首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Key Role for Endogenous Gibberellins in the Control of Seed Germination   总被引:17,自引:0,他引:17  
The stimulative action of applied gibberellins (GA) on seedgermination has been reported for a large number of speciesin the past three decades. Applied GA often replaces the needfor environmental stimuli like specific temperature pretreatmentor light. Therefore, it has been suggested that endogenous GAsare essential intermediates in the stimulation of germination.Endogenous GAs have been identified in seeds of a limited numberof species, but most of the evidence for a regulatory role isentirely circumstantial. The use of isogenic mutants with lesionsin the GA biosynthesis has presented direct evidence of a keyrole for endogenous GAs in the regulation of germination. GAdeficiency absolutely prevents germination in seeds of Arabidopsisthaliana and tomato. Two different mechanisms of action exist The first one involves hydrolysis of reserve food. In seedsof tomato a factor, probably GA, diffuses prior to germinationfrom embryo to endosperm where it induces hydrolysis of gaJactomannan-richcell walls that are part of the mechanical resistance to theprotrusion of the radicle. A second mechanism of GA action consistsof a direct effect on the growth potential of the embryo. InArabidopsis the stimulation of germination by light dependson the ability of the seeds to synthesize GA, but light alsoenhances the sensitivity of the seeds to GA. Dry storage andpre-incubation at 2°C also increased the responsivenessof Arabidopsis seeds to GA  相似文献   

2.
The Hydrolysis of Endosperm Protein in Zea mays   总被引:14,自引:10,他引:4       下载免费PDF全文
Harvey BM  Oaks A 《Plant physiology》1974,53(3):453-457
Degradation of the major storage proteins in maize endosperm, zein and glutelin, begins during the 2nd day of germination. The protein most abundant in the mature endosperm is degraded most rapidly. The patterns of protein loss are essentially similar in germinating seeds and excised endosperms. Cycloheximide, added at the beginning of the incubation period, prevents the development of α-amylase and protease activities and the disappearance of starch and protein reserves. Late additions (70 hours) of cycloheximide still inhibit the increase in hydrolase activity but have no effect on the hydrolysis of storage reserves. The results indicate that the hydrolytic enzymes are synthesized de novo in the maize endosperm.  相似文献   

3.
4.
Successful development of seeds under spaceflight conditionshas been an elusive goal of numerous long-duration experimentswith plants on orbital spacecraft. Because carbohydrate metabolismundergoes changes when plants are grown in microgravity, developingseed storage reserves might be detrimentally affected duringspaceflight. Seed development in Arabidopsis thaliana plantsthat flowered during 11 d in space on shuttle mission STS-68has been investigated in this study. Plants were grown to therosette stage (13 d) on a nutrient agar medium on the groundand loaded into the Plant Growth Unit flight hardware 18 h priorto lift-off. Plants were retrieved 3 h after landing and siliqueswere immediately removed from plants. Young seeds were fixedand processed for microscopic observation. Seeds in both theground control and flight plants are similar in their morphologyand size. The oldest seeds from these plants contain completelydeveloped embryos and seed coats. These embryos developed radicle,hypocotyl, meristematic apical tissue, and differentiated cotyledons.Protoderm, procambium, and primary ground tissue had differentiated.Reserves such as starch and protein were deposited in the embryosduring tissue differentiation. The aleurone layer contains alarge quantity of storage protein and starch grains. A seedcoat developed from integuments of the ovule with gradual changein cell composition and cell material deposition. Carbohydrateswere deposited in outer integument cells especially in the outsidecell walls. Starch grains decreased in number per cell in theintegument during seed coat development. All these characteristicsduring seed development represent normal features in the groundcontrol plants and show that the spaceflight environment doesnot prevent normal development of seeds in Arabidopsis. Arabidopsis ; spaceflight; embryo; endosperm; seed coat; storage reserves  相似文献   

