首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The larval high density lipoprotein (HDL) from the hemolymph of Manduca sexta, isolated by density gradient centrifugation, contains 61% protein, 37% lipid and 2% carbohydrate. 2. The molecular weight of HDL is 6 x 10(5), with two apoproteins of 2.85 x 10(5) and 8.1 x 10(4) daltons. 3. The large apoprotein is destroyed by trypsin treatment of the particle, while the small one is not. 4. Calculations based upon size and composition show that this particle is very different in structure from mammalian lipoproteins. It is proposed that a portion of the apoprotein occupies the central core region.  相似文献   

2.
Phosphatases, C4 and C8 esterases, leucine and valine aminopeptidases, N-acetyl-beta-glucosaminidase, beta-glucosidase, beta-galactosidase and beta-glucuronidase were detected in extracts of the parasitic mite Psoroptes cuniculi. Lipase, trypsin-like and chymotrypsin-like activities were not present. Haemoglobin was hydrolysed by a detergent-soluble fraction of the mite extracts with a maximum hydrolysis between pH 3 and 5. Acid proteinase activity was greater against haemoglobin than bovine serum albumin. Inhibitors of cysteine, serine and metallo-proteinases failed to inhibit the hydrolysis of H-Pro-Thr-Glu-Phe-Phe(NO2)-Arg-Leu-OH while pepstatin A inhibited its hydrolysis in a dose-dependent manner (IC50 8.02 x 10(-11) M (+/- 0.30 x 10(-11). Thermal inactivation of the proteolytic activity followed an exponential decay pattern. Typical K(m) and Vmax values were 7.2 x 10(-5) (+/- 0.7 x 10(-5) M-1 and 1.13 x 10(-3) (+/- 0.05 x 10(-3) OD unit-1 min-1 respectively. Acid proteinase activity eluted from a size exclusion column in a single, major peak representing a molecular weight range of 21-24.5 kDa. The major endoproteinase of P. cuniculi therefore appears to be a cathepsin D-like aspartic proteinase.  相似文献   

3.
alpha-Crystallin was isolated from calf lens periphery by chromatography on DEAE-cellulose and gel filtration. Three distinct populations of macromolecules have been isolated with molecular weights in the ranges approx. 6x10(5)-9x10(5), 0.9x10(6)-4x10(6) and greater than 10x10(6). The concentration of macromolecules at the molecular-weight limits of a population are very low. The members of the different populations do not appear to be in equilibrium with each other. Further, in those molecular-weight fractions investigated, no equilibrium between members of the same population was observed. The population of lowest molecular weight comprises 65-75% of the total material. The amino acid and subunit composition of the different-sized fractions appear very similar, if not identical. The only chemical difference observed between the fractions is the presence of significant amounts of sugar in the higher-molecular-weight fractions. Subunit molecular weights of approx. 19.5x10(3) and 22.5x10(3) were observed for all alpha-crystallin fractions.  相似文献   

4.
Oversulphated chondroitin sulphate proteoglycan from squid skin was isolated from 4 M guanidine hydrochloride extract by ion-exchange chromatography, gel chromatography and density gradient centrifugation. The proteoglycan had Mr 3.5 x 10(5), contained on average six oversulphated chondroitin sulphate chains (Mr 4 x 10(4)) bound on a polypeptide of Mr 2.8 x 10(4), and oligosaccharides consisting of both hexosamines, glucuronic acid, sulphates and fucose as the only neutral monosaccharide. The major amino acids of the proteoglycan protein core are glycine (corresponding to about one third of the total amino acids), aspartic acid/asparagine and serine, together amounting to 50% of the total. The proteoglycan was resistant to the proteolytic enzymes V8 protease, trypsin (treated with diphenylcarbamoyl chloride), alpha-chymotrypsin and pronase, while it was completely degraded by papain and to a large extent by collagenase. Pretreated proteoglycan with chondroitinase AC was degraded by pronase to a large extent and slightly by V8 protease and trypsin. The proteoglycan did not interact with hyaluronic acid and did not form self-aggregates. Oversulphated chondroitin sulphate chains were composed of unusual sulphated disaccharide units which were isolated and characterized by HPLC. In particular, it contained 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid)-D-galactose 4-sulphate (delta di-4S) and disulphated disaccharides (delta di-diS) [90% 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid 2/3-sulphate)-D-galactose 6-sulphate (delta di-diSD) and 10% 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid 2/3-sulphate)-D-galactose 4-sulphate (delta di-diSK)] as the major disaccharides, significant amounts of trisulphated disaccharides (delta di-triS) and small amounts of 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid)-D-galactose 6-sulphate (delta di-6S) and 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid)-D-galactose (delta di-OS). Trisulphated disaccharides contained sulphate groups at C-4 and C-6 of the galactosamine and at C-2 or C-3 of the glucuronic acid. By HPLC analysis of a pure preparation of oversulphated chondroitin sulphate, it was found that it contains glucose, galactose, mannose and fucose most likely as branches.  相似文献   

