首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 213 毫秒
1.
Legionella pneumophila , the causative agent of Legionnaires' disease, replicates in macrophages and amoebae within ' Legionella -containing vacuoles' (LCVs), which communicate with the early secretory pathway and the endoplasmic reticulum. Formation of LCVs requires the bacterial Icm/Dot type IV secretion system. The Icm/Dot-translocated effector protein SidC selectively anchors to LCVs by binding the host lipid phosphatidylinositol-4-phosphate (PtdIns(4) P ). Here, we describe a novel and simple approach to purify intact vacuoles formed by L. pneumophila within Dictyostelium discoideum by using magnetic immunoseparation with an antibody against SidC, followed by density gradient centrifugation. To monitor LCV purification by fluorescence microscopy, we used Dictyostelium producing the LCV marker calnexin-GFP and L. pneumophila labeled with the red fluorescent protein DsRed. A proteome analysis of purified LCVs by liquid chromatography coupled to tandem mass spectrometry revealed 566 host proteins, including known LCV components, such as the small GTPases Arf1, Rab1 and Rab7. Rab8, an endosomal regulator of the late secretory pathway originating from the trans Golgi network, and the endosomal GTPase Rab14 were identified as novel LCV components, which were found to be present on vacuoles harboring wild-type but not Icm/Dot-deficient L. pneumophila . Thus, LCVs also communicate with the late secretory and endosomal pathways. Depletion of Rab8 or Arf1 by RNA interference reduced the amount of SidC on LCVs, indicating that the GTPases promote the recruitment of Legionella effectors by regulating the level of PtdIns(4) P .  相似文献   

2.
Legionella pneumophila, the causative agent of Legionnaires' disease, uses the intracellular multiplication/defective organelle trafficking (Icm/Dot) type IV secretion system to establish within amoebae and macrophages an endoplasmic reticulum (ER)-derived replication-permissive compartment, the Legionella-containing vacuole (LCV). The Icm/Dot substrate SidC and its paralogue SdcA anchor to LCVs via phosphatidylinositol-4 phosphate [PtdIns(4)P]. Here we identify the unique 20 kDa PtdIns(4)P-binding domain of SidC, which upon heterologous expression in Dictyostelium binds to LCVs and thus is useful as a PtdIns(4)P-specific probe. LCVs harbouring L. pneumophilaDeltasidC-sdcA mutant bacteria recruit ER and ER-derived vesicles less efficiently and carry endosomal but not lysosomal markers. The phenotypes are complemented by supplying sidC on a plasmid. L. pneumophilaDeltasidC-sdcA grows at wild-type rate in calnexin-negative LCVs, suggesting that communication with the ER is dispensable for establishing a replicative compartment. The amount of SidC and calnexin is directly proportional on isolated LCVs, and in a cell-free system, the recruitment of calnexin-positive vesicles to LCVs harbouring DeltasidC-sdcA mutant bacteria is impaired. Beads coated with purified SidC or its 70 kDa N-terminal fragment recruit ER vesicles in Dictyostelium and macrophage lysates. Our results establish SidC as an L. pneumophila effector protein, which anchors to PtdIns(4)P on LCVs and recruits ER vesicles to a replication-permissive vacuole.  相似文献   