5.
Phosphoenolpyruvate carboxykinase (PEPCK) was shown to be present in a range of developing seeds by measurement of its activity and by immunoblotting. Its function was investigated during grape (Vitis vinifera L.) seed development. The maximum abundance of PEPCK coincided with the deposition of storage reserves. At this stage of development, immunohistochemistry showed that PEPCK was very abundant in a layer of cells located at the boundary of developing storage tissues and in the chalaza (close to the termination of the vascular supply to the seed) and was also present in the palisade layer of the seed coat (the inner layer of the outer integument). Earlier in development PEPCK was also present in the developing palisade layer and in the inner region of the nucellus which surrounds the developing endosperm. At later stages of development, PEPCK was located in the outer region of the endosperm. However, PEPCK was present in the phloem of the seed at all stages of development. Feeding of asparagine to developing grape seeds led to a strong induction of PEPCK. We suggest that, in developing grape seeds, both the chalaza and palisade tissue may distribute imported assimilates from the vasculature to the developing storage tissues and that PEPCK may play a role in the metabolism of nitrogenous assimilates during their delivery from the vasculature to the storage tissues. Received: 22 April 1999 / Accepted: 8 July 1999  相似文献   

6.
The intact dormant seeds of Dioscorea tokoro germinate slowlyif at all between 11-23°C; for full and rapid germinationthey require prior chilling treatment [Okagami and Kawai (1982)Bot. Mag. Tokyo 95: 155]. The germination abilities of zygoticembryos detached from dormant seeds of this species were studiedunder various nutritional and temperature regimes. For germinationof embryos, the minimum nutritional components in Murashigeand Skoog's (1962) medium that were required were sucrose andNO3 or SO2–4. As the source of carbohydrate forgermination of detached embryos, sucrose, mannose and maltosewere effective; glucose and fructose were less effective; andrhamnose was entirely unable to support germination. Embryos detached from dormant seeds, incubated with the sucroseplus KNO3, germinated more rapidly with increasing temperatureup to 35°C. However, application of sucrose and KNO3 didnot induce germination of intact seeds above 26°C. Therefore,it is very possible that the endosperm exerts an inhibitoryfunction on germination at such high temperatures. When seeds were incubated after a cut was made over a smallpart of the edge of the endosperm in which the radicle of theembryo is encased, germination occurred rapidly but the increasein germination percentage was slight. This result suggests thatthe endosperm suppots part of the germination inhibition bymeans of a mechanical barrier or its impermeability to wateror gases. Physiological features of the endosperm alone or interactionsbetween the embryo and endosperm may contribute significantlyto the characteristics of dormancy of intact seeds of this species. (Received May 30, 1988; Accepted January 11, 1989)  相似文献   

7.
Wu CT  Bradford KJ 《Plant physiology》2003,133(1):263-273
Class I chitinase (Chi9) and beta-1,3-glucanase (GluB) genes are expressed in the micropylar endosperm cap of tomato (Lycopersicon esculentum) seeds just before radicle emergence through this tissue to complete germination. In gibberellin (GA)-deficient mutant (gib-1) seeds, expression of Chi9 and GluB mRNA and protein is dependent upon GA. However, as expression occurs relatively late in the germination process, we investigated whether the genes are induced indirectly in response to tissue wounding associated with endosperm cap weakening and radicle protrusion. Wounding and methyl jasmonate (MeJA) induced Chi9 expression, whereas ethylene, abscisic acid, sodium salicylate, fusicoccin, or beta-aminobutyric acid were without effect. Chi9 expression occurred only in the micropylar tissues when seeds were exposed to MeJA or were wounded at the chalazal end of the seed. Expression of Chi9, but not GluB, mRNA was reduced in germinating seeds of the jasmonate-deficient defenseless1 tomato mutant and could be restored by MeJA treatment. Chi9 expression during germination may be associated with "wounding" from cell wall hydrolysis and weakening in the endosperm cap leading to radicle protrusion, and jasmonate is involved in the signaling pathway for this response. Among these treatments and chemicals (other than GA), only MeJA and wounding induced a low level of GluB expression in gib-1 seeds. However, MeJA, wounding, and particularly ethylene induced both genes in leaves, whereas GA induced only Chi9 in leaves. Although normally expressed simultaneously during tomato seed germination, Chi9 and GluB genes are regulated distinctly and tissue specifically by hormones and wounding.  相似文献   

