首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some single-base changes in a 14-bp region (the downstream region) adjacent to three repeated sequences (iterons) in pSC101 ori are very deleterious for replication. We isolated a host suppressor mutation for one of these mutations and found that the suppressor suppressed all the mutations tested in the downstream region. The nucleotide sequence of the suppressor revealed that the suppressor gene was identical to dksA, which encodes a multicopy suppressor of the heat shock gene dnaK.  相似文献   

2.
We report the isolation and characterization of a previously unidentified Escherichia coli gene that suppresses the temperature-sensitive growth and filamentation of a dnaK deletion mutant strain. Introduction of a multicopy plasmid carrying this wild-type gene into a dnaK deletion mutant strain rescued the temperature-sensitive growth of the dnaK deletion mutant strain at 40.5 degrees C and the filamentation, fully at 37 degrees C and partially at 40.5 degrees C. However, the inability of dnaK mutant cells to support bacteriophage lambda growth was not suppressed. This gene was also able to suppress the temperature-sensitive growth of a grpE280 mutant strain at 41 degrees C. Filamentation of the grpE280 mutant strain was suppressed at 37 degrees C but not at 41 degrees C. The dnaK suppressor gene, designated dksA, maps near the mrcB gene (3.7 min on the E. coli chromosome). DNA sequence analysis and in vivo experiments showed that dksA encodes a 17,500-Mr polypeptide. Gene disruption experiments indicated that dksA is not an essential gene.  相似文献   

3.
4.
Enzymes of the ATP-independent Deg serine endopeptidase family are very flexible with regard to their substrate specificity. Some family members cleave only one substrate, while others act as general proteases on unfolded substrates. The proteolytic activity of Deg proteases is regulated by PDZ protein interaction domains. Here we characterized the HhoA protease from Synechocystis sp. strain PCC 6803 in vitro using several recombinant protein constructs. The proteolytic activity of HhoA was found to increase with temperature and basic pH and was stimulated by the addition of Mg(2+) or Ca(2+). We found that the single PDZ domain of HhoA played a critical role in regulating protease activity and in the assembly of a hexameric complex. Deletion of the PDZ domain strongly reduced proteolysis of a sterically challenging resorufin-labeled casein substrate, but unlabeled beta-casein was still degraded. Reconstitution of the purified HhoA with total membrane proteins isolated from Synechocystis sp. wild-type strain PCC 6803 and a DeltahhoA mutant resulted in specific degradation of selected proteins at elevated temperatures. We concluded that a single PDZ domain of HhoA plays a critical role in defining the protease activity and oligomerization state, combining the functions that are attributed to two PDZ domains in the homologous DegP protease from Escherichia coli. Based on this first enzymatic study of a Deg protease from cyanobacteria, we propose a general role for HhoA in the quality control of extracytoplasmic proteins, including membrane proteins, in Synechocystis sp. strain PCC 6803.  相似文献   

5.
Two extragenic suppressors which allow temperature-sensitive htrA mutant Escherichia coli bacteria to grow at 42 degrees C and simultaneously acquire a cold-sensitive phenotype at 30 degrees C were isolated. The cold-sensitive phenotype exhibited by one of the mutants was used to clone the corresponding wild-type copy of the suppressor gene. This was done through complementation with a mini-mu plasmid E. coli DNA library, by selection for colonies which were no longer cold sensitive, at 30 degrees C. The cloned suppressor gene was shown to complement the cold-sensitive phenotype of both suppressor mutations. It was mapped to 68 min on the E. coli chromosome through hybridization to the Kohara library of overlapping lambda transducing bacteriophages, which covers the entire E. coli chromosome. The complementing gene was further subcloned on an 830-base-pair (bp) DNA fragment. DNA sequencing revealed the presence of an open reading frame (ORF) of 333 bp which could encode a protein of 12,359 Mr. Subcloning of various DNA fragments from within this 830-bp DNA fragment suggests that this ORF is most likely responsible for suppression of the cold-sensitive phenotype of the htrA suppressor bacteria. By using a T7 polymerase system to overproduce plasmid-encoded proteins, a protein of approximately 12,000 Mr was produced by this cloned DNA fragment. This ORF defines a previously undiscovered gene in E. coli, called sohA (suppressor of htrA).  相似文献   

