首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Summary Intestinal epithelial cells (IEC) have previously been shown to produce several cytokines including interleukin-6 (IL-6). However, many factors which may regulate IL-6 secretion by human IEC still remain a mystery due in part to the lack of appropriate model cell lines and the difficulty of culturing human IEC over long periods of time. We have determined that the human colonic carcinoma cell line Caco-2 is capable of secreting IL-6 when stimulated by the inflammatory cytokines IL-1β or tumor necrosis factor-α (TNF-α), and stimulation of these cells with IL-1β plus TNF-α induced a synergistic enhancement of IL-6 secretion. The inflammatory cytokine-induced enhancement in IL-6 secretion was greatest when the cells were cultured in a 10% CO2 atmosphere as compared to cells grown in 5% CO2, suggesting that environmental CO2 levels may affect IEC cytokine secretion. Finally, long-term culture of the Caco-2 cells to induce cellular differentiation had no effect on the capacity of these cells to produce IL-6, indicating that the regulation of IL-6 secretion was not affected by differentiation. Taken together, these studies provide important information on the factors which regulate IL-6 secretion by human IEC as they may contribute to the cytokine network during a mucosal inflammation. The results also suggest that the Caco-2 cell line is an appropriate model for further studies on the regulation of cytokine secretion by human IEC.  相似文献   

2.
Human intestinal Caco-2 cells were cultured under serum-free conditions on an insoluble collagen and FCS matrix (Caco-2-SF), and a comparison was made between several characteristics of Caco-2 and Caco-2-SF cells. Their morphological appearance was identical. Slight differences were found in cell growth and expression of brush border enzymes between Caco-2 and Caco-2-SF cells. Similar levels of activity of Gly-Gly transport were expressed in both types of cell. Caco-2 cells cultured on permeable filters showed high transepithelial electrical resistance (TEER), indicating the high monolayer integrity. The transepithelial transport activity for glucose, alanine and Gly-Gly was detected by measuring the change in short-circuit current (Isc) after adding each of these nutrients to the apical chamber. In Caco-2-SF cells, such parameters as TEER and Isc were reduced drastically, suggesting that the monolayer integrity and cell polarity that are important for transepithelial transport were not attained. These parameters, however, could be restored by adding FCS or by milk whey. The result suggested that FCS and milk whey contain factors which regulate the formation of the tight junctions and, consequently, the development of cell polarity. Thus the Caco-2-SF cell-culture system will provide a useful model for studying factors which regulate the intestinal transepithelial transport functions.Abbreviations BCECF 2,7-bis(carboxyethyl)-5(6)-carboxyfluorescein - TEER transepithelial electrical resistance - LY lucifer yellow CH lithium salt  相似文献   

3.
Summary Human buccal epithelial cells have been reared from explants maintained in supplemented MCDB 153 medium. Primary epithelial outgrowths show typical structural features and uniformly express keratins; subunit analyses demonstrate expression of keratins 5, 6, 14, 16/17, and 19. The cells exhibit up to 6% colony forming efficiency and divide at about 0.8 population doublings per day on fibronectin/collagen-coated dishes at clonal density. Studies of markers of proliferation and differentiation in buccal epithelial cells indicate that epidermal growth factor, cholera toxin, retinoic acid, and pituitary extract each exhibit a distinctive ability to enhance growth and variably affect cell migration and cell surface area. Transforming growth factorβ-1 inhibits growth and increases surface area without affecting migration, involucrin expression, and cross-linked envelope formation. Moreover, exposure of cells to fetal bovine serum, the tumor promoting agent 12-O-tetradecanoylphorbol-13-acetate or an elevated Ca2+ concentration (from 0.1 to 1 mM) inhibits growth and induces squamous differentiation as indicated by inhibition of migration, increases in surface area, involucrin expression, or formation of cross-linked envelopes. The results show that epithelial cells can be reproducibly derived from explant cultures of human buccal mucosa specimens and the cells transferred under serum-free conditions. Buccal epithelial cells in culture undergo a pattern of growth and differentiation that mimics parakeratinization in vivo and variably respond to several agents shown to modulate growth of cells that originate from other types of epithelia. This work was supported in part by grants from the Swedish National Board of Laboratory Animals, the Swedish Medical Research Council, the Swedish Natural Science Research Council, the Swedish Fund for Scientific Research Without Animal Experiments, the Swedish Cancer Society, the Swedish Tobacco Company, and Lions Club International, Djurg?rden, Stockholm, Sweden.  相似文献   

