共查询到20条相似文献,搜索用时 10 毫秒
1.
Inhibition of xanthine oxidase — xanthine — iron mediated lipid peroxidation by eugenol in liposomes
The effect of eugenol on xanthine oxidase (XO) xanthine(X)-Fe+3-ADP mediated lipid peroxidation was studied in liver microsomal lipid liposomes. Eugenol inhibited the lipid peroxidation in a dose dependent manner as assessed by formation of thiobarbituric acid reactive substances. When tested for its effect on XO activity per se, (by measuring uric acid formation) eugenol inhibited the enzyme to an extent of 85% at 10 µm concentration and hence formation of O2 also However, the concentration of eugenol required for XO inhibition was more in presence of metal chelators such as EDTA, EGTA and DETAPAC, but not in presence of deferoxamine, ADP and citrate. The antiperoxidative effect of eugenol was about 35 times more and inhibition of XO was about 5 times higher as compared to the effect of allopurinol. Eugenol did not scavenge O2 generated by phenazine methosulfate and NAD but inhibited propagation of peroxidation catalyzed by Fe2+ EDTA and lipid hydroperoxide containing liposomes. Eugenol inhibits XO-X-Fe+3 ADP mediated peroxidation by inhibiting the XO activity per se in addition to quenching various radical species. (Mol Cell Biochem 166: 65-71, 1997) 相似文献
2.
Duncan H. F. Mak Siu-Po Ip Pui-Chun Li Michel K. T. Poon Kam-Ming Ko 《Molecular and cellular biochemistry》1996,165(2):161-165
Effects of Schisandrin B (Sch B) and -tocopherol (-TOC) on ferric chloride (Fe3+) induced oxidation of erythrocyte membrane lipids in vitro and carbon tetrachloride (CCl4) induced lipid peroxidation in vivo were examined. While -TOC could produce prooxidant and antioxidant effect on Fe3+-induced lipid peroxidation, Sch B only inhibited the peroxidation reaction. Pretreatment with -TOC (3 mmol/kg/day × 3) did not protect against CCl4-induced lipid peroxidation and hepatocellular damage in mice, whereas Sch B pretreatment (0.3 mmol/3.0 mmol/kg/day × 3) produced a dose-dependent protective effect on the CCl4-induced hepatotoxicity. The ensemble of results suggests that the ability of Sch B to inhibit lipid peroxidation, while in the absence of pro-oxidant activity, may at least in part contribute to its hepatoprotective action.Abbreviations
ALT
alanine aminotransferase
- CCl4
carbon tetrachloride
- Fe3+
ferric chloride
- MDA
malondialdehyde
- Sch B
Schisandrin B
- TBA
2-thiobarbituric acid
- TBARS
thiobarbituric acid reactive substances
- -TOC
dl--tocopherol 相似文献
3.
In the present study it was investigated if a-tocopherol shows protection against in vitro lipid peroxidation of phospholipids located in rod outer segment membranes (ROS). After incubation of ROS in an ascorbate-Fe2+ system, at 37°C during 160 min, the total cpm originated from light emission (chemiluminescence) was found to be lower in those membranes incubated in the presence of -tocopherol. The fatty acid composition of total lipids isolated from rod outer segment membranes was substantially modified when subjected to non-enzymatic lipid peroxidation with a considerable decrease of docosahexaenoic acid (22:6 n-3). The incorporation of -tocopherol (0.35 mol/mg protein) produce a 43.37% inhibition of the lipid peroxidation process evaluated as chemiluminiscence (total cpm originated in 160 min). The phospholipid species containing the highest amount of docosahexaenoic acid: phosphatidyletanolamine and phosphatidylserine were more affected than phosphatidylcholine during the lipid peroxidation process. Not all phospholipids, however, were equally protected after the addition of -tocopherol to the incubation medium. Phosphatidylcholine and phosphatidyletanolamine, were not protected by -tocopherol, the vitamin provides selective antioxidant protection only for phosphatidylserine. These results indicate that -tocopherol may act as antioxidant protecting rod outer segment membranes from deleterious effect by a selective mechanism that diminishes the loss of docosahexaenoic acid from phosphatidylserine. 相似文献
4.