5.
The process for the activation of frog epidermis pro-tyrosinase.   总被引:1,自引:1,他引:0       下载免费PDF全文
1. Purified pro-tyrosinase from epidermis of the frog Rana esculenta ridibunda can be activated in vitro by several proteinases (trypsin, alpha-chymotrypsin, Pronase) and by light. 2. Both pro-tyrosinase and tyrosinase are composed of a single type of subunit having pI 7.2 and approximate molecular weights 68000 and 62000 respectively. A peptide of low molecular weight is released as a consequence of the proteolytic activation. Pro-tyrosinase and tyrosinase have different quaternary structures, the proenzyme being a dimer of Mr approx. 115000 and the enzyme a tetramer of Mr approx. 210 000. 3. The activation process was affected by several agents (L-3,4-dihydroxyphenylalanine, urea, formamide) that prevented, partially or totally, the activation of pro-tyrosinase. 4. The activation of pro-tyrosinase seems to be the result of a cleavage of the polypeptide chain that determines changes in tertiary or quaternary structure.  相似文献   

6.
1. At 0-4 degrees C mitochondrial ribosomes (55S) dissociate into 39S and 29S subunits after exposure to 300mm-K(+) in the presence of 3.0mm-Mg(2+). When these subunits are placed in a medium containing a lower concentration of K(+) ions (25mm), approx. 75% of the subparticles recombine giving 55S monomers. 2. After negative staining the large subunits (20.3nm width) usually show a roundish profile, whereas the small subunits (12nm width) show an elongated, often bipartite, profile. The dimensions of the 55S ribosomes are 25.5nmx20.0nmx21.0nm, indicating a volume ratio of mitochondrial to cytosol ribosomes of 1:1.5. 3. The 39S and 29S subunits obtained in high-salt media at 0-4 degrees C have a buoyant density of 1.45g/cm(3); from the rRNA content calculated from buoyant density and from the rRNA molecular weights it is confirmed that the two subparticles have weights of 2.0x10(6) daltons and 1.20x10(6) daltons; the weights of the two subunits of cytosol ribosomes are 2.67x10(6) and 1.30x10(6) daltons. 4. The validity of the isodensity-equilibrium-centrifugation methods used to calculate the chemical composition of ribosomes was reinvestigated; it is confirmed that (a) reaction of ribosomal subunits with 6.0% (v/v) formaldehyde at 0 degrees C is sufficient to fix the particles, so that they remain essentially stable after exposure to dodecyl sulphate or centrifugation in CsCl, and (b) the partial specific volume of ribosomal subunits is a simple additive function of the partial specific volumes of RNA and protein. The RNA content is linearly related to buoyant density by the equation RNA (% by wt.)=349.5-(471.2x1/rho(CsCl)), where 1/rho(CsCl)=[unk](RNP) (partial specific volume of ribonucleoprotein). 5. The nucleotide compositions of the two subunit rRNA species of mitochondrial ribosomes from rodents (42% and 43% G+C) are distinctly different from those of cytoplasmic ribosomes.  相似文献   