8.
Studies on seed storage of Chionanthus retusus Lindl. & Paxt. revealed an orthodox behavior, one which showed both desiccation and freezing tolerance. An epicotyl after-ripening dormancy was expressed in C. retusus seeds by slow growth of the shoot apex relative to more rapid growth of the radicle when seeds were germinated at 30/20 degrees C. Although these seeds exhibit radicle protrusion, they must be after-ripened for another 8-10 weeks at 30/20 degrees C in order to obtain normal shoot growth. Removal of the endosperm, however, quickly stimulated cotyledon and shoot emergence without the additional after-ripening. Water-soluble glucoside phenolics, GL-3, Nuzhenide, ligustroside and oleoside dimethyl ester are present at relatively high levels in endosperm of freshly harvested seeds. These glucoside phenolics are excreted from the endosperm during subsequent after-ripening. Embryo and endosperm tissue from seed germinating at 30/20 degrees C (germination being defined by protrusion of the radicle) had a 10 times lower abscisic acid (ABA) content than similar tissues from freshly harvested mature seed. However, no shoot growth occurred even with the 10-fold reduction in ABA and a concomitant increase in endogenous gibberellins A1, A4 and A20. Thus, epicotyl dormancy during the first 8 weeks of after-ripening at 30/20 degrees C may be controlled by factors other than high ABA, i.e., the slow development of the shoot apex following radicle protrusion may be controlled more by high levels of glucoside phenolics than by diminished ABA and elevated GA levels.  相似文献   

9.
α-Amylase levels in intact seeds of barley (Hordeum vulgare L. cv. Himalaya) reach a maximum at 3 to 4 days of germination while gibberellin levels continue to increase beyond 6 days of germination. In contrast to its effect on half seeds, gibberellic acid does not increase the total amount of α-amylase produced in germinating seeds. The inability of gibberellic acid to stimulate α-amylase production is not related to its availability; rather, evidence suggests that a factor(s) in whole seeds prevents further enhancement of α-amylase formation and accumulation. Hydrolysis products accumulate in the subaleurone space of the endosperm of germinating seeds up to concentrations of 570 milliosmolar. Chromatography of these hydrolysis products indicate the presence of maltose and glucose. Calculations based on reducing sugar determinations show that glucose accounts for as much as 57% of the solutes present in the endosperm fluid. Both maltose and glucose in the range of 0.2 to 0.4 M effectively inhibit the production of α-amylase by isolated barley aleurone layers. This inhibition is quantitatively similar to that brought about by solutions of polyethylene glycol and mannitol. On the basis of these data we propose that hydrolysis products which accumulate in the starchy endosperm of germinating seeds function to regulate the production of hydrolytic enzymes by the aleurone layer.  相似文献   

10.
Murata T 《Plant physiology》1968,43(12):1899-1905
Time-sequence analyses of carbohydrate breakdown in germinating rice seeds shows that a rapid breakdown of starch reserve in endosperm starts after about 4 days of germination. Although the major soluble carbohydrate in the dry seed is sucrose, a marked increase in the production of glucose and maltooligosaccharides accompanies the breakdown of starch. Maltotriose was found to constitute the greatest portion of the oligosaccharides throughout the germination stage. α-Amylase activities were found to parallel the pattern of starch breakdown. Assays for phosphorylase activity showed that this enzyme may account for much smaller amounts of starch breakdown per grain, as compared to the amounts hydrolyzed by α-amylase. There was a transient decline in the content of sucrose in the initial 4 days of seed germination, followed by the gradual increase in later germination stages. During the entire germination stage, sucrose synthetase activity was not detected in the endosperm, although appreciable enzyme activity was present in the growing shoot tissues as well as in the frozen rice seeds harvested at the mid-milky stage. We propose the predominant formation of glucose from starch reserves in the endosperm by the action of α-amylase and accompanying hydrolytic enzyme(s) and that this sugar is eventually mobilized to the growing tissues, shoots or roots.  相似文献   