《Mutation Research Letters》1989,225(3):131-136
Unscheduled DNA synthesis (UDS) and lipid peroxidation (LPO) were measured in human peripheral lymphocytes from healthy volunteers. These processes were induced by the catalytic system Fe2+-sodium ascorbate. The degree of induced LPO was measured spectrophotometrically by the thiobarbituric acid assay. UDS was detected by scintillometric measurement of the incorporation of 3H-thymidine into DNA. The protective action by fat-soluble vitamin E (d,l-α-tocopherol) and the artificial antioxidant pyritinol on UDS and LPO was also investigated.The system Fe2+ (2 μmole/1)-sodium ascorbate (30 μmole/1) increased the LPO level in healthy volunteers approximately 2.5 times and the incorporation of 3H-thymidine by 60–70%. α-Tocopherol (0.2 mmole/1) very efficiently suppressed LPO processes (p < 0.01) and the oxidative damage of DNA measured as UDS was also significantly diminished (p < 0.05). Pyritinol had no effect on LPO and UDS under our experimental conditions. 相似文献
5.
6.
Ascorbic acid, or vitamin C, can recycle -tocopherol in lipid bilayers, but even sparing of -tocopherol has not been a consistent finding in intact cells. Therefore, we tested the ability of ascorbate loading to spare -tocopherol and to prevent lipid peroxidation of cultured H4IIE rat liver cells. Although -tocopherol was undetectable in H4IIE cells, its cell content was increased by overnight incubation with -tocopherol in culture. Cells incubated with ascorbate 2-phosphate accumulated ascorbate to concentrations as high as 0.6 mM after overnight loading, but also released ascorbate into the medium. Ascorbate loading of -tocopherol-treated cells spared -tocopherol in a concentration-dependent manner during overnight incubation. Lipid peroxidative damage, measured as a decrease in fluorescence of cell-bound cis-parinaric acid, was decreased in cells loaded with either -tocopherol or ascorbate 2-phosphate, and showed an additive effect. These results suggest that ascorbate loading of H4IIE cells spares cellular -tocopherol and either directly or through recycling of -tocopherol prevents lipid peroxidative damage due to oxidant stress in culture. 相似文献
7.
Parildar-Karpuzoğlu H Doğru-Abbasoğlu S Balkan J Aykaç-Toker G Uysal M 《Amino acids》2007,32(1):115-119
Summary. We aimed to investigate the effect of decreased taurine levels on endogenous and induced lipid peroxide levels in liver, brain,
heart and erythrocytes as well as prooxidant and antioxidant balance in the liver of rats administered β-alanine (3%, w/v)
in drinking water for 1 month to decrease taurine levels of tissues. This treatment caused significant decreases in taurine
levels of liver (86%), brain (36%) and heart (15%). We found that endogenous and ascorbic acid-, NADPH- and cumene hydroperoxide-induced
malondialdehyde (MDA) levels did not change in the liver, brain and heart homogenates following β-alanine treatment. Also,
H2O2-induced MDA levels remained unchanged in erythrocytes. In addition, we did not observe any changes in levels of MDA, diene
conjugates, glutathione, α-tocopherol, ascorbic acid and the activities of superoxide dismutase, glutathione peroxidase and
glutathione transferase in the liver. According to this, buffering or sequestering capacity of tissues to exogenous stimuli
was not influenced by reduced taurine levels in tissues of rats. 相似文献
8.