7.
The somatic extract of L. intestinalis plerocercoids reveals hydrolytic activity against N-Benzoyl-l-tyrosine ethyl ester (BTEE) and Azocoll, and inactivates the esterolysis by mammalian trypsin and chymotripsin. The proteolytic enzyme activity and the inhibitory effect were completely separated by Sephadex G-100 column chromatography. Gel chromatography of the somatic extract revealed two peaks of proteolytic activity : one is bound to macromolecular substances, the other appears to be in free form and has a molecular weight of approx 60,000–65,000. The proteolytic activity showed the following characteristics : Tris-HCl buffer provided the highest activity against BTEE, the pH optimum was 7·4–7·8; the enzyme was activated by 10?5m-Ca2+, Mg2+ or Mn2+, it was inhibited by 10?5m-Cu2+, but not by 10?5m-Zn2+. 0.001% soybean trypsin inhibitor, 2 × 10?3m-EDTA, 1 mm-tosyl-l-phenylalanyl chloromethane, 1000 KIU/ml Trasylol did not inhibit the proteolytic activity, but it was inhibited by 1 mm-phenylmethyl-sulphonyl fluoride. The enzyme activity completely ceased upon 5 % TCA treatment or incubation at 56°C for 30 min. The trypsin and chyrnotrypsin inhibitor activities were eluted from the Sephadex G-100 column in a single peak with an estimated molecular weight of 6700–7200. The inhibitory effect was not sensitive to pH changes, and treatment by 5% TCA or incubation at 80°C for 15 min was ineffective. The proteolytic activity of plerocercoid extract was not effected ‘in vitro’ by the inhibitors isolated from this parasite.  相似文献   

8.
The particulate fraction from hen brain was labelled with [3H]di-isopropyl phosphorofluoridate (DiPF) and separated by polyacrylamide-gel electrophoresis. Four radioactive protein bands (1--4) of molecular weights 155000, 92000, 60000, and 30000 were resolved. Most of the labelling of bands 2, 3 and 4 was inhibited by preincubation with Paraoxon. The residue in band 4 was sensitive to pH 5.2. Successive treatments with Paraoxon and pH 5.2 resulted in the abolition of bands 3 and 4. Bands 1 and 2 contained one and two polypeptides respectively, whose labelling was sensitive to Mipafox, but one, in band 2, was sensitive to higher concentrations of Paraoxon. The concentrations of the other two polypeptides were 6.7 and 1.95 pmol of DiPF bound/g of brain in bands 1 and 2 respectively. Both were as sensitive to Mipafox as neurotoxic esterase and were also sensitive to phenyl benzylcarbamate. 4-Nitrophenyl di-n-pentylphosphinate given in vivo inhibited neurotoxic esterase and the labelling of the band-1 polypeptide by 82% and 84% respectively, but inhibited the labelling of the band 2 polypeptide by 51%. The phosphinate in vitro produced 98% inhibition of the labelling of the band-1 polypeptide, with only 26% inhibition of the band-2 polypeptide, under conditions sufficient to inhibit neurotoxic esterase totally. Both neurotoxic esterase and the band-1 polypeptide were found in the forebrain at 1.74-fold their concentration in the rest of the brain, whereas the band-2 polypeptide was uniformly distributed. The evidence indicates that the Mipafox-sensitive polypeptide in band 1 is the [3H]DiPF-labelled active-site subunit of neurotoxic esterase. The catalytic-centre activity of the enzyme for phenyl valerate hydrolysis was found to be 2.6 x 10(5) min-1.  相似文献   

