首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sixty-four murine alloreactive, cytolytic and noncytolytic , T lymphocyte clones were tested for the production of interleukin 2 (IL 2), macrophage-activating factor (MAF), interferon (IFN), and colony-stimulating factor (CSF). Approximately 90% of both cytolytic and noncytolytic clones secreted MAF and IFN upon antigen or mitogen stimulation. IL 2, in contrast, was only released in detectable amounts by 50% of noncytolytic clones and 50% of a subclass of cytolytic clones in which the proliferation was independent of exogenous IL 2 ("antigen-driven" clones); IL 2-dependent cytolytic clones did not release measurable IL 2. CSF was secreted by approximately 90% of noncytolytic and IL 2-independent cytolytic clones and 40% of IL 2-dependent cytolytic clones. The analysis reported here revealed a strong quantitative correlation between the titers of MAF and IFN released by the clones, suggesting that these two assays may measure the same lymphokine. Although the other activities measured were not directly correlated, a broad association was noted between IL 2 secretion and the production of high titers of MAF, IFN, and CSF. Thus, noncytolytic and IL 2-independent cytolytic clones on average released significantly higher titers of these factors than IL 2-dependent cytolytic clones.  相似文献   

2.
It is well-established that activated T cells proliferate in response to interleukin 2 (IL 2) and produce various soluble lymphokines such as macrophage-activating factor (MAF) in response to antigen. Prior to investigating the molecular events involved in signaling the initiation of these responses in cloned murine cytotoxic T lymphocytes (CTL), we determined whether these responses could occur independently, and we established for each response the time during which signal transducing mechanisms may function. It was found that this cloned CTL population was in a resting state (G1 phase of cell cycle) 7 days after stimulation with antigen plus IL 2. At this time, the incubation of these resting CTL with IL 2 for 4 to 6 hr resulted in a maximal proliferative response that was not accompanied by the production of MAF. Conversely, the incubation of resting CTL with antigen or lectin (in the absence of IL 2) for at least 8 hr resulted in the maximal production of MAF at 24 hr without inducing a proliferative response. In addition, antigen or lectin, but not IL 2, triggered an immediate (less than 1 min) and sustained (at least 8 hr) mobilization of intracellular calcium. The kinetics of this calcium response paralleled the minimum time (8 hr) that was required for resting CTL to interact with either antigen or lectin in order to produce maximal titers of MAF. These results indicate that proliferation and lymphokine (MAF) production in cloned murine CTL are independent events. In these resting CTL, the signal mechanisms that mediate the production of lymphokines are most likely restricted to the initial 8 hr of stimulation by antigen or lectin and involve the rapid and prolonged mobilization of cytoplasmic calcium. Proliferative signals, however, are probably complete within 4 to 6 hr after stimulation by IL 2 and do not involve readily demonstrable fluxes of cytoplasmic calcium, as determined by the fluorescent calcium probe Quin 2.  相似文献   

3.
In vitro PFC responses to the thymus-independent (TI) antigen Streptococcus pneumoniae R36a require T cell replacing factor(s) (TRF). This requirement for TRF is as significant as for the thymus-dependent (TD) antigen SRBC. TRF is shown to be distinct from IL 2 by the following observations: 1) culture supernatants from the cloned T cell line L2, collected over an 8-day period after allogeneic stimulation, transiently contain IL 2 activity but maintain high levels of TRF activity throughout 192 hr; 2) L2V, a variant subclone of L2, produces much higher levels of TRF activity than the parental line but no detectable IL 2 activity; 3) the addition of IL2+, TRF- supernatants from the T cell hybridoma FS6-14.13 does not affect the L2V SF-driven PFC responses to R36a or SRBC; and 4) the addition of contaminating T cells to cultures containing T cell-depleted spleen cells, L2V SF, and antigen does not affect the PFC response. TRF does appear to be indistinguishable from polyclonal B cell stimulating factor (BCSF), which stimulates polyclonal PFC responses in the absence of antigen, mitogen, or anti-Ig. The TRF and BCSF activities of L2V SF could not be separated by ion-exchange, hydrophobic-interaction, and gel-filtration chromatography. TRF and BCSF have an apparent m.w. of approximately 40,000.  相似文献   