Wenger FA Kilian M Jacobi CA Schimke I Guski H Müller JM 《Prostaglandins, leukotrienes, and essential fatty acids》2000,62(6):329-334
Some fatty acids are reported to inhibit tumor growth of pancreatic carcinoma. However, it is still unknown if alpha-linolenic acid (ALA) and linoleic acid (LA) inhibit liver metastasis of ductal pancreatic adenocarcinoma. Therefore we studied the effect of these fatty acids on liver metastasis in the animal model of N-nitrosobis(2-oxopropyl)amine (BOP)-induced pancreatic adenocarcinoma in Syrian hamsters. Since lipid peroxidation seems to be involved in carcinogenesis and metastasis, we further analyzed the intrahepatic concentration of thiobarbituric acid-reactive substances (TBARS) and activity of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD).We observed an increase in the incidence and the number of liver metastases in response to the combination of ALA and LA. This was accompanied by a decrease in hepatic GSH-Px activity and an increase in hepatic SOD activity and TBARS concentration. The increase in hepatic lipid peroxidation seems to be one possible mechanism of increasing liver metastasis in this study. 相似文献
9.
Nikola Hadzi-Petrushev Kliment Mladenov Ramadan Sopi Velimir Stojkovski Dine Mitrov Vlatko Ilieski Mitko Mladenov 《Journal of thermal biology》2013
To investigate early events possibly related to the development of heat shock, we examined whether inflammatory-(interleukin-6, tumor necrosis factor α and 15-keto-13,14-dihydro-PGF2α) and peroxidative-(8-iso-PGF2α and malondialdehyde) markers are altered during acute heat exposure and aging. We also studied the relationships between inflammatory and peroxidative markers in these settings. In order to prevent these reactions developed as a consequence of the conditions mentioned above, we tested the effects of α-tocopherol. Our results demonstrated that 15-keto-13,14-dihydro-PGF2α and malondialdehyde in the liver were altered during acute heat exposure in the young and middle-aged rats and could be predicted by changes in the levels of circulatory cytokines. Regardless of age, the supplementation with α-tocopherol prevented changes in the plasma cytokine levels and 15-keto-13,14-dihydro-PGF2α and malondialdehyde levels in the liver, during acute heat exposure. This study notably emphasized the ability of α-tocopherol to prevent different heat induced mechanisms, involved in induction of inflammatory or peroxidative reactions. 相似文献
10.
《Free radical research》2013,47(7):905-917
AbstractOxidative stress-induced lipid peroxidation (LPO) has been associated with human physiology and pathophysiology. LPO generates an array of oxidation products and among them reactive lipid aldehydes have received intensive research attentions due to their roles in modulating functions of biomolecules through covalent modification. Thus, covalent modification of DNA by these reactive lipid electrophiles has been postulated to be partially responsible for the biological roles of LPO. In this review, we summarized recent progress and challenges in studying the roles of covalent modification of DNA including nuclear and mitochondrial DNA by reactive lipid metabolites from LPO. We focused on the novel mechanistic insights into generation of lipid aldehydes from cellular membranes especially mitochondria through LPO. Recent advances in the technological front using mass spectrometry have also been highlighted in the settings of studying DNA damage caused by LPO and its biological relevance. 相似文献
11.
《Peptides》2014
Orexins are hypothalamic neuropeptides, which are involved in several physiological functions of the central nervous system, including anxiety and stress. Several studies provide biochemical and behavioral evidence about the anxiogenic action of orexin A. However, we have little evidence about the underlying neuromodulation. Therefore, the aim of the present study was to investigate the involvement of neurotransmitters in the orexin A-induced anxiety-like behavior in elevated plus maze (EPM) test in mice. Accordingly, mice were pretreated with a non-selective muscarinic cholinergic antagonist, atropine; a γ-aminobutyric acid subunit A (GABA-A) receptor antagonist, bicuculline; a D2, D3, D4 dopamine receptor antagonist, haloperidol; a non-specific nitric oxide synthase (NOS) inhibitor, nitro-l-arginine; a nonselective α-adrenergic receptor antagonist, phenoxybenzamine and a β-adrenergic receptor antagonist, propranolol 30 min prior to the intracerebroventricular administration of orexin A. The EPM test started 30 min after the i.c.v. injection of the neuropeptide. Our results show that orexin A decreases significantly the time spent in the arms (open/open + closed) and this action is reversed by bicuculline, phenoxybenzamine and propranolol, but not by atropine, haloperidol or nitro-l-arginine. Our results provide evidence for the first time that the orexin A-induced anxiety-like behavior is mediated through GABA-A-ergic, α- and β-adrenergic neurotransmissions, whereas muscarinic cholinergic, dopaminergic and nitrergic neurotransmissions may not be implicated. 相似文献
12.