11.
Endo-beta-mannanase (EC 3.2.1.78) is involved in hydrolysis of the mannan-rich cell walls of the tomato (Lycopersicon esculentum Mill.) endosperm during germination and post-germinative seedling growth. Different electrophoretic isoforms of endo-beta-mannanase are expressed sequentially in different parts of the endosperm, initially in the micropylar endosperm cap covering the radicle tip and subsequently in the remaining lateral endosperm surrounding the rest of the embryo. We have isolated a cDNA from imbibed tomato seeds (LeMAN2) that shares 77% deduced amino acid sequence similarity with a post-germinative tomato mannanase (LeMAN1). When expressed in Escherichia coli, the protein encoded by LeMAN2 cDNA was recognized by anti-mannanase antibody and exhibited endo-beta-mannanase activity, confirming the identity of the gene. LeMAN2 was expressed exclusively in the endosperm cap tissue of tomato seeds prior to radicle emergence, whereas LeMAN1 was expressed only in the lateral endosperm after radicle emergence. LeMAN2 mRNA accumulation and mannanase activity were induced by gibberellin in gibberellin-deficient gib-1 mutant seeds but were not inhibited by abscisic acid in wild-type seeds. Distinct mannanases are involved in germination and post-germinative growth, with LeMAN2 being associated with endosperm cap weakening prior to radicle emergence, whereas LeMAN1 mobilizes galactomannan reserves in the lateral endosperm.  相似文献   

12.
Metabolite deposition during seed development was examined histochemicallyin Trifolium repens by light- and fluorescence microscopy. Allendosperm haustorium at the chalazal pole of the embryo sacand wall protrusions in cell walls of the suspensor and theembryo sac suggest that transfer of metabolites from maternalto offspring tissue takes place primarily at these sites. Thisis further supported by prominent cutinization of the interpolarregion of the embryo sac wall, accumulation of starch in integumentaltissue at the embryo sac poles, and breakdown of interpolarendothelial cells. Decomposition of osteosclereid starch isfollowed by accumulation in the cellular endosperm and subsequentlyin the embryo parallel to endosperm degradation. The starchaccumulates gradually inward from the subepidermal cells ofthe embryo to the stele. Protein bodies are formed in the vacuolesalong the tonoplast, later to be cut off in vesicles releasedinto the cytoplasm. At maturity the embryo is packed with proteinand starch, but without lipid reserves. Phytin is observed inthe protein bodies. The mature embryo is surrounded by a proteinand starch containing aleurone layer which originates from theendosperm.Copyright 1994, 1999 Academic Press White clover, protein, starch, cuticle, embryo sac wall  相似文献   

13.
The gibberellin (GA)-biosynthesis mutations, lh i , ls and Ie 5839 have been used to investigate the role(s) of the GAs in seed development of the garden pea (Pisum sativum L.). Seeds homozygous for lh i possess reduced GA levels, are more likely to abort during development, and weigh less at harvest, compared with wild-type seeds due to expression of the lh i mutation in the embryo and/ or endosperm. Compared with wild-type seeds, the lh i mutation reduces endogenous GA1 and gibberellic acid (GA3) levels in the embryo/endosperm a few days after anthesis and fertilizing lh i plants with wild-type pollen dramatically increases GA1 and GA3 levels in the embryo/ endosperm and restores normal seed development. By contrast, the ls and le 5839 mutations do not appear to reduce GA levels in the embryo/endosperm of seeds a few days after anthesis, and do not affect embryo or endosperm development. However, both the ls and lh i mutations substantially reduce endogenous GA levels in embryos at contact point (the first day the liquid endosperm disappears). Levels of GAs in seeds from crosses involving the ls and lh i mutations suggest that GAs are synthesised in both the embryo/endosperm and testa and that the expression of ls depends on the tissue and developmental stage examined. These results suggest that GAs (possibly GA1 and/or GA3) play an important role early in pea seed development by regulating the development of the embryo and/or endosperm. By contrast, the high GA levels found in wild-type seeds at contact point (and beyond) do not appear to have a physiological role in seed development.Abbreviations GAn gibberellin An - DAA days after anthesis - WT wild-type We thank Noel Davies, Katherine McPherson and Peter Bobbi for technical assistance, Professor L. Mander (ANU, Canberra) for dideuterated GA standards, and the Australian Research Council and Frontier Research Program, The Institute of Physical and Chemical Research (RIKEN, Japan), for financial support.  相似文献   