4.
The T cell hybridoma FS7-20, produced by the fusion of normal B10.BR T cells to the AKR thymoma BW5147, was found when stimulated with concanavalin A (Con A) to produce the lymphokines: interleukin 2 (IL 2), interferon-gamma (IFN gamma), macrophage-activating factor (MAF), Ia induction factor IaIF), and the B cell helper factor interleukin X (IL X). The clones and subclones of FS7-20 varied dramatically in their ability to produce these lymphokines, presumably because of karyotypic variations. The ability to produce IL 2 segregated independently from the ability to produce the four other lymphokine activities; however, production of the latter activities showed a strong correlation. This coordinate production of IFN gamma, MAF, IaIF, and IL X was also observed with a cloned normal cytotoxic T cell line, cr15. These results suggest either that IFN gamma, MAF, IaIF, and IL X are all manifestations of a single molecular species or that, although these activities are different structurally, their production is controlled by a common genetic mechanism. In support of the first possibility, the IFN gamma, MAF, IaIF, and IL X activity produced by FS7-20 were all found to be equally sensitive to inactivation at pH 2. These results illustrate the usefulness of using T cell hybridomas for the study of lymphokines.  相似文献   

5.
The phospholipid metabolism of cloned murine cytotoxic T lymphocytes (CTL) was examined under conditions in which the induction of proliferation by interleukin 2 (IL 2) and the stimulated production of lymphokine (macrophage-activating factor (MAF] by concanavalin A (Con A) and specific antigen occurred independently of each other. Activation of the CTL by either of the latter two stimuli resulted in changes in the metabolism of phosphatidylinositol (PI) that were early (less than 2.5 min), specific, and prolonged (6 to 8 hr). These changes were primarily characterized by an increase in phosphatidic acid (PA) and PI, with a decrease in phosphatidylinositol-4,5-bisphosphate. The duration of these phospholipid responses, particularly PA and PI, approximated the minimum time of CTL-stimulus interaction required to produce maximal titers of MAF. No changes were observed in other major classes of phospholipids during 8 hr of continuous stimulation. Stimulation with an irrelevant antigen had no effect on CTL phospholipid metabolism. In contrast to specific antigen or Con A, the T cell growth factor IL 2 failed to elicit specific and early biosynthetic responses from PA and PI. Instead, there were nonspecific biosynthetic responses from all major phospholipid classes (including phosphatidylcholine and phosphatidylethanolamine, as well as PA and PI) which occurred between 1 and 6 hr after IL 2 stimulation. Both 1,2-diacylglycerol (DAG) and inositol phosphates (IP), the hydrolytic products of PI turnover, were produced in response to MAF-inducing stimuli, but neither were detected in response to the proliferative stimulus IL 2. Together, these results indicate that the hydrolysis of PI and the concomitant production of the putative second messengers DAG and IP are involved in signaling the production of lymphokines (MAF) by CTL. On the other hand, the failure of IL 2 to elicit a full-spectrum PI response suggests that signals mediating CTL proliferation may utilize an alternate and still undefined pathway.  相似文献   