3.
The causative agent of Legionnaires' disease, Legionella pneumophila, employs the intracellular multiplication (Icm)/defective organelle trafficking (Dot) type IV secretion system (T4SS) to upregulate phagocytosis and to establish a replicative vacuole in amoebae and macrophages. Legionella-containing vacuoles (LCVs) do not fuse with endosomes but recruit early secretory vesicles. Here we analyze the role of host cell phosphoinositide (PI) metabolism during uptake and intracellular replication of L. pneumophila. Genetic and pharmacological evidence suggests that class I phosphatidylinositol(3) kinases (PI3Ks) are dispensable for phagocytosis of wild-type L. pneumophila but inhibit intracellular replication of the bacteria and participate in the modulation of the LCV. Uptake and degradation of an icmT mutant strain lacking a functional Icm/Dot transporter was promoted by PI3Ks. We identified Icm/Dot-secreted proteins which specifically bind to phosphatidylinositol(4) phosphate (PI(4)P) in vitro and preferentially localize to LCVs in the absence of functional PI3Ks. PI(4)P was found to be present on LCVs using as a probe either an antibody against PI(4)P or the PH domain of the PI(4)P-binding protein FAPP1 (phosphatidylinositol(4) phosphate adaptor protein-1). Moreover, the presence of PI(4)P on LCVs required a functional Icm/Dot T4SS. Our results indicate that L. pneumophila modulates host cell PI metabolism and exploits the Golgi lipid second messenger PI(4)P to anchor secreted effector proteins to the LCV.  相似文献   

4.
The pathogenic bacterium Legionella pneumophila replicates in host cells within a distinct ER‐associated compartment termed the Legionella‐containing vacuole (LCV). How the dynamic ER network contributes to pathogen proliferation within the nascent LCV remains elusive. A proteomic analysis of purified LCVs identified the ER tubule‐resident large GTPase atlastin3 (Atl3, yeast Sey1p) and the reticulon protein Rtn4 as conserved LCV host components. Here, we report that Sey1/Atl3 and Rtn4 localize to early LCVs and are critical for pathogen vacuole formation. Sey1 overproduction promotes intracellular growth of L. pneumophila, whereas a catalytically inactive, dominant‐negative GTPase mutant protein, or Atl3 depletion, restricts pathogen replication and impairs LCV maturation. Sey1 is not required for initial recruitment of ER to PtdIns(4)P‐positive LCVs but for subsequent pathogen vacuole expansion. GTP (but not GDP) catalyzes the Sey1‐dependent aggregation of purified, ER‐positive LCVs in vitro. Thus, Sey1/Atl3‐dependent ER remodeling contributes to LCV maturation and intracellular replication of L. pneumophila.  相似文献   

5.
Legionella pneumophila is an opportunistic human pathogen that replicates within environmental amoebae including Acanthamoeba castellanii and Dictyostelium discoideum. The Icm/Dot type IV secretion system promotes phagocytosis and intracellular replication of L. pneumophila in an endoplasmic reticulum-derived 'Legionella-containing vacuole' (LCV). L. pneumophila adopts a biphasic life cycle consisting of a replicative growth phase and a transmissive (stationary) phase, the latter of which is characterized by the preferential expression of genes required for motility and virulence. A bioinformatic analysis of the L. pneumophila genome revealed a gene cluster homologous to the Vibrio cholerae cqsAS genes, encoding a putative quorum sensing autoinducer synthase (lqsA) and a sensor kinase (lqsS), which flank a novel response regulator (lqsR). We report here that an L. pneumophila lqsR deletion mutant grew in broth with the same rate as wild-type bacteria, but entered the replicative growth phase earlier. Overexpression of lqsR led to an elongated morphology of the bacteria. The lqsR mutant strain was found to be more salt-resistant and impaired for intracellular growth in A. castellanii, D. discoideum and macrophages, formation of the ER-derived LCV and toxicity. Moreover, L. pneumophila lacking LqsR, as well as strains lacking the stationary sigma factor RpoS or the two-component response regulator LetA, were phagocytosed less efficiently by A. castellanii, D. discoideum or macrophages. The expression of lqsR was dependent on RpoS and, to a lesser extent, also on LetA. DNA microarray experiments revealed that lqsR regulates the expression of genes involved in virulence, motility and cell division, consistent with a role for LqsR in the transition from the replicative to the transmissive (virulent) phase. Our findings indicate that LqsR is a novel pleiotropic regulator involved in RpoS- and LetA-controlled interactions of L. pneumophila with phagocytes.  相似文献   

