共查询到20条相似文献,搜索用时 15 毫秒
1.
Several classes of anxiolytic compounds have the common effect of decreasing the firing of noradrenergic neurons or attenuating the post- synaptic effects of noradrenergic activity. In order to determine whether the benzodiazepines, the most widely used anxiolytics, also decrease noradrenergic activity, the effect of acute intravenous injections of diazepam (0.1–2.0 mg/kg) and chlordiazepoxide (0.5–4.0 mg/kg) were administered to anesthetized rats while spontaneous activity of single neurons in the principal noradrenergic nucleus, the locus coeruleus, was recorded. Diazepam and chlordiazepoxide decreased spontaneous single unit activity in the locus coeruleus at relatively low doses. This net effect on noradrenergic systems is consistent with the actions of several classes of nonbenzodiazepine anxiolytics, and with the involvement of noradrenergic systems in the neural mechanisms of anxiety. 相似文献
2.
The effect of beta-phenylethylamine (PEA) on brain noradrenaline (NA) neurons in the rat locus coeruleus (LC) was analyzed using single unit recording techniques including microiontophoretic methodology. Systemic injection of low doses of PEA consistently produced an instantaneous and dose-dependent inhibition of firing rate of the LC neurons. The effect was strongly antagonized by administration of the alpha 2-receptor antagonist yohimbine (1 mg/kg, i.v.) or by depletion of endogenous stores of NA by pretreatment with reserpine (10 mg/kg, i.p., 6 h), but unaffected by inhibition of tyrosine hydroxylase (alpha-met-hyl-p-tyrosine (alpha-MT), 250 mg/kg, i.p., 30 min). In contrast, the inhibitory effect of PEA on the LC neurons was strongly potentiated by pretreatment with the selective monoamine oxidase (MAO) - B inhibitor pargyline (2 mg/kg, i.p., 1 h), but, unexpectedly, also by pretreatment with the MAO-A selective inhibitors clorgyline (2 mg/kg, i.p., 1 h) or FLA 336 (2 mg/kg, i.p., 1 h). When microiontophoretically applied directly onto the LC neurons, PEA produced inhibition of a majority of the NA neurons. This action was prevented by intravenous injection of yohimbine (2.5 mg/kg). The results suggests that the action of PEA on NA neurons in the LC is an indirect effect, requiring availability of a reserpine-sensitive storage pool of NA, and mediated via activation of central alpha 2-receptors within the LC. 相似文献
3.
4.
Z. G. Mamedov 《Neurophysiology》1993,25(4):201-203
The effects exerted by electrical stimulation of the locus coeruleus (LC) on neuronal activity in the visual cortex have been studied in acute experiments on rabbits. The pattern of cortical afterprocesses affecting poststimulus histograms of neuronal activity has been found not always to correspond to the direction of change in the neuronal excitation level in the period of LC stimulation. An analysis of crossed interval histograms for a pair of neurons located in the same microvolume of the cortex has revealed the existence of two independent postsynaptic effects of LC stimulation: a fast (synaptic) effect and a slow (modulatory) effect. The findings are discussed with allowance for morphological features of the synaptic connections and interneuronal transmission in the noradrenergic system of the brain.Neirofiziologiya/Neurophysiology, Vol. 25, No. 4, pp. 243–246, July–August, 1993. 相似文献
5.
L G Miller Iu I Pivovarov G N Kryzhanovski? 《Biulleten' eksperimental'no? biologii i meditsiny》1984,97(4):400-401
Experiments on rats were made to examine the total cerebral blood flow during locus coeruleus (LC) stimulation, acute myocardial ischemia and in the presence of acute myocardial ischemia after LC precoagulation . LC electric stimulation caused a decrease in the cerebral blood flow. The most profound cerebrovascular disorders were observed in animals with acute myocardial ischemia without LC precoagulation and were followed by cardiac arrhythmias. Cerebrovascular hemodynamic disorders occurring in acute myocardial ischemia were prevented by LC coagulation. It is suggested that the cerebrovascular disorders are consequent on the formation in the LC of the hyperactive determinant structure and play a role of a secondary pathogenetic factor in heart regulation disorders. 相似文献
6.
Experiments on cats anesthetized with chloralose showed that repetitive stimulation of the locus coeruleus is accompanied by a decrease in IPSPs evoked by stimulation of flexor reflex afferents in extensor motoneurons. The effect appeared 600 msec after the beginning of stimulation and reached its maximum after 1500–2000 msec. Repetitive stimulation of the locus coeruleus did not change the membrane potential and did not affect EPSPs or IPSPs evoked by stimulation of low-threshold muscle afferents; EPSPs due to activation of high-threshold cutaneous and muscle afferents likewise remained unchanged. Repetitive stimulation of more central regions of the brain stem was accompanied not only by a decrease in IPSPs evoked by stimulation of flexor reflex afferents in extensor motoneurons, but also by a decrease in amplitude of EPSPs arising in response to stimulation of these same afferents in flexor motoneurons. These effects were not connected with activation of monoaminergic structures, for unlike effects arising during stimulation of the locus coeruleus, they were also found in previously reserpinized animals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 1, pp. 51–59, January–February, 1982. 相似文献
7.