6.
7.
We cloned and sequenced the sohB gene of Escherichia coli. The temperature-sensitive phenotype of bacteria that carry a Tn10 insertion in the htrA (degP) gene is relieved when the sohB gene is present in the cell on a multicopy plasmid (30 to 50 copies per cell). The htrA gene encodes a periplasmic protease required for bacterial viability only at high temperature, i.e., above 39 degrees C. The sohB gene maps to 28 min on the E. coli chromosome, precisely between the topA and btuR genes. The gene encodes a 39,000-Mr precursor protein which is processed to a 37,000-Mr mature form. Sequencing of a DNA fragment containing the gene revealed an open reading frame which could encode a protein of Mr 39,474 with a predicted signal sequence cleavage site between amino acids 22 and 23. Cleavage at this site would reduce the size of the processed protein to 37,474 Mr. The predicted protein encoded by the open reading frame has homology with the inner membrane enzyme protease IV of E. coli, which digests cleaved signal peptides. Therefore, it is possible that the sohB gene encodes a previously undiscovered periplasmic protease in E. coli that, when overexpressed, can partially compensate for the missing HtrA protein function.  相似文献   

8.
During production of a humanized antibody fragment secreted into the periplasm of Escherichia coli, proteolytic degradation of the light chain was observed. In order to determine which protease(s) were responsible for this degradation, we compared expression of the F(ab')(2) antibody fragment in several E. coli strains carrying mutations in genes encoding periplasmic proteases. Analysis of strains cultured in high cell density fermentations showed that the combination of mutations in degP prc spr was necessary for the cells to produce high levels of the desired recombinant antibody fragment. In order to eliminate the possible effects of mutations in other genes, we constructed E. coli strains with protease mutations in isogenic backgrounds and repeated the studies in high cell density fermentations. Extensive light chain proteolysis persisted in degP strains. However, light chain proteolysis was substantially decreased in prc and prc spr strains, and was further decreased with the introduction of a degP mutation in prc and prc spr mutant strains. These results show that the periplasmic protease Prc (Tsp) is primarily responsible for proteolytic degradation of the light chain during expression of a recombinant antibody fragment in E. coli, and that DegP (HtrA) makes a minor contribution to this degradation as well. The results also show that spr, a suppressor of growth defects in prc strains, is required for a prc mutant to survive throughout high cell density fermentations.  相似文献   

9.
The Synechococcus sp. PCC7942 strain carrying a missense mutation in the peptide-binding domain of DnaK3, one of the essential dnaK gene products, revealed temperature-sensitive growth. We also isolated suppressor mutants of this strain. One of the suppressors was mapped in the ribosomal protein gene rpl24 (syc1876), which encodes the 50S ribosomal protein L24. Subcellular localization of three DnaK proteins was determined, and the results indicated that a quantity of DnaK3 was dislocated from membrane-bound polysomes when dnaK3 temperature-sensitive mutant was incubated at non-permissive temperatures. Furthermore, we examined the photosystem II reaction center protein D1 and detected a translational intermediate polypeptide in membrane-bound polysome fractions prepared from dnaK3 temperature-sensitive cells grown at high temperature. These characteristic features of DnaK3 localizations and detection of D1 protein intermediate were not observed in the suppressor mutant even at high temperatures.  相似文献   