6.
Legionella survives intracellularly by preventing fusion with lysosomes, due to phagosome escape from the endocytic pathway at an early stage of phagosome maturation, and by creating a replicative organelle that acquires endoplasmic reticulum (ER) characteristics through sustained interactions and fusion with the ER. Intracellular replication of Legionella pneumophila in mouse macrophages is controlled by the Lgn1 locus. Functional complementation in vivo has identified the Birc1e/Naip5 gene as being responsible for the Lgn1 effect. To understand the function and temporal site of action of Birc1e/Naip5 in susceptibility to L. pneumophila, we examined the biogenesis of Legionella-containing vacuoles (LCVs) formed in permissive A/J macrophages and in their Birc1e/Naip5 transgenic non-permissive counterpart. Birc1e/Naip5 effects on acquisition of lysosomal and ER markers were evident within 1-2 h following infection. A significantly higher proportion of LCVs formed in Birc1e/Naip5 transgenic macrophages had acquired the lysosomal markers cathepsin D and Lamp1 by 2 h post infection, whereas a significantly higher proportion of LCVs formed in permissive macrophages were positively stained for the ER markers BAP31 and calnexin, 6 h post infection. Likewise, studies by electron microscopy showed acquisition of lysosomal contents (horseradish peroxidase), within the first hour following phagocytic uptake, by LCVs formed in Birc1e/Naip5 transgenic macrophages and delivery of the ER marker glucose 6-phosphatase (G6Pase) only to the lumen of LCVs formed in A/J macrophages. Finally, a larger proportion of LCVs formed in A/J macrophages were studded with ribosomes 24 h post infection, compared with LCVs formed in Birc1e/Naip5 transgenic macrophages. These results suggest that sensing of L. pneumophila products by Birc1e/Naip5 in macrophages occurs rapidly following phagocytosis, a process that antagonizes the ability of L. pneumophila to remodel its phagosome into a specialized vacuole with ER characteristics.  相似文献   

7.
The causative agent of Legionnaires'' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS) to form in phagocytes a distinct “Legionella-containing vacuole” (LCV), which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF) domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP) in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED) fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila.  相似文献   

8.
Phosphoinositides are involved in endocytosis in both mammalian cells and the amoeba Dictyostelium discoideum. Dd5P4 is the Dictyostelium homolog of human OCRL (oculocerebrorenal syndrome of Lowe); both have a RhoGAP domain and a 5-phosphatase domain that acts on phosphatidylinositol 4,5-bisphosphate/phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3). Inactivation of Dd5P4 inhibits growth on liquid medium and on bacteria. Dd5p4-null cells are impaired in phagocytosis of yeast cells. In wild-type cells, PI(3,4,5)P3 is formed and converted to PI(3,4)P2 just before closure of the phagocytic cup. In dd5p4-null cells, a phagocytic cup is formed upon contact with the yeast cell, and PI(3,4,5)P3 is still produced, but the phagocytic cup does not close. We suggest that Dd5P4 regulates the conversion of PI(3,4,5)P3 to PI(3,4)P2 and that this conversion is essential for closure of the phagocytic cup. Phylogenetic analysis of OCRL-like 5-phosphatases with RhoGAP domains reveal that D. discoideum Dd5P4 is a surprisingly close homolog of human OCRL, the protein responsible for Lowe syndrome. We expressed human OCRL in dd5p4-null cells. Growth on bacteria and axenic medium is largely restored, whereas the rate of phagocytosis of yeast cells is partly restored, indicating that human OCRL can functionally replace Dictyostelium Dd5P4.  相似文献   