14.
Seed shriveling in the man-made intergeneric hybrid, triticale (x Triticosecale Wittmack) appears to be related to increased activity of endosperm acid phosphatases including para-nitrophenyl phosphatase, ATPase, ADPase, phosphatidic phosphatase, and glucose-1-phosphatase that occur specifically at later stages of seed development. These hydrolases may reduce endogenous substrates for starch synthesis, deplete energy supply for maintenance and biosynthesis of tissue growth, and deassemble membrane structures resulting in a partially filled endosperm and localized necrosis. Electrophoretic isozyme patterns of endosperm acid phosphatase exhibited distinctive differences between lines producing plump and shriveled seeds indicating a divergent role of the isozymes in these two different seed conformations.  相似文献   

15.
Chen F  Bradford KJ 《Plant physiology》2000,124(3):1265-1274
Expansins are extracellular proteins that facilitate cell wall extension, possibly by disrupting hydrogen bonding between hemicellulosic wall components and cellulose microfibrils. In addition, some expansins are expressed in non-growing tissues such as ripening fruits, where they may contribute to cell wall disassembly associated with tissue softening. We have identified at least three expansin genes that are expressed in tomato (Lycopersicon esculentum Mill.) seeds during germination. Among these, LeEXP4 mRNA is specifically localized to the micropylar endosperm cap region, suggesting that the protein might contribute to tissue weakening that is required for radicle emergence. In gibberellin (GA)-deficient (gib-1) mutant seeds, which germinate only in the presence of exogenous GA, GA induces the expression of LeEXP4 within 12 hours of imbibition. When gib-1 seeds were imbibed in GA solution combined with 100 microM abscisic acid, the expression of LeEXP4 was not reduced, although radicle emergence was inhibited. In wild-type seeds, LeEXP4 mRNA accumulation was blocked by far-red light and decreased by low water potential but was not affected by abscisic acid. The presence of LeEXP4 mRNA during seed germination parallels endosperm cap weakening determined by puncture force analysis. We hypothesize that LeEXP4 is involved in the regulation of seed germination by contributing to cell wall disassembly associated with endosperm cap weakening.  相似文献   

16.
The bifunctional alpha-amylase/subtilisin inhibitor (BASI) is an abundant protein in barley seeds, proposed to play multiple and apparently diverse roles in regulation of starch hydrolysis and in seed defence against pathogens. In the Triticeae, the protein has evolved the ability to specifically inhibit the main group of alpha-amylases expressed during germination of barley and encoded by the amyl gene family found only in the Triticeae. The expression of the asi gene that encodes BASI has been reported to be controlled by the hormones abscisic acid (ABA) and gibberellic acid (GA). Despite many studies at the gene and protein level, the function of this gene in the plant remains unclear. In this study, the 5'-flanking region (1033 bp, 1033-asi promoter) and the 3'-flanking region (655 bp) of the asi gene were isolated and characterised. The 1033-asi promoter sequence showed homology to a number of ciselements that play a role in ABA and GA regulated expression of other genes. With a green fluorescent protein gene (gfp) as reporter, the 1033-asi promoter was studied for spatial, temporal and hormonal control of gene expression. The 1033-asi promoter and its deletions direct transient gfp expression in the pericarp and at low levels in mature aleurone cells, and this expression is not regulated by ABA or GA. In transgenic barley plants, the 1033-asi promoter directed tissue-specific expression of the gfp gene in developing grain and germinating grain but not in roots or leaves. In developing grain, expression of gfp was observed specifically in the pericarp, the vascular tissue, the nucellar projection cells and the endosperm transfer cells and the hormones ABA or GA did not regulate this expression. In mature germinating grain gfp expression was observed in the embryo but not in aleurone or starchy endosperm. However, GA induced gfp expression in the aleurone of mature imbibed seeds from which the embryo had been removed. Expression in maternal rather than endosperm tissues of the grain suggests that earlier widespread assumptions that the protein is expressed largely in the endosperm may have been largely based on analysis of mixed grain tissues. This novel pattern of expression suggests that both activities of the protein may be primarily involved in seed defence in the peripheral tissues of the seed.  相似文献   