Recovery cycles of primary evoked potentials to light flashes in the visual cortical area of waking rats were studied under conditions of pharmacological and electrical influences on serotonin (5-HT)- and noradren (NA)ergic brain systems. All factors used induced oscillations of the recovery cycles. Periods of oscillations were similar (300-400 ms) during pharmacological suppression of the NA-system and during high-frequency (500 Hz) electrical stimulation or lesion of locus coeruleus. Analogous influences on 5-HT-system were accompanied by oscillations of recovery cycles with a period of 200 ms. Mechanism of inhibitory action of high-frequency electrical stimulation on activity of monoaminergic systems is discussed. 相似文献
8.
Khanbabian MV Saakian NA Sarkisian NA Mushegian GKh 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》2003,53(2):222-227
Bilateral lesions of the nuclei prepositus hypoglossi produced a more than twofold decrease in the mean frequency discharges in the neurons of the nucleus coeruleus. The number of neurons with burst activity and the number of polymodal neurons substantially increased. Lesion of the nucleus tractus solitarius resulted in an increase in the number of neurons with regular activity and certain decrease in the mean discharge frequency of coeruleus neurons. The results confirm the suggestion about a substantial role of the nucleus prepositus hypoglossi in relaying afferent effects to the activity of locus coeruleus neurons. 相似文献
9.
G P Zhukova 《Arkhiv anatomii, gistologii i émbriologii》1977,73(11):77-83
After the destruction of the nucleus tractas solitarii, just caudally to the writing pen by means of a stereotaxic instrument, the system of afferent fibres to the nucleus in question was investigated by the methods of Nauta and Fink--Heimer. The fibre terminals were revealed near locus coeruleus. Investigation of the locus coeruleus by Golgi method demonstrated that it usually has neurons of reticular type and transitional ones which resemble by their form the neurons specific for sensory formations. It is possible to conclude that locus coeruleus posesses connections of visceral origin which may play a part in the afferent influence of locus coeruleus on the brain cortex. 相似文献
10.
A. I. Semenyutin 《Neurophysiology》1990,22(4):359-367
It was shown during experiments on cats undergoing surgery under ketamine-induced anesthesia and immobilized with myorelaxin that applying trains of stimuli to the locus coeruleus (LC) produces an effect on 79% of parietal cortex neurons. This manifests as inhibition lasting 300–700 msec or a 16–32% decline in the activity rate of neurons with background activity. Hyperpolarization of 5–7 mV lasting 120–500 msec preceded by a latency of 30–90 msec was noted in such neurons as well as "silent" cells during intracellular recording. Duration of the inhibitory pause in neuronal background activity induced by transcallosal stimulation (TCS) increased by 50–200 msec under the effects of conditioned stimuli applied to the LC. Duration of the IPSP triggered by TCS likewise increased (by 50–100 msec) under the effects of LC stimulation. It was concluded that the effects of stimulating the LC on neuronal activity in the parietal cortex may manifest either directly, as inhibition of background activity and hyperpolarization, or else as modulation of influences exerted by other neurotransmitters.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 4, pp. 486–494, July–August, 1990. 相似文献
11.
M Hong B Milne C W Loomis K Jhamandas 《Canadian journal of physiology and pharmacology》1992,70(8):1082-1089
The nucleus locus coeruleus (LC) has been implicated in the processing of spinal reflexes following noxious stimuli. It has been demonstrated that noxious stimuli activate LC neuronal firing, but little is known about the neurochemical changes that might occur following such activation. To determine the effects of different noxious stimuli on LC neuronal activity, anaesthetized rats were exposed to mechanical (tail pinch), thermal (55 degrees C water), and chemical (5% Formalin injected in the hind paw) stimuli; the catechol oxidation current (CA.OC), an index of noradrenergic neuronal activity, in the locus coeruleus was monitored using differential normal pulse voltammetry. In addition, the effect of the opioid antagonist naloxone on the CA.OC in the LC was examined. Exposure to both mechanical and chemical stimuli significantly increased CA.OC indicating an increase in LC noradrenergic neuronal activity, while the thermal stimulus had no effect. Treatment with naloxone (1 mg/kg i.v.) had no effect on CA.OC in the LC. The results show a differential responsiveness of LC noradrenergic neurons to different modes of noxious stimuli and fail to demonstrate a tonic opioid regulation of these neurons in the anaesthetized rat. 相似文献
12.
13.