9.
3-Hexulose phosphate synthase and phospho-3-hexuloisomerase were purified 40- and 150-fold respectively from methane-grown Methylococcus capsulatus. The molecular weights of the enzymes were approximately 310000 and 67000 respectively, as determined by gel filtration. Dissociation of 3-hexulose phosphate synthase into subunits of molecular weight approx. 49000 under conditions of low pH or low ionic strength was observed. Within the range of compounds tested, 3-hexulose phosphate synthase is specific for formaldehyde and d-ribulose 5-phosphate (forward reaction) and d-arabino-3-hexulose 6-phosphate (reverse reaction), and phospho-3-hexuloisomerase is specific for d-arabino-3-hexulose 6-phosphate (forward reaction) and d-fructose 6-phosphate (reverse reaction). A bivalent cation is essential for activity and stability of 3-hexulose phosphate synthase; phospho-3-hexuloisomerase is inhibited by many bivalent cations. The pH optima of the two enzymes are 7.0 and 8.3 respectively and the equilibrium constants are 4.0x10(-5)m and 1.9x10(2)m respectively. The apparent Michaelis constants for 3-hexulose phosphate synthase are: d-ribulose 5-phosphate, 8.3x10(-5)m; formaldehyde, 4.9x10(-4)m; d-arabino-3-hexulose 6-phosphate, 7.5x10(-5)m. The apparent Michaelis constants for phospho-3-hexuloisomerase are: d-arabino-3-hexulose 6-phosphate, 1.0x10(-4)m; d-fructose 6-phosphate, 1.1x10(-3)m.  相似文献   

10.
Duan J  Wang X  Dong Q  Fang Jn  Li X 《Carbohydrate research》2003,338(12):1291-1297
A water-soluble acidic heteroglycan, DL-3Bb, isolated from the leaves of Diospyros kaki, had [alpha](D)(20) -19.9 degrees (c 0.30, water), and contained rhamnose, arabinose, xylose, galactose and galacturonic acid in the molar ratio of 1.0:4.5:0.7:1.5:1.0. About 44% of the galacturonic acid existed as its methyl ester, and O-acetyl groups (approx 5.7%) were also identified. Its molecular weight was determined to be 9.0x10(5) Da by high-performance gel-permeation chromatography. Its structural features were elucidated by a combination of methylation analysis, periodate oxidation, two steps of partial acid hydrolysis, and 1H and 13C NMR spectroscopy and ESI mass spectrometry. The data obtained indicated that DL-3Bb possessed a backbone of a disaccharide of [-->4)-alpha-GalAp-(1-->2)-alpha-Rhap-(1-->], with approx 58.7% substitution at O-4 of the rhamnopyranosyl residues by beta-(1-->4)-linked xylopyranosyl residues, and by beta-(1-->3) and beta-(1-->6)-linked galactopyranosyl (galactan) residues. The side chains were further substituted by arabinofuranosyl residues at O-2 by beta-(1-->4)-linked xylopyranosyl residues and at O-3 by beta-(1-->6)-linked galactopyranosyl residues. Preliminary tests in vitro revealed that it could stimulate LPS-induced B lymphocyte proliferation, but not for ConA-induced T lymphocyte proliferation. It was proposed that the acid-labile arabinofuranosyl residues in the side chains would not be needed for the expression of the enhancement of the immunological activity, and that the presence of GalAp in the backbone has an important, but not crucial effect on the expression of the activity.  相似文献   

11.
Summary It had been shown earlier, that RNA polymerase 13 S particles contain the large components with a molecular weight of about 3–105 and small subunits with a molecular weight of 4·104-1·105. These polymerase components easily dissociate and reassociate with restoration of the enzyme activity.Both temperature-sensitive (tsX) and rifamycin-resistant (rif-r-I) mutations proved to affect the large polymerase component without changing the small subunits. These mutations were mapped at different, though closely linked, loci of metB-thi region of E. coli K12 chromosome. These results as well as certain literature data allow to conclude that the large RNA polymerase component consists of at least two polypeptides, one being altered by ts mutation, and the other—by rif-r mutation.The large polymerase component when separated from the small subunits retain the ability to bind to T2 phage DNA while the separate small subunits lack this property. Rifamycin does not affect RNA polymerase-T2 DNA binding while ts mutation leads to inability of the enzyme to form stable complexes with DNA. Therefore, it is likely that the polypeptide affected by ts mutation is responsible for the attachment of RNA polymerase to specific sites of DNA template. On the other hand, the small subunits as well as polypeptide of the large component, which determines RNA polymerase sensitivity to rifamycin, seem not to participate in the enzyme binding to DNA template. It is suggested, that the catalytic site of RNA polymerase is located in the large component and formed by rifamycin-binding polypeptide. The small subunits are supposed to have regulatory function and activate the large components.  相似文献   