9.
The causative agent of Legionnaires disease, Legionella pneumophila, forms a replicative vacuole in phagocytes by means of the intracellular multiplication/defective organelle trafficking (Icm/Dot) type IV secretion system and translocated effector proteins, some of which subvert host GTP and phosphoinositide (PI) metabolism. The Icm/Dot substrate SidC anchors to the membrane of Legionella-containing vacuoles (LCVs) by specifically binding to phosphatidylinositol 4-phosphate (PtdIns(4)P). Using a nonbiased screen for novel L. pneumophila PI-binding proteins, we identified the Rab1 guanine nucleotide exchange factor (GEF) SidM/DrrA as the predominant PtdIns(4)P-binding protein. Purified SidM specifically and directly bound to PtdIns(4)P, whereas the SidM-interacting Icm/Dot substrate LidA preferentially bound PtdIns(3)P but also PtdIns(4)P, and the L. pneumophila Arf1 GEF RalF did not bind to any PIs. The PtdIns(4)P-binding domain of SidM was mapped to the 12-kDa C-terminal sequence, termed “P4M” (PtdIns4P binding of SidM/DrrA). The isolated P4M domain is largely helical and displayed higher PtdIns(4)P binding activity in the context of the α-helical, monomeric full-length protein. SidM constructs containing P4M were translocated by Icm/Dot-proficient L. pneumophila and localized to the LCV membrane, indicating that SidM anchors to PtdIns(4)P on LCVs via its P4M domain. An L. pneumophila ΔsidM mutant strain displayed significantly higher amounts of SidC on LCVs, suggesting that SidM and SidC compete for limiting amounts of PtdIns(4)P on the vacuole. Finally, RNA interference revealed that PtdIns(4)P on LCVs is specifically formed by host PtdIns 4-kinase IIIβ. Thus, L. pneumophila exploits PtdIns(4)P produced by PtdIns 4-kinase IIIβ to anchor the effectors SidC and SidM to LCVs.The Gram-negative pathogen Legionella pneumophila is the causative agent of Legionnaires disease, but it evolved as a parasite of various species of environmental predatory protozoa, including the social amoeba Dictyostelium discoideum (1, 2). The human disease is linked to the inhalation of contaminated aerosols, followed by replication in alveolar macrophages. To accommodate the transfer between host cells, L. pneumophila alternates between replicative and transmissive phases, the regulation of which includes an apparent quorum-sensing system (35).In macrophages and amoebae, L. pneumophila forms a replicative compartment, the Legionella-containing vacuole (LCV).3 LCVs avoid fusion with lysosomes (6), intercept vesicular traffic at endoplasmic reticulum (ER) exit sites (7), and fuse with the ER (810). The uptake of L. pneumophila and formation of LCVs in macrophages and amoebae depends on the Icm/Dot type IV secretion system (T4SS) (1114). Although more than 100 Icm/Dot substrates (“effector” proteins) have been identified to date, only few are functionally characterized, including effectors that interfere with host cell signal transduction, vesicle trafficking, or apoptotic pathways (1518).Two Icm/Dot-translocated substrates, SidM/DrrA (19, 20) and RalF (21), have been characterized as guanine nucleotide exchange factors (GEFs) for the Rho subfamily of small GTPases. These bacterial GEFs are recruited to and activate their targets on LCVs. Small GTPases of the Rho subfamily are involved in many eukaryotic signal transduction pathways and in actin cytoskeleton regulation (22). Inactive Rho GTPases bind GDP and a guanine nucleotide dissociation inhibitor (GDI). The GTPases are activated by removal of the GDI and the exchange of GDP with GTP by GEFs, which promotes the interaction with downstream effector proteins, such as protein or lipid kinases and various adaptor proteins. The cycle is closed by hydrolysis of the bound GTP, which is mediated by GTPase-activating proteins.SidM is a GEF for Rab1, which is essential for ER to Golgi vesicle transport, and additionally, SidM acts as a GDI displacement factor (GDF) to activate Rab1 (23, 24). The function of SidM is assisted by the Icm/Dot substrate LidA, which also localizes to LCVs. LidA preferentially binds to activated Rab1, thus supporting the recruitment of early secretory vesicles by SidM (19, 20, 23, 25, 26). Another Icm/Dot substrate, LepB (27), contributes to Rab1-mediated membrane cycling by inactivating Rab1 through its GTPase-activating protein function, thus acting as an antagonist of SidM (24).The Icm/Dot substrate RalF recruits and activates the small GTPase ADP-ribosylation factor 1 (Arf1), which is involved in retrograde vesicle transport from Golgi to ER (21). Dominant negative Arf1 (7, 28) or knockdown of Arf1 by RNA interference (29) impairs the formation of LCVs, as well as the recruitment of the Icm/Dot substrate SidC to the LCV (30).SidC and its paralogue SdcA localize to the LCV membrane (31), where the proteins specifically bind to the host cell lipid phosphatidylinositol 4-phosphate (PtdIns(4)P) (32, 33). Phosphoinositides (PIs) regulate eukaryotic receptor-mediated signal transduction, actin remodeling, and membrane dynamics (34, 35). PtdIns(4)P is present on the cytoplasmic membrane, but localizes preferentially to the trans-Golgi network (TGN), where this PI is produced by an Arf-dependent recruitment of PtdIns(4)P kinase IIIβ (PI4K IIIβ) (36) to promote trafficking along the secretory pathway. Recently, PtdIns(4)P was found to also mediate the export of early secretory vesicles from ER exit sites (37). At present, the L. pneumophila effector proteins that mediate exploitation of host PI signaling remain ill defined.In a nonbiased screen for L. pneumophila PI-binding proteins using different PIs coupled to agarose beads, we identified SidM as a major PtdIns(4)P-binding effector. We mapped its PtdIns(4)P binding activity to a novel P4M domain within a 12-kDa C-terminal sequence. SidM constructs, including the P4M domain, were found to be translocated and bind the LCV membrane, where the levels of PtdIns(4)P are controlled by PI4K IIIβ.  相似文献   