6.
The effect of glucocorticoids on lymphokine production by T lymphocytes was examined by using long-term alloreactive T cell clones that secreted one or more of the lymphokines interleukin 2 (IL 2), interferon-gamma, macrophage-activating factor (MAF), and colony-stimulating factor when stimulated by an antigen or a mitogen. Production of all of these four lymphokines was inhibited when glucocorticoids were added at physiologic concentrations (10(-8) to 10(-6) M) to clones stimulated with concanavalin A (Con A). Clones were heterogeneous with respect to their sensitivity to glucocorticoid inhibition of MAF production; cytolytic clones were generally more resistant than noncytolytic clones. The glucocorticoid dexamethasone (Dex) and an IL 2-containing supernatant exerted opposing effects on clonal MAF production. Kinetics experiments showed that Dex inhibited MAF production by reducing the rate of secretion without causing a compensatory increase in the duration of secretion, whereas the IL 2 source increased the rate and the total amount of MAF secretion. Dex abrogated the effect of IL 2. Inhibition by Dex was apparent from the earliest time of detectable MAF production (about 4 hr after stimulation) and increased with longer exposure until production ceased (12 to 24 hr). Pre-exposure and removal of Dex before Con A stimulation also inhibited MAF release. Effects of Dex on lymphokine secretion by clones could be dissociated from effects on their growth in response to stimulator cells and IL 2. Factor production by the 16 clones tested was inhibited to some degree. Proliferation, however, by two of these clones (both cytolytic) was unaffected by Dex, whereas proliferation of two noncytolytic clones was strongly inhibited even in the presence of a saturating dose of IL 2.  相似文献   

7.
A helper factor (CHF) necessary for the generation of primary allospecific CTL using BALB/c (H-2d) responder spleen cell and x-irradiated RDM4 (H-2k) stimulator tumor cells was obtained from cultures of mouse spleen cells stimulated for the production of secondary anti-Sendai virus CTL and fractionated by gel filtration chromatography to obtain a 30,000 m.w. species (CHF30). DEAE-cellulose chromatography separated CHF activity from the majority of interleukin 1 (IL 1), interleukin 2 (IL 2), granulocyte-macrophage colony-stimulating factor (CSF), and interferon (IFN). Interleukin 3 (IL 3) and CHF co-eluted when this procedure was used. Reverse-phase high performance liquid chromatography (HPLC) of CHF30 with a variety of elution conditions allowed the separation of CHF activity from IL 1, IL 2, IL 3, CSF, and IFN. IL 3 and CSF in the CHF30 preparation were stable at 80 degrees C for more than an hour, whereas CHF activity decreased rapidly during the first 10 min of incubation. Trypsin treatment of the same material showed that CHF activity was resistant to digestion for 40 min, whereas IL 3 and CSF lost most of their activities during the first 5 min of incubation. These results indicate that CHF activity is mediated by molecules biologically and biochemically distinct from the well characterized cytokines.  相似文献   

8.
In this report we describe the precursor frequency and the subset distribution of peripheral blood human T cells producing lymphokine(s) acting on the proliferation and differentiation of bone marrow precursors of the granulocyte/macrophage series, as assessed in a liquid microculture assay. Because the sensitivity of this system was similar to that of the classic colony formation assay in semi-solid (methylcellulose) medium, it is likely that the lymphokine activity measured in this assay corresponds to the colony-stimulating factor (CSF) activity. Single human T lymphocytes, isolated from peripheral blood by E rosetting and Ficoll-Hypaque gradients, were seeded into microculture wells by limiting dilution or micromanipulation techniques and were incubated under culture conditions that allow clonal expansion of essentially all T cells. After 15 to 20 days, microcultures were stimulated with PHA and CSF activity was assayed in culture supernatants 24 hr thereafter. About 45% (1/2.3) of peripheral blood T cells were found to give rise to CSF-producing progenies. Moreover, when fluorescence-activated cell sorter-purified T4+ and T4- (or T8- and T8+) were analyzed, the frequency of the precursors of CSF-producing cells was 1/1.5 in the T4+ subset, whereas approximately one-third of the T8+ cells had this functional potential. To additionally characterize T cells responsible for CSF production, unfractionated T cells as well as T4+ and T4- cells were cloned by single cell micromanipulation. The resulting clones were analyzed simultaneously for the production of IL 2, production of CSF and for cytolytic activity in a lectin-dependent assay. It was found that 25/48 clones obtained from unfractionated T cells produced CSF, whereas 23/48 and 19/48 produced IL 2 or had cytolytic activity respectively. Six of the 25 CSF-producing clones had only this functional capability, whereas the remaining clones in addition displayed cytolytic activity (4/25), IL 2 production (10/25), or both (5/25). A similar functional heterogeneity was observed among T4+ and T4- clones, thus indicating that T cells producing CSF are functionally heterogeneous within both the T4+ and T8+ subsets.  相似文献   