4.
5.
6.
The human intestinal Caco-2 cell line has been extensively used over the last twenty years as a model of the intestinal barrier. The parental cell line, originally obtained from a human colon adenocarcinoma, undergoes in culture a process of spontaneous differentiation that leads to the formation of a monolayer of cells, expressing several morphological and functional characteristics of the mature enterocyte. Culture-related conditions were shown to influence the expression of these characteristics, in part due to the intrinsic heterogeneity of the parental cell line, leading to selection of sub-populations of cells becoming prominent in the culture. In addition, several clonal cell lines have been isolated from the parental line, exhibiting in general a more homogeneous expression of differentiation traits, while not always expressing all characteristics of the parental line. Culture-related conditions, as well as the different Caco-2 cell lines utilized in different laboratories, often make it extremely difficult to compare results in the literature. This review is aimed at summarizing recent, or previously unreviewed, data from the literature on the effects of culture-related factors and the influence of line sub-types (parental vs. different clonal lines) on the expression of differentiation traits important for the use of Caco-2 cells as a model of the absorptive and defensive properties of the intestinal mucosa. Since the use of Caco-2 cells has grown exponentially in recent years, it is particularly important to highlight these methodological aspects in order to promote the standardization and optimisation of this intestinal model.  相似文献   

7.
Mucin expression was studied during proliferation and differentiation of the enterocyte-like Caco-2 and goblet cell-like LS174T cell lines. Caco-2 cells express mRNAs of MUC1, MUC3, MUC4 and MUC5A/C whereas MUC2 and MUC6 mRNAs are virtually absent. Furthermore, MUC3 mRNA is expressed in a differentiation dependent manner, as is the case for enterocytes. Concomitantly MUC3 protein precursor (550 kDa) was detected in Caco-2 cells. In LS174T cells mucin mRNAs of MUC1, MUC2 and MUC6 are constitutively expressed at high levels, whereas MUC3, MUC4 and MUC5A/C mRNAs are present at low levels. At the protein level LS174T cells express the goblet cell specific mucin protein precursors MUC2, MUC5A/C and MUC6 with apparent molecular masses of about 600 kDa, 470/500 kDa and 400 kDa respectively. MUC3 protein is not detectable. Furthermore, human gallbladder mucin protein (470 kDa precursor), of which the gene has not yet been identified, is expressed in LS174T cells. In addition, synthesis and secretion of the goblet cell specific mature MUC2, MUC5A/C and human gallbladder mucin was demonstrated in LS174T cells. It is concluded that Caco-2 and LS174T cell lines provide excellentin vitro models to elucidate the cell-type specific mechanisms responsible for mucin expression.Abbreviations SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis - DMEM Dulbecco's modified Eagle's medium - EMEM Eagle's minimum essential medium - Endo-H endo--N-acetylglucosaminidase H - HGBM human gallbladder mucin - dpc days past confluence - PBS phosphate buffered saline  相似文献   