10.
Cullen CF  May KM  Hagan IM  Glover DM  Ohkura H 《Genetics》2000,155(4):1521-1534
We describe a general genetic method to identify genes encoding proteins that functionally interact with and/or are good candidates for downstream targets of a particular gene product. The screen identifies mutants whose growth depends on high levels of expression of that gene. We apply this to the plo1(+) gene that encodes a fission yeast homologue of the polo-like kinases. plo1(+) regulates both spindle formation and septation. We have isolated 17 high plo1(+)-dependent (pld) mutants that show defects in mitosis or septation. Three mutants show a mitotic arrest phenotype. Among the 14 pld mutants with septation defects, 12 mapped to known loci: cdc7, cdc15, cdc11 spg1, and sid2. One of the pld mutants, cdc7-PD1, was selected for suppressor analysis. As multicopy suppressors, we isolated four known genes involved in septation in fission yeast: spg1(+), sce3(+), cdc8(+), and rho1(+), and two previously uncharacterized genes, mpd1(+) and mpd2(+). mpd1(+) exhibits high homology to phosphatidylinositol 4-phosphate 5-kinase, while mpd2(+) resembles Saccharomyces cerevisiae SMY2; both proteins are involved in the regulation of actin-mediated processes. As chromosomal suppressors of cdc7-PD1, we isolated mutations of cdc16 that resulted in multiseptation without nuclear division. cdc16(+), dma1(+), byr3(+), byr4(+) and a truncated form of the cdc7 gene were isolated by complementation of one of these cdc16 mutations. These results demonstrate that screening for high dose-dependent mutants and their suppressors is an effective approach to identify functionally interacting genes.  相似文献   

11.
Temperature-resistant pseudorevertants were isolated from a dnaK7(Ts) mutant of Escherichia coli K-12. Two of these pseudorevertants were shown to carry suppressor mutations, sukA and sukB, respectively. Genetic mapping by conjugation and P1-transduction revealed that these suppressor mutations were located at two distinct sites between 76 and 77 min close to the suhA and rpoH genes. Labeled cellular proteins were extracted from suppressor mutants grown at various temperatures and subjected to SDS-gel electrophoresis. Autoradiograms of the gels indicated that these suppressor mutations each resulted in increased synthesis of the heat shock protein Lon (an ATP-dependent protease, La) at both permissive and nonpermissive temperatures.  相似文献   

12.
The RHO1 gene encodes a homolog of the mammalian RhoA small GTP binding protein in the yeast Saccharomyces cerevisiae. Rho1p is localized at the growth site and is required for bud formation. Multicopy suppressors of a temperature-sensitive, dominant negative mutant allele of RHO1, RHO1(G22S, D125N), were isolated and named ROM (RHO1 multicopy suppressor). Rom1p and Rom2p were found to contain a DH (Dbl homologous) domain and a PH (pleckstrin homologous) domain, both of which are conserved among the GDP/GTP exchange proteins (GEPs) for the Rho family small GTP binding proteins. Disruption of ROM2 resulted in a temperature-sensitive growth phenotype, whereas disruption of both ROM1 and ROM2 resulted in lethality. The phenotypes of deltarom1deltarom2 cells were similar to those of deltarho1 cells, including growth arrest with a small bud and cell lysis. Moreover, the temperature-sensitive growth phenotype of deltarom2 was suppressed by overexpression of RHO1 or RHO2, but not of CDC42. The glutathione-S-transferase (GST) fusion protein containing the DH domain of Rom2p showed the lipid-modified Rholp-specific GDP/GTP exchange activity which was sensitive to Rho GDP dissociation inhibitor. These results indicate that Rom1p and Rom2p are GEPs that activate Rho1p in S.cerevisiae.  相似文献   

13.
The MCD4 gene of Saccharomyces cerevisiae encodes a protein involved in glycosylphosphatidylinositol (GPI) biosynthesis. However, some mutations in the MCD4 gene have pleiotropic effects that may not be related to the defects in GPI anchor synthesis. The ssu21 mutation in the MCD4 gene studied here causes sensitivity to caffeine. The screen for multicopy suppressors of caffeine sensitivity caused by the ssu21 mutation revealed genes involved in aminoglycerophospholipid metabolism, unfolded protein response, and protein degradation. The suppressor effect of all isolated genes was enhanced by an increase in concentration of external calcium, which is consistent with the ability of caffeine to block calcium entry into the yeast cell. Obtained results indicate that caffeine sensitivity caused by the ssu21 mutation could be due to cytoplasmic accumulation of misfolded proteins destined for degradation.  相似文献   