9.
The regulatory mechanism of guinea pig lymphokines was investigated in regard to differentiation of myeloid cells to macrophages. The Ml-cell line, established from a myeloid leukemia of an SL-strain mouse, was induced to differentiate in vitro into mature macrophages possessing Fc receptors and the ability to phagocytize latex particles by treatment with crude lymphokines. Both concanavalin A- and antigen-induced lymphokines showed the differentiation-inducing factor (D factor) activity. However, macrophage migration inhibitory factor/ macrophage activation factor (MIF/MAF) purified by an immunoadsorbent column with anti-MIF antibody had no such an activity. The D-factor activity was detected in the lymphokine preparation that was not retained on the immunoadsorbent column. In contrast, colony-stimulating factor (CSF) was adsorbed to the immunoadsorbent column, and could be recovered in the purified MIF/MAF preparation. These findings suggest that the molecular entity of D factor is distinct from MIF/ MAF and CSF. A culture supernatant of guinea pig peritoneal macrophages activated with MIF/ MAF (CSF) exhibited strong D-factor activity. However, the supernatant possessed rather reduced CSF activity as compared to that of the original MIF/MAF (CSF) preparation. Thus, MIF/MAF may play an important role in macrophage differentiation by regulating the production of D factor or CSF from macrophages.  相似文献   

10.
The induction of cytotoxic T lymphocytes (CTL) from CTL precursors requires a combination of antigen and lymphokine signals. To investigate lymphokine requirements for CTL generation, we used an assay in which helper T cell and accessory cell-depleted spleen cells or whole thymocytes were cultured with lectin (Con A) and lymphokines. This culture was followed by assessment of lectin-dependent cytolysis. High concentrations of recombinant interleukin 2 (R-IL 2) (100 U/ml) alone were not sufficient for lectin-mediated CTL induction from thymocytes, whereas 20 to 100 U/ml of R-IL 2 alone could induce a significant lectin-mediated CTL response from accessory cell-depleted spleen cells. Using thymocytes as responders, we found purified or recombinant interferon-gamma (IFN-gamma) did not cause cytolytic activity either in the absence of or in the presence of R-IL 2. However, supernatant from Con A-stimulated rat spleen cells (rat Con A SN) in combination with R-IL 2 could induce cytolytic activity, suggesting that several factors are required for CTL induction. Con A SN was fractionated by gel filtration and the fractions were tested for ability to induce CTL. In the presence of a low level of R-IL 2 (5 U/ml), fractions with a Mr of approximately 31,000 could induce CTL, and this activity was referred to as CTL differentiation factor (CDF). The peak fractions containing CDF activity did not have detectable IL 1, IL 2, IFN-gamma, or CSF activity. However, by add-back experiments and the use of blocking antibodies, a monoclonal antibody against the IL 2 receptor or antibodies against murine IFN-gamma, we demonstrated that CTL induction from mature thymocytes (L3T4-, Lyt-2+) requires CDF activity in addition to IL 2 and IFN-gamma.  相似文献   

11.
The Mls-reactive murine helper T cell clone L2 produces at least 10 lymphokine activities affecting at least five distinct target cells. Culture conditions can be optimized to enable production of high levels of colony-stimulating factors (CSFs) by lectin stimulation of L2 cells under serum-free conditions. Selective enrichment of three lymphokine activities--interleukin 2, CSF, and interferon--can be achieved by using a combination of phenyl-Sepharose and hydroxyapatite chromatography. At least two types of CSF can be separated by concanavalin A-Sepharose chromatography. The CSF that does not bind to concanavalin A-Sepharose can be enriched to a specific activity of at least 5 X 10(8) U/mg of protein by using ion exchange high-pressure liquid chromatography.  相似文献   