12.
1. The hemoglobin of the pond snail, Planorbella duryi has a molecular weight of 1.64 x 10(6) to 1.77 x 10(6) as determined by light-scattering at 630 nm and a sedimentation coefficient of 36 S. 2. The analysis of the circular dichroism spectrum obtained in the 190-250 nm region suggests a high degree of helical folding of the polypeptide chains of P. duryi hemoglobin analogous to human hemoglobin and myoglobin, with estimates of alpha-helical folding of about 60-65%, 0-5% beta-structure, and the remaining portion of the chains in unordered form. 3. The dissociated subunits in 6.0 M GdmCl, in the absence and in the presence of reducing reagent (0.1 M dithiothreitol), have a molecular weight of 3.73 +/- 0.23 x 10(5) and 1.93 +/- 0.04 x 10(5), suggesting a di-decameric assembly of the parent hemoglobin organized in the form of five dimers held together by disulfide-linkages. 4. The native hemoglobin is strongly resistant to both pH dissociation and dissociation by urea and such salts as NaCl and NaClO4. Dissociation and denaturation could only be effected in concentrated GdmCl solutions. 5. The influence of the various dissociating agents on the quaternary structure suggest ionic stabilization of the decameric assembly, which is stabilized by salt bridges between the subunits.  相似文献   

13.
The high-affinity fusicoccin-binding protein (FCBP) was solubilized from plasma-membrane vesicles prepared from leaves of Vicia faba L. by aqueous two-phase partitioning. Conditions for the solubilization of intact FCBP-radioligand complexes were worked out. About 60–70% of the complexes can be solubilized with 50–60 mM nonanoyl-N-methylglucamide in the presence of 1 mg· ml-1 soybean phosphatidylcholine, type IV S, and 20% (v/v) glycerol at pH 5.5. The slow dissociation of the radioligand, 9-nor-fusicoccin-8-alcohol-[3H] from the FCBP at low temperatures permits the purification of FCBP-radioligand complexes at 4–10° C by fast protein liquid chromatography on anion-exchange and gel permeation columns. The FCBP, extracted from plasma membranes with cholate and chromatographed in the presence of this detergent, gave an apparent molecular mass (Mr) of 80±20 kDa on gel permeation columns under the conditions used. By comparison of the elution profiles of the fraction most enriched in FCBP-radioligand complexes with polypeptide patterns obtained on sodium dodecyl sulfate-polyacrylamide gels, a polypeptide with an Mr of approx. 34kDa co-separated with the radioactivity profile. A second, faint band of approx. 31 kDa was sometimes also observed co-electrophoresing. Photoaffinity labeling of plasma-membrane vesicles with the new compound 9-nor-8[(3,5-[3H]-4-azidobenzoy)ethylenediamine]-fusicoccin ([3H]ABE-FC) and subsequent separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis labeled a single band with an Mr of 35±1 kDa. Labeling in this band was strongly reduced when the membranes were incubated with [3H]ABE-FC in the presence of 0.1–1 M fusicoccin. From our data, we conclude (i) that the 34-35-kDa polypeptide represents the FCBP and (ii) that in detergent extracts of plasma membranes this polypeptide is probably present as a di- or trimeric structure.Abbreviations ABE-FC [(4-azidobenzoyl)-ethylenediamine]-fusicoccin - ABE-NHS (4-azidobenzoyl)-N-hydroxysuccinimide ester - FC fusicoccin - FCBP fusicoccin-binding protein - FCol 9-norfusicoccin-8-alcohol - MAB monoclonal antibody - Mega-9(10) nonanoyl(decanoyl)-N-methylglucamide - Mr apparent molecular mass - PMSF phenylmethyl-sulfonyl fluoride - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - TCA trichloroacetic acid - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