8.
The gastrointestinal tract remains the most popular and acceptable route of administration for drugs. It offers the great advantage of convenience and many compounds are well absorbed and thereby provide acceptable plasma concentration-time profiles. Currently there is considerable interest from the pharmaceutical industry in development of cell culture systems that would mimic the intestinal mucosa in order to evaluate strategies for investigating and/or enhancing drug absorption. The intestinal epithelial cells of primary interest, from the standpoint of drug absorption and metabolism, are the villus cells, which are fully differentiated cells. Anin vitro cell culture system consisting of a monolayer of viable, polarized and fully differentiated villus cells, similar to that found in the small intestine, would be a valuable tool in the study of drug and nutrient transport and metabolism.The Caco-2 cell line, which exhibits a well-differentiated brush border on the apical surface and tight junctions, and expresses typical small-intestinal microvillus hydrolases and nutrient transporters, has proven to be the most popularin vitro model (a) to rapidly assess the cellular permeability of potential drug candidates, (b) to elucidate pathways of drug transport (e.g., passive versus carrier mediated), (c) to assess formulation strategies designed to enhance membrane permeability, (d) to determine the optimal physicochemical characteristics for passive diffusion of drugs, and (e) to assess potential toxic effects of drug candidates or formulation components on this biological barrier. Since differentiated Caco-2 cells express various cytochrome P450 isoforms and phase II enzymes such as UDP-glucuronosyltransferases, sulfotransferases and glutathione-S-transferases, this model could also allow the study of presystemic drug metabolism.  相似文献   

9.
The present studyexamined the intestinal uptake of thiamine (vitaminB1) using the human-derivedintestinal epithelial cells Caco-2 as an in vitro model system.Thiamine uptake was found to be 1)temperature and energy dependent and occurred with minimal metabolicalteration; 2) pH sensitive;3)Na+ independent;4) saturable as a function ofconcentration with an apparent Michaelis-Menten constant of 3.18 ± 0.56 µM and maximal velocity of 13.37 ± 0.94 pmol · mgprotein1 · 3 min1;5) inhibited by the thiaminestructural analogs amprolium and oxythiamine, but not by unrelatedorganic cations tetraethylammonium, N-methylnicotinamide, and choline; and6) inhibited in a competitive mannerby amiloride with an inhibition constant of 0.2 mM. The role ofspecific protein kinase-mediated pathways in the regulation of thiamineuptake by Caco-2 cells was also examined using specific modulators ofthese pathways. The results showed possible involvement of aCa2+/calmodulin (CaM)-mediatedpathway in the regulation of thiamine uptake. No role for proteinkinase C- and protein tyrosine kinase-mediated pathways in theregulation of thiamine uptake was evident. These results demonstratethe involvement of a carrier-mediated system for thiamine uptake byCaco-2 intestinal epithelial cells. This system isNa+ independent and is differentfrom the transport systems of organic cations. Furthermore, aCaM-mediated pathway appears to play a role in regulating thiamineuptake in these cells.

  相似文献   

10.
The aim of the presentstudy was to examine the kinetic characteristics of theL-3,4-dihydroxyphenylalanine (L-DOPA)transporter and the fate of newly formed dopamine in Caco-2 cells. Inthe presence of 50 µM benserazide (an inhibitor of aromaticL-amino acid decarboxylase), L-DOPA was rapidlyaccumulated in Caco-2 cells. At equilibrium (30 min of incubation) theintracellular L-DOPA concentration was 10.2 ± 0.1 µM ata medium concentration of 0.5 µM. In saturation experiments theaccumulation of L-DOPA was saturable with aMichaelis-Menten constant (Km) of 60 ± 10 µMand a maximal reaction velocity (Vmax) of 6.6 ± 0.3 nmol · mg protein1 · 6 min1; at 4°C the amount of L-DOPAaccumulated in the cells was nonsaturable. When cells were incubatedwith increasing concentrations of L-DOPA (10-100 µM)in the absence of benserazide, a substantial amount of theL-DOPA that was taken up was decarboxylated to dopamine, with an apparent Km of 27.2 µM. In experimentsperformed in cells cultured in polycarbonate filters, theaccumulation of L-DOPA in the presence of benserazide wasgreater when the substrate was applied from the basolateral cell borderthan when it was applied from the apical cell border. In the absence ofbenserazide, L-DOPA applied from the basolateral cellborder resulted in a nonlinear formation of dopamine(Km = 43 ± 7 µM,Vmax = 23.7 ± 1.2 nmol · mgprotein1 · 6 min1). Theamount of dopamine leaving the cell through the apical cell border waslower than the amount that escaped through the basolateral cell border,and the process was saturable (Km = 623 ± 238 µM, Vmax = 0.19 ± 0.02 nmol · mgprotein1 · 6 min1). Inconclusion, the data presented here show that Caco-2 cells are endowedwith an efficient L-DOPA uptake system, and intracellular L-DOPA was found to be rapidly converted to dopamine, someof which diffuses out of the cell. The utilization of Caco-2 cells cultured on polycarbonate filters probably provides a better way tolook at processes such as the outward transfer of intracellular molecules, namely, the outward transfer of newly formed dopamine.