12.
A hybridoma, F133, that produces macrophage activation factor (MAF) after mitogen stimulation was developed by fusing the AKR-derived BW5147 thymoma with alloantigen-stimulated C3H/HeJ splenocytes. F133 supernatants were shown to contain MAF, migration inhibition factor, and a factor capable of suppressing the plaque-forming response to sheep erythrocytes but not lymphotoxin, interleukin II, or interferon. Both concanavalin A (Con A) and phytohemagglutinin (PHA) induced MAF production by F133. Time course and dose-response experiments showed that maximal concentrations of MAF were present 48 hr after stimulation with either 1.5 μg/ml Con A or 6 μg/ml PHA. F133 and normal splenocyte MAF preparations shared physicochemical properties in that heating at 100 °C for 30 min abolished MAF activity while 56 °C for 30 min or 100 °C for 2 min had little effect. In addition, both MAF preparations were dependent on the presence of lipopolysaccharide for macrophage activation and each was inactivated by pH 4.0 or pH 10 treatment while pH 6.0 and pH 8.0 had little effect. Also, pretreatment of both MAF preparations with either trypsin or chymotrypsin inactivated MAF activity.  相似文献   

13.
Murine T-cell clones specific for chicken erythrocyte alloantigens   总被引:8,自引:0,他引:8  
We have established murine T-cell clones which respond to allotypic and species-specific determinants found on chicken erythrocytes (cRBC). Their relative antigen specificities were determined by assessing lymphokine production and proliferation in response to syngeneic spleen cells and cRBC obtained from chickens homozygous for major histocompatibility complex (MHC) antigens. The specificity pattern suggested that the T-cell clones recognized a more restricted set of cRBC MHC-associated allodeterminants than do antibody-producing cells. The antigen-specific responses required antigen processing, and were MHC restricted and antigen dose dependent. Approximately 20% of T-cell clones from appropriate strains of mice were also Mls alloreactive. This second reactivity showed no correlation with nominal cRBC specificity. The induction-specific lymphokine activities of T-cell growth factor, mast cell growth factor, and Ia induction factor were identified as interleukin 2 (IL-2), interleukin 3 (IL-3), and interferon-gamma respectively.  相似文献   

14.
We have studied the effects of recombinant mouse interleukin 4 (IL 4) (previously known as B cell stimulatory factor 1) on the antigen-presenting ability of murine splenic B cells and bone marrow macrophages. Our assay is based on the induction of antigen-presenting ability in these cells after incubation with IL 4 for 24 hr. The presenting cells were then used to stimulate IL 2 production by antigen-specific, I-Ad-restricted T cell hybridomas, a response mainly dependent on the induction of Ia antigens. Consistent with our previously published data using partially purified natural IL 4, we show here that recombinant IL 4 (but not interferon-gamma (IFN-gamma) or IL 1) induces antigen-presenting ability in B cells. Recombinant IL 4 was also found to induce antigen-presenting ability in a cloned, bone marrow derived-macrophage cell line (14M1.4), and in normal bone marrow-derived macrophages. These macrophage populations also respond to IFN-gamma showing enhanced antigen-presenting ability (mediated by increased Ia antigen expression). A small but significant increase in Ia antigen expression was also detected in 14M1.4 macrophages induced with IL 4. However, additional analysis suggested that the effect of IL 4 on 14M1.4 is different from that of IFN-gamma, because IL 4 (but not IFN-gamma) is able to maintain the viability and increase the size of and metabolic activity of bone marrow macrophages. However, IL 4 may not affect all macrophages because the macrophage cell line P388D1, which responds to IFN-gamma, failed to show enhanced antigen-presenting function after stimulation with IL 4. These observations indicate that IL 4, a lymphokine previously considered to be B cell lineage specific, has effects on macrophages and may be involved in their activation.  相似文献   