10.
The opportunistic pathogen Legionella pneumophila employs the Icm/Dot type IV secretion system and ~300 different effector proteins to replicate in macrophages and amoebae in a distinct ‘Legionella‐containing vacuole’ (LCV). LCVs from infected RAW 264.7 macrophages were enriched by immuno‐affinity separation and density gradient centrifugation, using an antibody against the L. pneumophila effector SidC, which specifically binds to the phosphoinositide PtdIns(4)P on the pathogen vacuole membrane. The proteome of purified LCVs was determined by mass spectro‐metry (data are available via ProteomeXchange with identifier PXD000647). The proteomics analysis revealed more than 1150 host proteins, including 13 small GTPases of the Rab family. Using fluorescence microscopy, 6 novel Rab proteins were confirmed to localize on pathogen vacuoles harbouring wild‐type but not ΔicmT mutant L. pneumophila. Individual depletion of 20 GTPases by RNA interference indicated that endocytic GTPases (Rab5a, Rab14 and Rab21) restrict intracellular growth of L. pneumophila, whereas secretory GTPases (Rab8a, Rab10 and Rab32) implicated in Golgi‐endosome trafficking promote bacterial replication. Upon silencing of Rab21 or Rab32, fewer LCVs stained positive for Rab4 or Rab9, implicated in secretory or retrograde trafficking respectively. Moreover, depletion of Rab8a, Rab14 or Rab21 significantly decreased the number of SidC‐positive LCVs, suggesting that PtdIns(4)P is reduced under these conditions. L. pneumophila proteins identified in purified LCVs included proteins putatively implicated in phosphorus metabolism and as many as 60 Icm/Dot‐translocated effectors, which are likely required early during infection. Taken together, the phagocyte and Legionella proteomes of purified LCVs lay the foundation for further hypothesis‐driven investigations of the complex process of pathogen vacuole formation.  相似文献   