  相似文献   

11.
Transport of bile acids in a human intestinal epithelial cell line, Caco-2   总被引:8,自引:0,他引:8  
The transport of taurocholic acid (TA) across Caco-2 cell monolayers was dependent on time in culture and reached a plateau after 28 days, at which time the apical (AP)-to-basolateral (BL) transport was 10-times greater than BL-to-AP transport. The amounts of TA inside the cells following application of 10 nM [14C]TA to the AP or BL side of the monolayers (30 min) were approximately equal (54.4 +/- 2.7 and 64.6 +/- 2.8 fmol/mg protein, respectively). AP-to-BL transport of TA was saturable and temperature-dependent. Vmax and Km for transport were 13.7 pmol/mg protein per min and 49.7 microM, respectively. The transport of TA had an activation energy of 13.2 kcal.mol-1, required Na+ and glucose. AP-to-BL transport of [14C]TA was inhibited by the co-administration (on the AP side) of either unlabeled TA or deoxycholate, but it was not reduced by the presence of unlabeled TA on the BL side.  相似文献   

12.
Cellular differentiation in the gut is vital in maintaining the cellular and functional specialization of the epithelial layer. MicroRNAs (miRNAs) have recently emerged as one of the key players in orchestrating the differentiation process in the gut. Using the spontaneously differentiating Caco-2 cell line, we observed an increased expression of miR-146a but not miR-146b in the course of differentiation. Bioinformatic analyses revealed that the membrane type matrix metalloprotease 16 (MMP16, MT3-MMP) was a predicted target of miR-146a and a decrease in the mRNA and protein expression of MMP16 was observed in the course of differentiation. Transfection of a luciferase reporter vector containing the 3'UTR of MMP16 showed decreased luciferase activity due to miR-146a expression. With forced expression of miR-146a in undifferentiated Caco-2 cells, a decrease in the mRNA and protein levels of MMP16 and a lower gelatinase activity in a gelatin zymogram were observed. Additionally, forced expression of miR-146a in HT-29 colon cancer cells also resulted in decreased expression of MMP16, along with a decrease in the invasion through Matrigel. Taken together, we have shown here that MMP16 is regulated by miR-146a in spontaneously differentiated Caco-2 cells. As MMP16 activates the zymogen of MMP2, which is known to degrade extracellular matrix proteins, the regulation of MMP16 by miR-146a may account, at least in part, for lower motility of well-differentiated cells.  相似文献   

13.
The expression of peroxisome proliferator-activated receptors alpha (PPARalpha) and gamma (PPARgamma) was studied in the human adenocarcinoma Caco-2 cells induced to differentiate by long term culture (15 days). The differentiation of Caco-2 cells was attested by increases in the activities of sucrase-isomaltase and alkaline phosphatase (two brush border enzymes), fatty acyl-CoA oxidase (AOX) and catalase (two peroxisomal enzymes), by an elevation in the protein levels of villin (a brush border molecular marker), AOX, peroxisomal bifunctional enzyme (PBE), catalase and peroxisomal membrane protein of 70 kDa (PMP70). and by the appearance of peroxisomes. The expression of PPARalpha and PPARgamma was investigated by Western blotting, immunocytochemistry, Northern blotting and S1 nuclease protection assay during the differentiation of Caco-2 cells. The protein levels of PPARalpha, PPARgamma, and PPARgamma2 increased gradually during the time-course of Caco-2 cell differentiation. Immunocytochemistry revealed that PPARalpha and gamma were localized in cell nuclei. The PPARgamma1 protein was encoded by PPARgamma3 mRNA because no signal was obtained for PPARgamma1 mRNA using a specific probe in S1 nuclease protection assay. The amount of PPARgamma3 mRNA increased concomitantly to the resulting PPARgamma1 protein. On the other hand, the mRNA of PPARalpha and PPARgamma2 were not significantly changed, suggesting that the increase in their respective protein was due to an elevation of the translational rate. The role played by the PPAR subtypes in Caco-2 cell differentiation is discussed.  相似文献   