14.
15.
16.
The Escherichia coli yhhP gene was predicted to encode a small hypothetical protein of 81 amino acids, the cellular function of which is not known. To gain insight into the function of this uncharacterized YhhP protein, genetic and biochemical studies were done. We first tried to express and purify the YhhP protein to prepare an anti-YhhP antiserum. Western blotting showed that the hypothetical yhhP gene is indeed transcribed and translated as a minor cytoplasmic protein. YhhP-deficient (delta yhhP) cells formed colonies poorly on a rich medium (e.g., Luria-Bertani medium) containing a relatively low concentration of NaCl, while they can grow normally either in LB containing 3% NaCl or in a synthetic medium (e.g., M9-glucose). During exponential growth in rich medium, an early step of cell division was inhibited in delta yhhP cells, forming filaments. For the YhhP-deficient filamentous cells, the FtsZ-ring formation was analyzed with immunofluorescence microscopy. The FtsZ-ring formation did not occur normally in the delta yhhP filaments, although the filamentous cells contained the FtsZ protein at a certain level comparable to that in the wild-type cells. The ftsZ gene was found to function as a multicopy suppressor of the delta yhhP mutant. Another multicopy suppressor gene was identified as the dksA gene. Provided that either the ftsZ or dksA gene was introduced into the mutant cells with its multicopy state, the resulting transformants were capable of growing in rich medium, formed wild-type short rods. These results are discussed with regard to the presumed function of this ubiquitous protein.  相似文献   

17.
Previous studies have demonstrated that the Escherichia coli dnaK and grpE genes code for heat shock proteins. Both the Dnak and GrpE proteins are necessary for bacteriophage lambda DNA replication and for E. coli growth at all temperatures. Through a series of genetic and biochemical experiments, we have shown that these heat shock proteins functionally interact both in vivo and in vitro. The genetic evidence is based on the isolation of mutations in the dnaK gene, such as dnaK9 and dnaK90, which suppress the Tr- phenotype of bacteria carrying the grpE280 mutation. Coimmunoprecipitation of DnaK+ and GrpE+ proteins from cell lysates with anti-DnaK antibodies demonstrated their interaction in vitro. In addition, the DnaK756 and GrpE280 mutant proteins did not coimmunoprecipitate efficiently with the GrpE+ and DnaK+ proteins, respectively, suggesting that interaction between the DnaK and GrpE proteins is necessary for E. coli growth, at least at temperatures above 43 degrees C. Using this assay, we found that one of the dnaK suppressor mutations, dnaK9, reinstated a protein-protein interaction between the suppressor DnaK9 and GrpE280 proteins.  相似文献   

18.
Escherichia coli spr (suppressor of prc) mutants and nlpI mutants show thermosensitive growth. The thermosensitivity of the spr mutants was suppressed by the nlpI mutations. Expression of the fusion genes encoding hexa-histidine-tagged NlpI (NlpI-His) and purification of the tagged NlpI showed that NlpI-His bound with Prc protease and IbpB chaperone. NlpI-His with the amino acid substitution of G103D did not bind with either of these proteins, while NlpI-His variants (NlpI-284-His, NlpI-Q283-His, and NlpI-G282-His) lacking 10 to 12 residues from the carboxy terminus bound with both proteins. The tagged NlpI lacking 11 amino acid residues from the carboxy terminus was processed by Prc, but that lacking 12 residues was not. The thermosensitivity of the nlpI mutant was corrected by the production of the former NlpI variant, but not by production of the latter. Expression of the truncated NlpI that lacked 10 or 11 residues from the carboxy terminus corrected the thermosensitivity of the prc nlpI double mutant, while expression of the full-length NlpI did not. Thus, it was suggested that NlpI was activated by Prc protease processing.  相似文献   

19.
20.
An Escherichia coli membrane protein, FtsH, has been implicated in several cellular processes, including integration of membrane proteins, translocation of secreted proteins, and degradation of some unstable proteins. However, how it takes part in such diverse cellular events is largely unknown. We previously isolated dominant negative ftsH mutations and proposed that FtsH functions in association with some other cellular factor(s). To test this proposal we isolated multicopy suppressors of dominant negative ftsH mutations. One of the multicopy suppressor clones contained an N-terminally truncated version of a new gene that was designated fdrA. The FdrA fragment suppressed both of the phenotypes — increased abnormal translocation of a normally cytoplasmic domain of a model membrane protein and retardation of protein export — caused by dominant negative FtsH proteins. The intact fdrA gene (11.9 min on the chromosome) directed the synthesis of a 60 kDa protein in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号