蓝斑对迷走—心血管反射的影响 总被引:1,自引:0,他引:1
实验用家兔36只,采用低频和高频电流刺激颈部迷走神经中枢端,建立迷走-减压和迷走-升压反射,两种频率电刺激均导致肾交感神经传出活动减少。以迷走-血压反射和迷走-交感反射为指标,连续电流刺激蓝斑或LC微量注射谷氨酸钠均抑制迷走-血压反射和迷走-交感反射。 相似文献
14.
K G Taiushev A P Pugovkin E A Dergacheva V M Klimenko 《Biulleten' eksperimental'no? biologii i meditsiny》1987,103(2):218-221
The intramural adrenergic nervous apparatus of cerebral arteries was studied in adult rabbits after 3-10 sessions of electrical stimulation of locus coeruleus. The activity of nerve structures was determined by estimating the density of adrenergic perivascular plexuses and by semi-quantitative cytophotometry of changes in the catecholamine content of nerve varicosities. The stimulation was followed by a 28.2 +/- 1.5% increase in adrenergic innervation density. while catecholamine content in perivascular nerve structures displayed a tendency to decrease. The problem of central effects on cerebral blood flow autoregulation is discussed. 相似文献
15.
1. 5,6-dihydroxytryptamine (5,6-DHT) or a lesion of the raphe centralis superior (RCS) cause significant decreases in the serotonin (5-HT) content and significant increases in the tyrosine hydroxylase activity in the locus coeruleus (LC) of the rat. This suggests that noradrenaline (NA) synthesis is controlled by serotonin-containing neurons in the raphe system via their terminals in the LC. 2. Radioautography after intraventricular infusion of tritiated serotonin (3H-5-HT) and biochemical determinations of endogenous 5-HT content showed an almost complete disappearance of serotoninergic axonal varicosities and content in the LC region 10-15 days after intraventricular administration of 75 micrograms of 5,6-DHT. Two to 4 months after neurotoxin administration, 5-HT fibers had regrown in the LC but, contrary to the normal innervation pattern, the majority of them invaded the medial most portion of the nucleus and the adjacent subependymal region. The LC region regained almost all of its endogenous 5-HT content in the same time period. 3. Functional recuperation of these 5-HT fibers was demonstrated by the fact that the RCS had, after regeneration, the same functional control on NA synthesis as in the normal animal. 相似文献
16.
A I Semeniutin 《Fiziologicheski? zhurnal》1989,35(2):7-13
Topography of catecholamine-containing (CA) neurons of the cat locus coeruleus was studied using a combination of the catecholamine histofluorescence method and rapid embedding of the brain tissue into the paraffin wax. The distribution of CA neurons was examined at frontal and sagittal sections of the brain stem. Unlike that shown previously the quantity of CA neurons in the rostral pole of the locus coeruleus was somewhat higher while at the frontal level of P--2.0-P--4.0 the significant number of CA cells of the locus coeruleus was localized more ventromedially. 相似文献
17.
I. A. Yakhnitsa 《Neurophysiology》1981,13(1):31-37
Repetitive stimulation of the locus coeruleus (up to 150 µA in strength) was accompanied by marked weakening of the inhibitory action of flexor reflex afferents and of the reciprocal inhibitory action on extensor motoneurons. Meanwhile stimulation of this sort had no significant effect on direct inhibition of flexor and extensor motoneurons, on the facilitatory action of flexor reflex afferents and the reciprocal inhibitory action on flexor motoneurons and also on dorsal root potentials. Intravenously injected pyrogallol had a similar action, but its effect was much weaker after spinalization of the animals or blocking of spinal cord conduction by cold. Enhancement of the monosynaptic reflex, which also was observed after injection of pyrogallol, was characterized by different temporal parameters; the intensity of this effect was unaffected both by spinalization and by cold block. These data, and also the results of experiments with partial divisions of the spinal cord, suggest that the effects of stimulation of the locus coeruleus are the result of activity of a descending coerulo-spinal tract, running in the ventral quadrant of the spinal cord.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 39–47, January–February, 1981. 相似文献
18.
19.
The effect of morphine on inhibition of relay neurons in the spinal trigeminal nucleus (STN) produced by conditioning stimulation of the locus coeruleus (LC) was studied in cats. Alterations in orthodromic and antidromic spike generations in STN were absent. However, the narcotic did selectively reduce the inhibitory effect of LC conditioning stimulation on STN neurons without affecting that of the sensory ortex. Nalorphine partially antagonized this effect of the narcotic. A reduction in orthodromic spike number of STN neurons induced by intraventricular noradrenaline in reserpinized animals was unaltered by morphine treatment. These data demonstrate that morphine selectively interferes with LC-induced inhibition of STN neurons and in addition may block noradrenaline release from terminals of LC neurons. 相似文献