14.
Temporal variations in the expression of the ras oncogene, and its protein product, were investigated during hexamethylene bisacetamide (HMBA)-induced differentiation of murine erythroleukaemic (MEL) cells. We highlight the fact that when comparisons were made between untreated, proliferating cells and HMBA-treated, differentiating cells using only one time-point, differences, both for the expression of the gene and the protein, were in most cases insignificant; standard deviations were high and the interpretation could be made that HMBA had little effect. Such interpretation fails to take account of the dynamic nature of the system, with single time-point studies giving incomplete information, which can be misleading. Multiple time analyses showed clearly that rhythmic patterns of expression were modulated by the differentiating agent. Time-dependent changes in the expression of mRNA specific to H- ras and N- ras, as well as in the expression of the Ras protein, when measured over periods of minutes or hours, were apparent. HMBA affected frequency and phasing of the rhythms. Regulation of the dynamics in this way may be crucial to the control of cell function and transformation.  相似文献   

15.
16.
Lenaerts K  Mariman E  Bouwman F  Renes J 《Proteomics》2006,6(8):2454-2464
Glutamine is an essential amino acid for the enterocytes with respect to maintaining the gut mucosal integrity and function. This study was conducted to explore a molecular basis for the beneficial effects of glutamine on intestinal cells by searching for glutamine-dependent changes in the proteome. Caco-2 cells were exposed to different concentrations of L-glutamine with or without L-methionine sulfoximine, an inhibitor of the glutamine synthetase activity. 2-DE combined with MALDI-TOF-MS was used to identify proteins whose expression is changed by glutamine. To assess the relative protein synthesis rate, incorporation of L-[2H5]glutamine into individual proteins was monitored. The expression levels of 14 proteins changed significantly with the glutamine availability. Examples of differentially expressed proteins with potential health-promoting effects on the intestine are plasma retinol-binding protein, ornithine aminotransferase, apolipoprotein A-I, mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase, and acyl-CoA synthetase 5. Expression of these proteins was not changed by arginine deprivation. The differential change in the expression levels of the proteins was not correlated with their rate of synthesis, excluding an effect of glutamine depletion on general protein synthesis. Together, this study shows a gene-specific effect of glutamine on intestinal cells.  相似文献   

17.
In human Caco-2 intestinal epithelial layers, xxxl-alanine absorption can be energized by a proton gradient across the brush-border membrane. Acidification of the apical medium, even in Na+-free media, is associated with a saturable net transepithelial absorption of xxxl-alanine. xxxl-Alanine transport causes cytosolic acidification consistent with proton/amino acid symport. xxxl-Alanine transport in Na+-free media is rheogenic, stimulating an inward short-circuit current in voltageclamped epithelial monolayers. By measurement of rapid xxxl-alanine influx across the apical membrane, xxxl-alanine-stimulated inward short-circuit current and intracellular acidification in the same cell batch, we estimate xxxl-alanine/proton stoichiometry to be 10.62 ±0.25 (xxxsd) (short-circuit current) or 10.73 ±0.19 (intracellular acidification). From competition studies, it is likely that xxxl-proline, -aminoisobutyric acid, and -alanine, but not xxxl-valine and xxxl-serine, are substrates for protonlinked, substrate transport in the brush border of Caco-2 cells.This study was supported by the Wellcome Trust (to D.T.T. and N.L.S.) and the LINK Programme in Selective Drug Delivery and Targeting (funded by the SERC/MRC/DTI and Industry). Charlotte Ward gave excellent technical assistance.  相似文献   