In this study, we examined the relative efficacies of alpha-tocopherol, N-acetyl-serotonin, and melatonin in reducing ascorbate-Fe(2+) lipid peroxidation (LPO) of rat testicular microsomes and mitochondria. Special attention was paid to the changes produced on the highly polyunsaturated fatty acids (PUFAs) C20:4 n6 and C22:5 n6. The LPO of testicular microsomes or mitochondria produced a significant decrease of C20:4 n6 and C22:5 n6. Both long-chain PUFAs were protected when the antioxidants were incorporated either in microsomes or mitochondria. By comparison of the IC50 values obtained between alpha-tocopherol and both indolamines, it was observed that alpha-tocopherol was the most efficient antioxidant against the LPO induced by ascorbate-Fe(2+) under experimental conditions in vitro, IC50 values from the inhibition of alpha-tocopherol on the chemiluminescence were higher in microsomes (0.14 mM) than in mitochondria (0.08 mM). The protective effect observed by alpha-tocopherol in rat testis mitochondria was higher compared with microsomes, associated with the higher amount of [C20:4 n6] + [C22:5 n6] in microsomes than that in mitochondria. Melatonin and N-acetyl-serotonin were more effective in inhibiting the LPO in mitochondria than that in microsomes. Thus, a concentration of 1 mM of both indolamines was sufficient to inhibit in approximately 70% of the light emission in mitochondria, whereas a greater dosage of 10 times (10 mM) was necessary to produce the same effect in microsomes. It is proposed that the vulnerability to LPO of rat testicular microsomes and mitochondria in the presence of both indolamines is different because of the different proportion of PUFAs in these organelles. 相似文献
13.
I. Schimke A. Haberland M. Wirth B. Papies V. Moritz G. Baumann 《Prostaglandins, leukotrienes, and essential fatty acids》1997,57(6):545-550
The ischaemic vulnerability of the heart of spontaneously hypertensive rats (SHR) is enhanced after feeding an α-linolenic acid (LNA) enriched diet. Because oxygen radical-induced reactions (e.g. lipid peroxidation) are involved in the ischaemic damage, an increased susceptibility of the SHR heart to such damaging reactions might be the reason. As a sign of the enhanced susceptibility to lipid peroxidation of LNA-fed SHR, we found (measured as TBARS) higher plasma and heart lipid peroxide levels (3.84 ± 0.50 μmol/l vs 2.98 ± 0.78 μmol/l and 507 ± 127 nmol/g prot. vs 215 ± 80 nmol/g prot., respectively) after feeding LNA. Using Fe2+/Vit. C to induce lipid peroxidation in myocardial tissue homogenates, we demonstrated the enhanced susceptibility to lipid peroxidation of the LNA-fed SHR heart (68 ± 12 nmol/min × g prot. vs 40 ± 8 nmol/min × g prot.) also in vitro. The myocardial enrichment of n-3 polyunsaturated fatty acids (PUFA) resulting in a higher peroxidation index (Pl 227 vs. 170) and the loss in myocardial activities of the antioxidative enzymes (SOD: 76 ± 24 U × 103/g prot. vs 235 ± 150 U × 103/g prot.; GSH-Px: 32 ± 5 U/g prot. vs 110 ± 30 U/g prot.) by feeding LNA could be the cause of the increase in myocardial susceptibility to lipid peroxidation of PUFA supplemented SHR. 相似文献
14.