11.
Legionella pneumophila, the Gram-negative bacterium that causes Legionnaires' disease, can be cultured in the laboratory in a variety of fresh-water amoebae and macrophage-like cell lines. None of these hosts, however, is amenable to genetic analysis, which has limited the ability of researchers to analyse the host factors essential for L. pneumophila growth. In this article, we describe a novel method in which L. pneumophila is grown within the soil amoeba Dictyostelium discoideum and how D. discoideum genetics is being used to analyse the host cell factors involved in L. pneumophila pathogenesis.  相似文献   

12.
The Gram-negative bacterium Legionella pneumophila is a facultative intracellular pathogen of free-living amoebae and mammalian phagocytes. L. pneumophila is engulfed in phagosomes that initially avoid fusion with lysosomes. The phagosome associates with endoplasmic reticulum (ER) and mitochondria and eventually resembles ER. The morphological similarity of the replication vacuole to autophagosomes, and enhanced bacterial replication in response to macroautophagy-inducing starvation, led to the hypothesis that L. pneumophila infection requires macroautophagy. As L. pneumophila replicates in Dictyostelium discoideum, and macroautophagy genes have been identified and mutated in D. discoideum, we have taken a genetic and cell biological approach to evaluate the relationship between host macroautophagy and intracellular replication of L. pneumophila. Mutation of the apg1, apg5, apg6, apg7 and apg8 genes produced typical macroautophagy defects, including reduced bulk protein degradation and cell viability during starvation. We show that L. pneumophila replicates normally in D. discoideum macroautophagy mutants and produces replication vacuoles that are morphologically indistinguishable from those in wild-type D. discoideum. Furthermore, a green fluorescent protein (GFP)-tagged marker of autophagosomes, Apg8, does not systematically co-localize with DsRed-labelled L. pneumophila. We conclude that macroautophagy is dispensable for L. pneumophila intracellular replication in D. discoideum.  相似文献   

13.
The opportunistic pathogen Legionella pneumophila is an amoeba-resistant bacterium, which also replicates in alveolar macrophages thus causing the severe pneumonia "Legionnaires'' disease"1. In protozoan and mammalian phagocytes, L. pneumophila employs a conserved mechanism to form a specific, replication-permissive compartment, the "Legionella-containing vacuole" (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system (T4SS), which translocates as many as 275 "effector" proteins into host cells. The effectors manipulate host proteins as well as lipids and communicate with secretory, endosomal and mitochondrial organelles2-4.The formation of LCVs represents a complex, robust and redundant process, which is difficult to grasp in a reductionist manner. An integrative approach is required to comprehensively understand LCV formation, including a global analysis of pathogen-host factor interactions and their temporal and spatial dynamics. As a first step towards this goal, intact LCVs are purified and analyzed by proteomics and lipidomics.The composition and formation of pathogen-containing vacuoles has been investigated by proteomic analysis using liquid chromatography or 2-D gel electrophoresis coupled to mass-spectrometry. Vacuoles isolated from either the social soil amoeba Dictyostelium discoideum or mammalian phagocytes harboured Leishmania5, Listeria6, Mycobacterium7, Rhodococcus8, Salmonella9 or Legionella spp.10. However, the purification protocols employed in these studies are time-consuming and tedious, as they require e.g. electron microscopy to analyse LCV morphology, integrity and purity. Additionally, these protocols do not exploit specific features of the pathogen vacuole for enrichment.The method presented here overcomes these limitations by employing D. discoideum producing a fluorescent LCV marker and by targeting the bacterial effector protein SidC, which selectively anchors to the LCV membrane by binding to phosphatidylinositol 4-phosphate (PtdIns(4)P)3,11 . LCVs are enriched in a first step by immuno-magnetic separation using an affinity-purified primary antibody against SidC and a secondary antibody coupled to magnetic beads, followed in a second step by a classical Histodenz density gradient centrifugation12,13 (Fig. 1).A proteome study of isolated LCVs from D. discoideum revealed more than 560 host cell proteins, including proteins associated with phagocytic vesicles, mitochondria, ER and Golgi, as well as several GTPases, which have not been implicated in LCV formation before13. LCVs enriched and purified with the protocol outlined here can be further analyzed by microscopy (immunofluorescence, electron microscopy), biochemical methods (Western blot) and proteomic or lipidomic approaches.  相似文献   