14.
Analysis of a Bacillus subtilis Proteinase Mutant   总被引:5,自引:5,他引:0       下载免费PDF全文
A Bacillus subtilis mutant having a phenotype manifesting reduced extracellular proteolytic activity was investigated. An extracellular protein was isolated and shown by fingerprint analysis to be a fragment of the wild-type enzyme. By using previously established molecular weights for the wild-type enzyme (2.9 x 10(4)) and the two polypeptide chains derived from it (1.4 x 10(4) each), with the amino acid analysis and fingerprints of both wild-type and mutant proteins, a molecular weight of 1.57 x 10(4) was assigned to the mutant protein. (32)P-diisopropylphosphate labeling of the mutant protein showed only 1 in 53 molecules to be functional. Thin-layer chromatography on Sephadex G-75 demonstrated that the active molecules were separable from the bulk of the isolated protein and had the same mobility as the wild-type enzyme. Fingerprints of tryptic digests of (32)P-diisopropylphosphate-labeled wild-type and mutant proteins showed that the labeled peptides had identical characteristics.  相似文献   

15.
Micrococcus aerogenes grown in media containing glutamate has high levels of glutamate dehydrogenase and alpha-ketoglutarate reductase. The latter enzyme catalyzes the reversible reduction of alpha-ketoglutarate to alpha-hydroxyglutarate in the presence of reduced nicotinamide adenine dinucleotide (NADH). The enzyme has a high specificity for both substrates in either direction and displays Michaelis-Menten kinetics at moderate substrate concentrations. K(m) values of 0.12 to 0.17 mm alpha-ketoglutarate and 0.3 mm NADH for the forward reaction were calculated from data obtained at low substrate concentrations. At high concentrations, this reaction was inhibited by both substrates. The reverse reaction, which proceeded at 0.1 to 0.2 times the rate of the forward reactions, was inhibited by one of the products, alpha-ketoglutarate. K(m) values for the substrates of this reaction were 10 mm for alpha-hydroxyglutarate and 1 mm for nicotinamide adenine dinucleotide. alpha-Ketoglutarate reductase has a molecular weight of 7.5 x 10(4) to 8.2 x 10(4) and is composed of identical polypeptide chains with a molecular weight of 3.6 x 10(4) to 3.8 x 10(4).  相似文献   

16.
A proenzyme form of human urokinase   总被引:21,自引:0,他引:21  
A culture of the human epidermoid carcinoma HEp 3 produces a plasminogen activator of Mr = 53,000 which we have purified to apparent homogeneity from serum-free conditioned medium by the combination of immunoaffinity chromatography and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The highly purified protein has the following properties: 1) It is indistinguishable from urinary urokinase in electrophoretic mobility, in immunodiffusion, and in autoradiographically visualized tryptic peptide maps obtained from the 125I-labeled proteins. 2) The HEp 3 protein differs from urinary urokinase in the following respects: (a) although the apparent molecular weights of the two are identical (Mr = 53,000), the urinary enzyme consists of two polypeptide chains, whereas the HEp 3 protein is a single chain form. (b) Urinary urokinase can be labeled easily by incubation with radioactive diisopropylfluorophosphate but the HEp 3 protein cannot. (c) When assayed by the hydrolysis of a synthetic chromogenic peptide substrate, the HEp 3 enzyme has less than 1% of the catalytic activity of urinary urokinase. 3) On controlled exposure to plasmin, the HEp 3 protein is converted to an active enzyme that is identical with urinary urokinase in molecular weight, polypeptide chain composition, diisopropylfluorophosphate labeling, and specific catalytic activity. We conclude that the HEp 3 protein is a proenzyme that can be converted to active two-chain urokinase by plasmin, probably by a single proteolytic nick in the polypeptide chain.  相似文献   