15.
Cloning of a human T cell leukemic cell line, HSB.2, was performed by a limiting dilution method to obtain clones with high levels of IL 2 production. None of the subclones that were obtained produced IL 2 constitutively, and only a low level of IL 2 was produced by the stimulation of these subclones with phytohemagglutinin (PHA) alone. High levels of IL 2 production (greater than 300 U/ml) were observed in several clones when stimulated with a cocktail of PHA and IL 1. Among them, HSB.2-A7-D2, A7-D9, or C5-B2 subclones, which were selected after cloning twice, were most effective in IL 1-dependent IL 2 production. HSB.2 subclones exhibited IL 1-dependent production of a variety of lymphokines other than IL 2, e.g., interferon-gamma (IFN-gamma), B cell growth factor (BCGF), and colony-stimulating factor (CSF). We observed that subclones with high IL 2-producing capacity tended to produce high levels of IFN-gamma or BCGF as well, while the capacity of CSF production was not parallel to these properties. Although several subclones were found to produce IFN-gamma and BCGF simultaneously with minimal IL 2 activity, no subclones with an exclusive BCGF production were obtained. Furthermore, when supernatants from the stimulated A7-D9 subclone were applied to an Ultro-gel AcA54 gel chromatography, it was revealed that IL 2 activity (m.w. 17K to 18K) and IFN-gamma (40K to 45K) were clearly separated, whereas two peaks of BCGF activity coincided with each peak of IL 2 and IFN-gamma, respectively. On the other hand, CSF activity was eluted at a different peak (30K to 35K). These data indicate that IL 2, IFN-gamma, and CSF activities are based on distinct molecules, whereas BCGF activities are indistinguishable from IL 2 and IFN-gamma. The HSB.2 subclones thus selected will provide a useful model for delineating the mechanism of IL 1-dependent lymphokine(s) production, and are a promising candidate for better lymphokine(s) producers.  相似文献   

16.
T cell induction of membrane IL 1 on macrophages   总被引:6,自引:0,他引:6  
We have studied the role of T cells in the induction of a membrane-associated form of interleukin 1 (mIL 1) in murine macrophages. T helper cell clones and a T cell hybridoma induced macrophages to express mIL 1 after an antigen-specific, Ia-restricted interaction. Induction of mIL 1 was proportional to antigen concentration and was increased in the early course of the response in macrophages pretreated in culture with interferon-gamma. mIL 1 activity was detectable 4 hr after interaction with T cells. mIL 1 induction was inhibited by antibodies to either class II molecules or the T cell receptor. Two pathways of T cell-mediated mIL 1 induction could be defined. In the first, T cells, whose protein synthesizing capacity was completely eliminated by pretreatment with the irreversible protein synthesis inhibitor emetine, induced levels of mIL 1 expression indistinguishable from controls. In the second, T cells stimulated by paraformaldehyde-fixed macrophages in the presence of concanavalin A or antigen secreted a soluble factor that induced macrophage mIL 1 expression. Thus, it appears that T cells may induce macrophages to express mIL 1 both by direct cell-cell contact mediated through binding of T cell receptor to the Ia/antigen complex, and through the release of a lymphokine after activation. This lymphokine does not appear to be IL 2, IFN-gamma, BSF-1, or CSF-1.  相似文献   

17.
The effects of cyclosporin A (CyA) on the activation processes of cloned murine cytotoxic T lymphocytes (CTL) have been examined. With the use of Day 7 resting cloned CTL it was possible to separate the functions of lymphokine production (macrophage-activating factor, MAF) and interleukin 2 (IL-2)-induced proliferation of these cells. The effect of CyA on each of these activities was analyzed independently. CyA was found to inhibit both receptor-mediated MAF production in response to stimulation with antigen and lectin and MAF production in response to non-receptor-mediated stimulation (by anti-Thy-1 antibodies, ionophore, and phorbol ester). Further, CyA was observed to inhibit the re-entry of these resting CTL into the cell cycle upon stimulation with IL-2. The effect of CyA on MAF production did not appear to be due to inhibition of the signal-transducing mechanism involved in this process (i.e., inositol lipid hydrolysis, calcium mobilization, and protein phosphorylation). The action of CyA on the IL-2-induced proliferation was not due to inhibition of IL-2 receptor expression or the binding of IL-2 to its receptor. Thus, CyA appeared to mediate its suppressive effects on MAF production and IL-2-induced proliferation through an action on some later step(s) in the signal pathways of these activities.  相似文献   