14.
Ge J  Shao F 《Cellular microbiology》2011,13(12):1870-1880
Legionella pneumophila, the causative agent of Legionnaires' disease, infects and replicates in macrophages and amoebas. Following internalization, L. pneumophila resides in a vacuole structure called Legionella-containing vacuole (LCV). The LCV escapes from the endocytic maturation process and avoids fusion with the lysosome, a hallmark of Legionella pathogenesis. Interference with the secretory vesicle transport and avoiding lysosomal targeting render the LCV permissive for L. pneumophila intracellular replication. Central to L. pneumophila pathogenesis is a defect in the organelle trafficking/intracellular multiplication (Dot/Icm) type IV secretion system that translocates a large number of effector proteins into host cells. Many of the Dot/Icm effectors employ diverse and sophisticated biochemical strategies to manipulate the host vesicular transport system, playing an important role in LCV biogenesis and trafficking. Similar to other bacterial pathogens, L. pneumophila also delivers effector proteins to modulate or counteract host innate immune defence pathways such as the NF-κB and apoptotic signalling. This review summarizes the known functions and mechanisms of Dot/Icm effectors that target host membrane trafficking and innate immune defence pathways.  相似文献   

15.
Legionella pneumophila is known as a facultative intracellular parasite of free-living soil and freshwater amoebae, of which several species have been shown to support the growth of the pathogenic bacteria. We report for the first time the behaviour of two strains (c2c and Z503) of the amoeba Willaertia magna towards different strains of L. pneumophila serogroup 1 and compared it with Acanthamoeba castellanii and Hartmannella vermiformis , known to be L. pneumophila permissive. In contrast to the results seen with other amoebae, W. magna c2c inhibited the growth of one strain of Legionella ( L. pneumophila , Paris), but not of others belonging to the same serogroup ( L. pneumophila , Philadelphia and L. pneumophila , Lens). Also, the different L. pneumophila inhibited cell growth and induced cell death in A. castellanii, H. vermiformis and W. magna Z503 within 3–4 days while W. magna c2c strain remained unaffected even up to 7 days. Electron microscopy demonstrated that the formation of numerous replicative phagosomes observed within Acanthamoeba and Hartmannella is rarely seen in W. magna c2c cocultured with L. pneumophila . Moreover, the morphological differences were observed between L. pneumophila cultured either with Willaertia or other amoebae. These observations show that amoebae are not all equally permissive to L. pneumophila and highlight W. magna c2c as particularly resistant towards some strains of this bacterium.  相似文献   

16.
During its life cycle, Legionella pneumophila alternates between at least two phenotypes: a resilient, infectious form equipped for transmission and a replicative cell type that grows in amoebae and macrophages. Considering its versatility, we postulated that multiple cues regulate L. pneumophila differentiation. Beginning with a Biolog Phenotype MicroArray screen, we demonstrate that excess short-chain fatty acids (SCFAs) trigger replicative cells to cease growth and activate their panel of transmissive traits. To co-ordinate their response to SCFAs, L. pneumophila utilizes the LetA/LetS two-component system, but not phosphotransacetylase or acetyl kinase, two enzymes that generate high-energy phosphate intermediates. Instead, the stringent response enzyme SpoT appears to monitor fatty acid biosynthesis to govern transmission trait expression, as an altered distribution of acylated acyl carrier proteins correlated with the SpoT-dependent differentiation of cells treated with either excess SCFAs or the fatty acid biosynthesis inhibitors cerulenin and 5-(tetradecyloxy)-2-furoic acid. We postulate that, by exploiting the stringent response pathway to couple cellular differentiation to its metabolic state, L. pneumophila swiftly acclimates to stresses encountered in its host or the environment, thereby enhancing its overall fitness.  相似文献   