18.
GLUT12 was cloned from the mammary cancer cell line MCF-7, but its physiological role still needs to be elucidated. To gain more knowledge of GLUT12 function in the intestine, we investigated GLUT12 subcellular localization in the small intestine and its regulation by sugars, hormones, and intracellular mediators in Caco-2 cells and mice. Immunohistochemical methods were used to determine GLUT12 subcellular localization in human and murine small intestine. Brush border membrane vesicles were isolated for western blot analyses. Functional studies were performed in Caco-2 cells by measuring α-methyl-d -glucose (αMG) uptake in the absence of sodium. GLUT12 is located in the apical cytoplasm, below the brush border membrane, and in the perinuclear region of murine and human enterocytes. In Caco-2 cells, GLUT12 translocation to the apical membrane and α-methyl- d -glucose uptake by the transporter are stimulated by protons, glucose, insulin, tumor necrosis factor-α (TNF-α), protein kinase C, and AMP-activated protein kinase. In contrast, hypoxia decreases GLUT12 expression in the apical membrane. Upregulation of TNF-α and hypoxia-inducible factor-1α ( HIF-1α) genes is found in the jejunal mucosa of diet-induced obese mice. In these animals, GLUT12 expression in the brush border membrane is slightly decreased compared with lean animals. Moreover, an intraperitoneal injection of insulin does not induce GLUT12 translocation to the membrane, as it occurs in lean animals. GLUT12 rapid translocation to the enterocytes’ apical membrane in response to glucose and insulin could be related to GLUT12 participation in sugar absorption during postprandial periods. In obesity, in which insulin sensitivity is reduced, the contribution of GLUT12 to sugar absorption is affected.  相似文献   

19.
AIMS: Detect the cytotoxic effects of the Enterohemolysin from enteropathogenic Escherichia coli C3888 (O 26: H-) on Caco 2 and HT-29-human epithelial intestinal cells. METHODS AND RESULTS: The Caco 2 and HT-29 cells, which were treated with Enterohemolysin (EHly) within 10-15 min, became round, lost attachment to substrate, showed extensive surface blebbing, nucleus shrank, and the chromatin became more compact. After 10 min of exposure to the EHly, the cells showed lactate dehydrogenase (LDH) leakage and reduction of mitochondrial activity. The cells showed disorganization of the actin fibers at 15 min. The death of these human epithelial intestinal cells by apoptosis was confirmed by annexin V. CONCLUSIONS: Enterohemolysin induced apoptosis on human epithelial intestinal cells. SIGNIFICANCE AND IMPACT OF THE STUDY: The finding of EHly cytotoxic activity suggests the involvement of this hemolysin in the (Enteropathogenic Escherichia coli) EPEC infection mechanism and may facilitate the understanding of the diarrhea caused by EPEC.  相似文献   

20.
We studied the sorting and surface delivery of three apical and three basolateral proteins in the polarized epithelial cell line Caco-2, using pulse-chase radiolabeling and surface domain-selective biotinylation (Le Bivic, A., F. X. Real, and E. Rodriguez-Boulan. 1989. Proc. Natl. Acad. Sci. USA. 86:9313-9317). While the basolateral proteins (antigen 525, HLA-I, and transferrin receptor) were targeted directly and efficiently to the basolateral membrane, the apical markers (sucrase-isomaltase [SI], aminopeptidase N [APN], and alkaline phosphatase [ALP]) reached the apical membrane by different routes. The large majority (80%) of newly synthesized ALP was directly targeted to the apical surface and the missorted basolateral pool was very inefficiently transcytosed. SI was more efficiently targeted to the apical membrane (greater than 90%) but, in contrast to ALP, the missorted basolateral pool was rapidly transcytosed. Surprisingly, a distinct peak of APN was detected on the basolateral domain before its accumulation in the apical membrane; this transient basolateral pool (at least 60-70% of the enzyme reaching the apical surface, as measured by continuous basal addition of antibodies) was efficiently transcytosed. In contrast with their transient basolateral expression, apical proteins were more stably localized on the apical surface, apparently because of their low endocytic capability in this membrane. Thus, compared with two other well-characterized epithelial models, MDCK cells and the hepatocyte, Caco-2 cells have an intermediate sorting phenotype, with apical proteins using both direct and indirect pathways, and basolateral proteins using only direct pathways, during biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号