17.
This study reports the isolation and partial purification of a polypeptide from human saliva which causes a significant serum calcium lowering when administered to mice. Purification was achieved by preparative electrophoresis, dialysis, two gel filtration steps on Sephadex G-150, and ion exchange chromatography on DEAE-cellulose. Homogeneity was determined by poly-acrylamide electrophoresis. Blood sampling was carried out by puncture of the orbital venous plexus and serum analyzed for calcium. The most active preparations lower serum calcium from 10–27% of initial value, producing tetany and convulsions in some cases. The molecular weight of this polypeptide was estimated to be 4, 260 by the use of a calibrated Sephadex G-75 column. This is a much smaller molecular weight than that expected from its initial exclusion from Sephadex G-150, and suggests that this hypocalcemic factor is associated with larger molecules through most of the purification procedure up to and including DEAE-cellulose chromatography. A second gel filtration on Sephadex G-150 separates two minor salivary protein contaminants (IgA and IgG immunoglobulin) in the excluded fraction from the smaller, hypocalcemically active polypeptide.

No hypocalcemia activity could be detected or isolated in a preliminary investigation on the saliva of a dysgammaglobuli-nemic (IgA deficient) patient.

The hypocalcemia induced does not differ significantly from that observed after administration of calcitonin to mice in that: 2) minimum values are reached in 1.5–2 hours and return to normal in 5–6 hours, b) magnitude of hypocalcemia response is dose dependent. The salivary hypocalcemia factor isolated in this study has the properties of a protein, in that its activity is destroyed by the proteolytic enzyme trypsin, it yields amino acids upon acid hydrolysis and it behaves on electrophoresis, gel filtration and ion exchange chromatography as a typical protein.  相似文献   

18.
Some studies on the composition of bovine cortical-bone sialoprotein   总被引:8,自引:6,他引:2  
1. An analysis of bovine bone sialoprotein, a homogeneous glycoprotein isolated from cortical bone, is presented. 2. Analytical results agree with earlier physical measurements indicating a molecular weight of about 23000. 3. Mild acid hydrolysis and treatment with neuraminidase showed that fucose and sialic acid occupy terminal positions on oligosaccharide chains. 4. Treatment of the sialic acid-free glycoprotein with beta-galactosidase showed that much of the galactose occupies a sub-terminal location in the intact glycoprotein. 5. The polypeptide chain is rich in aspartic acid, glutamic acid, serine, threonine and glycine, and has no detectable free terminal amino group. 6. Glycopeptides were studied after proteolytic digestion. 7. It is considered that the carbohydrate moiety is highly branched and is probably linked by an acid- and alkali-stable glycosylamine bond involving aspartic acid.  相似文献   

19.
Two distinct cadherin cDNA clones of Xenopus laevis were isolated from a stage 17 embryo cDNA library. Analysis of the complete deduced amino acid sequences indicated that one of these molecules is closely homologous to chicken and mouse N-cadherin, while the other displays comparable homology to both E- and P-cadherins and was thus denoted EP-cadherin. This molecule has an apparent relative molecular mass of 125 x 10(3) (compared to approx. 138 x 10(3) or approx. 140 x 10(3) of E-cadherin and N-cadherins, respectively). Northern and Western blot analyses indicated that N-cadherin is first expressed at the neurula stage while EP-cadherin is the only cadherin detected in unfertilized eggs and cleavage stage embryos. Immunolabeling of Xenopus eggs with antibodies prepared against a fusion protein, containing a segment of EP-cadherin, indicated that the protein is highly enriched at the periphery of the animal hemisphere. EP-cadherin was also found in A6 epithelial cells derived from Xenopus kidneys, and was apparently localized in the intercellular adherens junctions.  相似文献   

20.
The property of brain endopeptidases of attacking small biologically active polypeptides but not denatured proteins led us to compare them with pancreatic proteolytic enzymes with respect to hydrolysis of a synthetic peptide derived from bradykinin (Gly-Gly-Gly-Arg-bradykinin), free, bound to Affi-Gel 10, or bound to succinylated polylysine of 3,000 and 180,000 daltons, respectively. The data show that brain endopeptidases A and B only hydrolyze bradykinin in its free form, whereas trypsin, chymotrypsin, and carboxypeptidase B hydrolyze the polypeptide both free and covalently bound to a high molecular weight carrier. These results suggest that brain endopeptidases selectively hydrolyze low molecular weight polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号