17.
Inositol phosphate-containing molecules play an important role in a broad range of cellular processes. Inositol 5-phosphatases participate in the regulation of these signaling molecules. We have identified four inositol 5-phosphatases in Dictyostelium discoideum, Dd5P1-4, showing a high diversity in domain composition. Dd5P1 possesses only a inositol 5-phosphatase catalytic domain. An unique domain composition is present in Dd5P2 containing a RCC1-like domain. RCC1 has a seven-bladed propeller structure and interacts with G-proteins. Dd5P3 and Dd5P4 have a domain composition similar to human Synaptojanin with a SacI domain and OCRL with a RhoGAP domain, respectively. We have expressed the catalytic domains and show that these inositol 5-phosphatases have different substrate preferences. Single and double gene inactivation suggest a functional redundancy for Dd5P1, Dd5P2, and Dd5P3. Inactivation of the gene coding for Dd5P4 leads to defects in growth and development. These defects are restored by the expression of the complete protein but not by the 5-phosphatase catalytic domain.  相似文献   

18.
19.
Aims:  To assess chlorine susceptibility of Legionella pneumophila grown from two amoebic hosts, Acanthamoeba castellanii and Hartmannella vermiformis .
Methods and Results:  After being released from amoebae, Leg. pneumophila were chlorinated at 2 and 5 mg l−1 for 5 min–24 h. Bacterial culturability and cytoplasmic membrane deterioration were quantified by culture assay on BCYEα agar and BacLight stains coupled with a fluorescent microscope, respectively. Chlorination reduced the culturability of Leg. pneumophila by 2·93–4·59 log CFU ml−1 and damaged cellular membrane by 53·8–99·2%. Moreover, cells released from H. vermiformis exhibited significantly lower degrees in culturability reduction ( P  = 0·0008) and membrane deterioration ( P  < 0·0001) when compared with those from A. castellanii . The amoebic genus is the most significant parameter affecting cytoplasmic membrane integrity of chlorinated Legionella ( P  < 0·0001), followed by free chlorine concentration ( P  = 0·042).
Conclusions:  Legionella pneumophila replicated from H. vermiformis possess greater chlorine resistance than the cells from A. castellanii .
Significance and Impact of the Study:  This study shows the heterogeneity of amoebae-grown Leg. pneumophila in chlorine susceptibility, which should be considered in the control of legionellae proliferation, particularly in the systems where H. vermiformis is dominant, e.g. hot water plumbing.  相似文献   

20.
To identify host proteins involved in Legionella pneumophila intracellular replication, the soil amoeba Dictyostelium discoideum was analysed. The absence of the amoebal RtoA protein is demonstrated here to depress L. pneumophila intracellular growth. Uptake of L. pneumophila into a D. discoideum rtoA(-) strain was marginally defective, but this effect was not sufficient to account for the defective intracellular growth of L. pneumophila. The rtoA mutant was also more resistant to high-multiplicity killing by the bacterium. A targeting assay testing the colocalization of L. pneumophila-containing vacuole with an endoplasmic reticulum/pre-Golgi intermediate compartment marker protein, GFP-HDEL, was used to analyse these defects. In parental D. discoideum, the L. pneumophila vacuole showed recruitment of GFP-HDEL within 40 min after introduction of bacteria to the amoebae. By 6 h after infection it was clear that the rtoA mutant acquired and retained the GFP-HDEL less efficiently than the parental strain, and that the mutant was defective for promoting the physical expansion of the membranous compartment surrounding the bacteria. Depressed intracellular growth of L. pneumophila in a D. discoideum rtoA(-) mutant therefore appeared to result from a lowered efficiency of vesicle trafficking events that are essential for the modification and expansion of the L. pneumophila-containing compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号