The effect of halothane, ketamine and ethanol on β-adrenergic receptor adenylate cyclase system was studied in the brain of rats. An anesthetic concentration of halothane and ketamine added in vitro decreased the stimulatory effect of norepinephrine on cyclic AMP formation in slices from the cerebral cortex. On the other hand, ethanol increased the basal activity of cerebral adenylate cyclase without affecting on the norepinephrine-stimulated activity. The increase of the basal activity induced by ethanol was not antagonized by propranolol, a β-adrenergic antagonist. In the crude synaptosomal (P2) fraction, these drugs had no significant effect on the basal adenylate cyclase activity, binding of [3H]dihydroalprenolol to β-receptor, and binding of [3H]guanylylimido diphosphate ([3H]Gpp(NH)p) to guanyl nucleotide binding site. In contrast, the adenylate cyclase activity stimulated by Gpp(NH)p or NaF was significantly inhibited by an anesthetic concentration of these drugs. An anesthetic concentration of these drugs increased the membrane fluidity of P2 fraction monitored by the fluorescence polarization technique. The addition of linoleic acid (more than 500 μM) also induced not only the increase of fluidity, but also the decrease of Gpp(NH)p- or NaF-stimulated adenylate cyclase activity in the cerebral P2 fraction. The present results suggest that general anesthetics may interfere with the guanyl nucleotide binding regulatory protein-mediated activation of cerebral adenylate cyclase by disturbing the lipid region of synaptic membrane. 相似文献
15.
《The International journal of biochemistry》1993,25(6):911-915
- 1.1. The effects of carotenes (α- and β-) on edema, MDA contents and peroxidizability ofcroton oil-treated mouse skin epidermis, hydroperoxide production and enzymatic lipid peroxidation of epidermal homogenates were studied. Edema was determined as ear punch weight and the intensity of lipid peroxidation was measured using malondialdehyde formation.
- 2.2. Carotenes (α- and β-) significantly suppressed edema formation, hydroperoxide production, lipid peroxidation caused by croton oil, Fe + 3-ADP/NADPH or paraquat/NADPH in vivo as well as in vitro.
- 3.3. These results indicate that both α- and β-carotene have chemopreventive effects on croton oil-induced tumor promotion in skin tumorigenesis by scavenging oxygen free radicals, indirectly determined as carotene inhibition of lipid peroxidation and hydroperoxide formation.
16.
Alfonso Pompella Aldo Paolicchi Silvia Dominici Mario Comporti Roberto Tongiani 《Histochemistry and cell biology》1996,106(3):275-282
A number of studies indicate that cell proliferation can be modulated by changes in the redox balance of (soluble and protein)
cellular thiols. Free radical processes, including lipid peroxidation (LPO), can affect such a balance, and a role for LPO
in multistage carcinogenesis has been envisaged. The present study was aimed to assess the relationships between the protein
thiol redox status and the LPO process in chemically induced preneoplastic tissue. The Solt-Farber's initiation-promotion
model of chemical carcinogenesis in the rat liver was used. In fresh cryostat sections, preneoplastic lesions were identified
by the reexpression of γ-glutamyltranspeptidase (GGT) activity. In serial sections, different classes of protein thiols were
stained; in additional sections, LPO was elicited by various prooxidant mixtures and determined thereafter by the hydroxynaphthoic
hydrazide-Fast Blue B procedure. The incubation of sections in the presence of chelated iron plus substrates for GGT activity
leads to the development of LPO in selected section areas closely corresponding to GGT-positive lesions, indicating the ability
of GGT activity to initiate LPO. Protein-reactive thiols, as well as total protein sulfur, were decreased by 20–25% in cells
belonging to GGT-positive preneoplastic nodules, suggesting the occurrence of oxidative conditions in vivo. The incubation
of additional adjacent sections with the prooxidant mixture H2O2 plus iron(II), in order to induce the complete oxidation of lipid present in the section, showed a decreased basal concentration
of oxidizable lipid substrate in GGT-rich areas. The decreased levels of both protein thiols and lipid-oxidizable substrate
in GGT-positive nodules suggest that the observed GGT-dependent path-way of LPO initiation can be chronically operative in
vivo during early stages of chemical carcinogenesis, in cells expressing GGT as part of their transformed phenotype. 相似文献
17.