17.
Taylor, J. R. N., Novellie, L. and Liebenberg, N. v. d. W. 1985.Protein body degradation in the starchy endosperm of germinatingsorghum.—J. exp. Bot. 36: 1287–1295. Transmission electron micrographs of starchy endosperms of germinatingsorghum indicate that the protein bodies are degraded predominantlyby progressive hydrolysis of prolamin from their surface. Theappearance of holes within partially degraded protein bodiesindicates that some internal hydrolysis also takes place. Chemicalanalyses of protein bodies isolated at different stages duringgermination showed that their amino acid composition and electrophoreticpattern remained relatively unchanged during hydrolysis. Theend result of protein body degradation was that the organellescompletely disappeared leaving empty starchy endosperm cells.The protein bodies did not swell prior to or during degradation.This mode of protein body degradation differs from that in germinatingdicotyledonous seeds and in the aleurone layer and embryo ofcereal seeds but was identical to the mode of prolamin proteinbody degradation in the starchy endosperm of germinating riceseeds. Key words: Sorghum bicolor, protein body degradation, prolamin  相似文献   

18.
Completion of germination (radicle emergence) by gibberellin (GA)-deficient (gib-1) mutant tomato (Lycopersicon esculentum Mill.) seeds is dependent upon exogenous GA, because weakening of the endosperm tissue enclosing the radicle tip requires GA. To investigate genes that may be involved in endosperm weakening or embryo growth, differential cDNA display was used to identify mRNAs differentially expressed in gib-1 seeds imbibed in the presence or absence of GA(4+7). Among these was a GA-responsive mRNA encoding the 16-kD hydrophobic subunit c of the V(0) membrane sector of vacuolar H(+)-translocating ATPases (V-ATPase), which we termed LVA-P1. LVA-P1 mRNA expression in gib-1 seeds was dependent on GA and was particularly abundant in the micropylar region prior to radicle emergence. Both GA dependence and tissue localization of LVA-P1 mRNA expression were confirmed directly in individual gib-1 seeds using tissue printing. LVA-P1 mRNA was also expressed in wild-type seeds during development and germination, independent of exogenous GA. Specific antisera detected protein subunits A and B of the cytoplasmic V(1) sector of the V-ATPase holoenzyme complex in gib-1 seeds only in the presence of GA, and expression was localized to the micropylar region. The results suggest that V-ATPase plays a role in GA-regulated germination of tomato seeds.  相似文献   

19.
20.
Inhibition of GA3-induced endosperm mobilization in Avena fatuaL. by salicylhydroxamic acid (SHAM), a widely used alternativerespiration inhibitor, was studied. SHAM strongly inhibitedthe GA3-induced release of reducing sugars in the incubationmedium by 3 mm de-embryonated endosperm segments; at 4 mM SHAM,GA3-induced sugar release was inhibited by 66–79 per cent.Extracts prepared from segments incubated in 0.05 mM GA3 with2, 5 and 10 mM SHAM showed 30, 53 and 71 per cent lower -amylaseactivity, respectively, compared to the GA3-alone treatment.Addition of SHAM (0.5–5 mM) during the enzyme assay hadno effect on the activity of -amylase. Thus, the inhibitionof starch mobilization in endosperm by SHAM is due to inhibitionof the production and not the activity of -amylase. The inhibitionof Avena fatua seedling growth by SHAM reported earlier may,in part, be due to its effect on endosperm mobilization. Since (1) Avena fatua seeds have been shown to have little orno SHAM-sensitive respiration, and (2) concentrations of SHAMnecessary for inhibiting endosperm mobilization were significantlyhigher than those generally necessary for inhibiting alternativerespiration, the inhibition of endosperm mobilization by thiscompound does not appear to involve its effect on alternativerespiration. Avena fatua L., wild oat, -amylase, endosperm, gibberellic acid, salicylhydroxamic acid, seed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号