethanol-grown C. glutamicum cells compared to that of glucose-grown cells revealed an increased expression of genes encoding acetate kinase (AK), PTA, ICL and MS. Furthermore, the specific activities of these four enzymes as well as those of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) were found to be high in ethanol-grown and low in glucose-grown cells. Growth of C. glutamicum on a mixture of glucose and ethanol led to a biphasic growth behavior, which was due to the sequential utilization of glucose before ethanol. Accordingly, the specific activities of ADH, ALDH, AK, PTA, ICL and MS in cells grown in medium containing both substrates were as low as in glucose-grown cells in the first growth phase, but increased 5- to 100-fold during the second growth phase. The results indicate that ethanol catabolism in C. glutamicum is subject to carbon source-dependent regulation, i.e., to a carbon catabolite control.  相似文献   

16.
A gene encoding a homolog of purine efflux proteins of Escherichia coli and Bacillus subtilis was identified in the genome of Corynebacterium glutamicum and designated as cepA. The gene encoded a putative protein product, containing 12 transmembrane helixes, which is a typical feature of integral membrane transport proteins. To elucidate the function of the gene, we constructed a cepA deletion mutant (ΔcepA) and a cepA-overexpressing strain and analyzed their physiological characteristics. The cepA gene could be deleted with no critical effect on cell growth. However, the cell yield of a ΔcepA strain was decreased by 10% as compared to that of a strain carrying a cepA-overexpression plasmid (P180-cepA). Further analysis identified increased resistance of the P180-cepA strain to the purine analogues 6-mercaptopurine and 6-mercaptoguanine, but not to 2-aminopurine and purine nucleoside analogues. Moreover, this strain showed increased resistance to the antibiotics nalidixic acid and ampicillin. Collectively, these data suggest that cepA is a novel multidrug resistance gene and probably functions in the efflux of toxic substances from the inside of cells to the environment, thus allowing cells to reach a higher cell yield.  相似文献   

17.
The MtrB-MtrA two component system of Corynebacterium glutamicum was recently shown to be in involved in the osmostress response as well as cell wall metabolism. To address the question of whether the histidine protein kinase MtrB is an osmosensor, the kinase was purified and reconstituted into liposomes in a functionally active form. The activity regulation was investigated by varying systematically physicochemical parameters, which are putative stimuli that could be used by the bacterial cell to detect osmotic conditions. Membrane shrinkage was ruled out as a stimulus for activation of MtrB. Instead, MtrB was shown to be activated upon the addition of various chemical compounds, like sugars, amino acids, and polyethylene glycols. Because of the different chemical nature of the solutes, it seems unlikely that they bind to a specific binding site. Instead, they are proposed to act via a change of the hydration state of the protein shifting MtrB into the active state. For MtrB activation it was essential that these solutes were added at the same side as the cytoplasmic domains of the kinase were located, indicating that hypertonicity is sensed by MtrB via cytoplasmatically located protein domains. This was confirmed by the analysis of two MtrB mutants in which either the large periplasmic loop or the HAMP domain was deleted. These mutants were regulated similar to wild type MtrB. Thus, we postulate that MtrB belongs to a class of histidine protein kinases that sense environmental changes at cytoplasmatic protein domains independently of the periplasmic loop and the cytoplasmic HAMP domain.  相似文献   

18.
Corynebacterium glutamicum, a Gram-positive soil bacterium belonging to the mycolic acids-containing actinomycetes, is able to use the lignin degradation products ferulate, vanillate, and protocatechuate as sole carbon sources. The gene cluster responsible for vanillate catabolism was identified and characterized. The vanAB genes encoding vanillate demethylase are organized in an operon together with the vanK gene, coding for a transport system most likely responsible for protocatechuate uptake. While gene disruption mutagenesis revealed that vanillate demethylase is indispensable for ferulate and vanillate utilization, a vanK mutation does not lead to a complete growth arrest but to a decreased growth rate on protocatechuate, indicating that one or more additional protocatechuate transporter(s) are present in C. glutamicum.  相似文献   

19.
The A-to-V mutation at position 111 (A111V) in the mechanosensitive channel NCgl1221 (MscCG) causes constitutive glutamate secretion in Corynebacterium glutamicum. Patch clamp experiments revealed that NCgl1221 (A111V) had a significantly smaller gating threshold than the wild-type counterpart and displayed strong hysteresis, suggesting that the gain-of-function mutation in the gating of NCgl1221 leads to the oversecretion of glutamate.  相似文献   

20.
A transketolase mutant was first isolated from Corynebacterium glutamicum, an organism of industrial importance. The mutant strain exhibited an absolute requirement for shikimic acid or the aromatic amino acids and vitamins for growth, and also failed to grow on ribose or gluconic acid as sole carbon source, even with the aromatic supplement. All of these defective properties were fully restored in spontaneous revertants, indicating the existence of a single transketolase in C. glutamicum that was indispensable both for aromatic biosynthesis and for utilization of these carbohydrates in vivo. The transketolase mutant accumulated ribulose extracellularly when cultivated in glucose medium with shikimic acid, but no ribose was detected. Received: 10 April 1998 / Received revision: 26 May 1998 / Accepted: 14 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号