The thermal oxidation of the membranes of linoleic acid vesicles was preceded by a lag period, as long as the membranes contained low levels of preformed peroxides. Incorporation of 0.034 to 0.170 mol% of nitroxide spin label increased the length of this lag between 4.8 and 10.1 times. At the same time, the intensity of the ESR signal fell. The inclusion of as little as 0.04 mol% of butylated hydroxytoluene in the membranes also lengthened the lag period by a factor of 2.5. However, a similar molar proportion of α-tocopherol was without effect. When the linoleic acid from which vesicle membranes were formed contained between 0.45 and 1.43 mol% of peroxide, α-tocopherol produced a significant increase in the lag period, during which the antioxidant was gradually oxidized. 相似文献
18.
Changes in the main parameters of α-and β-adrenergic responses, sensitivity to agonists (EC 50) and maximum response (P m) of hindlimb and small intestinal blood pressure in situ and systemic blood pressure were studied in rabbits adapted to cold for 1–30 days (daily exposures to ?10°C for 6 h). The responses to phenylephrine, noradrenaline, adrenaline, clonidine (α-agonists), and isopropylnoradrenaline (β-agonist) corresponded to the equation p = (P m A n )/(EC 50 n + A n ) (1) with n = 1 and n = 2, respectively. Cold adaptation induced reciprocal changes in the response of both EC 50 and P m to α-agonists and in the response of P m alone to isopropylnoradrenaline. The significant differences of the parameters from control observed during the first 5 days of adaptation gradually decreased by day 30. After 10 days of adaptation, the efficiency (E = P m/2EC 50) of response to α-and β-agonists of adrenoceptors significantly increased. 相似文献
19.
R. P. Kaushik K. D. Sharma 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1986,73(1):136-140
Summary The nature and extent of heterosis for grain yield and its component characters was estimated in a seven-parent F1-diallel cross in rice under the cold stress conditions of Palampur, representing sub-temperate climate of the mid hills of Himachal Pradesh. The highest heterotic effects for grain yield were observed in Himalaya 1/Phul Patas 72 and China 988/Himdhan hybrids, which gave 60.36 and 32.48% heterosis, respectively, over mid parent, 38.76 and 26.86% heterosis, respectively, over high parent and 32.30 and 26.86% heterosis, respectively, over the best variety, Himdhan. Heterosis for grain yield in these crosses was due to an increase in tiller number, panicle length, spikelets/panicle and 1,000-grain weight. Large number of crosses exhibited significant heterosis for high spikelet sterility and the majority of them had significant heterosis for late flowering, taking more than 120 days to flower, which resulted in lack of heterosis for grain yield in such crosses due to cold stress at the reproductive stage.Part of the thesis submitted by the senior author to Himachal Pradesh Agricultural University, Palampur (H.P.) India, in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Agriculture 相似文献
20.
The role of α1-adrenergic receptors (α1-ARs) and their subtypes in metabolism is not well known. Most previous studies were performed before the advent of transgenic mouse models and utilized transformed cell lines and poorly selective antagonists. We have now studied the metabolic regulation of the α1A- and α1B-AR subtypes in vivo using knock-out (KO) and transgenic mice that express a constitutively active mutant (CAM) form of the receptor, assessing subtype-selective functions. CAM mice increased glucose tolerance while KO mice display impaired glucose tolerance. CAM mice increased while KO decreased glucose uptake into white fat tissue and skeletal muscle with the CAM α1A-AR showing selective glucose uptake into the heart. Using indirect calorimetry, both CAM mice demonstrated increased whole body fatty acid oxidation, while KO mice preferentially oxidized carbohydrate. CAM α1A-AR mice displayed significantly decreased fasting plasma triglycerides and glucose levels while α1A-AR KO displayed increased levels of triglycerides and glucose. Both CAM mice displayed increased plasma levels of leptin while KO mice decreased leptin levels. Most metabolic effects were more efficacious with the α1A-AR subtype. Our results suggest that stimulation of α1-ARs results in a favorable metabolic profile of increased glucose tolerance, cardiac glucose uptake, leptin secretion and increased whole body lipid metabolism that may contribute to its previously recognized cardioprotective and neuroprotective benefits. 相似文献