18.
Cloned murine helper T lymphocytes (HTL) reactive to alloantigen or to ovalbumin (OVA) become unresponsive to antigenic restimulation after exposure to antigen or to culture supernatant fluids (SF) containing multiple lymphokine activities. Unresponsiveness is manifest by a failure of antigen-stimulated cells to incorporate thymidine or to produce lymphokines after antigenic challenge. Antigen-unresponsive HTL, however, will incorporate thymidine when exposed to an exogenous source of interleukin 2 (IL 2). The duration of unresponsiveness to antigen is correlated with the concentration of IL 2 in SF to which the cloned HTL had been exposed. Chromatographic fractionation of IL 2-containing supernatant from EL-4 thymoma cells (EL-4 SF) yielded a pool of SF that was enriched for IL 2 activity. Exposure of HTL to lymphokines contained in this pool induced unresponsiveness to antigen that was comparable to that observed when HTL were exposed to unfractionated EL-4 SF. Unresponsiveness to antigen also developed after cloned HTL were stimulated with concanavalin A (Con A) or with OVA and syngeneic splenic filler cells. We have used monoclonal antibody (mAb) GK1.5 (anti-L3T4) to investigate the role of lymphokine production in the induction of unresponsiveness. This antibody did not inhibit IL 2-induced thymidine incorporation by cloned HTL, and did not inhibit the induction of unresponsiveness after exposure of cloned HTL to EL-4 SF. In the presence of mAb GK1.5, however, HTL that were stimulated with Con A or OVA did not become unresponsive to antigenic restimulation, an effect that was overcome by the addition of EL-4 SF. These results suggest that HTL become unresponsive to antigen after exposure to IL 2-containing SF, and that stimulation by antigen or Con A can induce the unresponsive state by virtue of stimulating lymphokine production.  相似文献   

19.
Reversible inhibitors of protein synthesis, cycloheximide and puromycin, and an irreversible inhibitor of RNA synthesis, actinomycin D, were employed to study the kinetics and types of macromolecular synthetic events required for the production of migration inhibitory factor (MIF) and macrophage activating factor (MAF) by Con A-stimulated lymphocytes. Reversible inhibition of protein synthesis during the first 2 hr of stimulation completely inhibited MIF and MAF production. The same treatment, performed 4 hr after the beginning of the stimulation, had no effect. When the inhibitors of protein synthesis were left in the cultures, a block of lymphokine production was observed when the drugs were added at 6 hr as well as at time 0. In contrast, irreversible inhibition of RNA synthesis at 6 hr was ineffective and only treatment at the beginning of culture blocked lymphokine production. These data suggest that a critical protein is synthesized during the first few hours of stimulation, which is required for subsequent production of lymphokines. After this special early requirement, however, continued protein synthesis is needed for lymphokine production. In contrast, the RNA required for MIF and MAF production seemed to be completely synthesized within 4 to 6 hr of stimulation. The possibility that suppressor macrophages inhibit lymphokine production via modulation of macromolecular synthesis is discussed.  相似文献   

20.
J Le  J Vilcek 《Cellular immunology》1984,85(1):278-283
Purified natural and recombinant human immune interferon (IFN-gamma) were found to activate human monocytes from peripheral blood to exert enhanced cytotoxicity against human colon adenocarcinoma HT-29 cells. A marked monocyte activation was observed at low concentrations (1 and 10 U/ml) of IFN-gamma. Marked monocyte activation was also obtained with two lymphokine preparations, produced in peripheral blood mononuclear cell (PBM) cultures induced with phytohemagglutinin (PHA) or by combined stimulation with PHA and 12-O-tetradecanoylphorbol 13-acetate (TPA). The component responsible for macrophage activation in such lymphokine preparations in the past was considered to be "macrophage-activating factor" (MAF). When monoclonal antibody specifically neutralizing IFN-gamma was added to these lymphokine preparations, all MAF activity disappeared, indicating that IFN-gamma is the sole protein showing MAF activity in these preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号