首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A 15.2-kDa polypeptide, encoded by the nuclear gene PETO, was identified as a novel cytochrome b(6)f subunit in Chlamydomonas reinhardtii. The PETO gene product is a bona fide subunit, subunit V, of the cytochrome b(6)f complex, because (i) it copurifies with the other cytochrome b(6)f subunits in the early stages of the purification procedure, (ii) it is deficient in cytochrome b(6)f mutants accumulating little of the complex, and (iii) it colocalizes with cytochrome f, which migrates between stacked and unstacked membrane regions upon state transition. Sequence analysis and biochemical characterization of subunit V shows that it has a one transmembrane alpha-helix topology with two large hydrophilic domains extending on the stromal and lumenal side of the thylakoid membranes, with a lumenal location of the N terminus. Subunit V is reversibly phosphorylated upon state transition, a unique feature that, together with its topological organization, points to the possible role of subunit V in signal transduction during redox-controlled short term and long term adaptation of the photosynthetic apparatus in eukaryotes.  相似文献   

2.
3.
The cytochrome b(6)f (Cyt b(6)f) complex in flowering plants contains nine conserved subunits, of which three, PetG, PetL, and PetN, are bitopic plastid-encoded low-molecular-weight proteins of largely unknown function. Homoplastomic knockout lines of the three genes have been generated in tobacco (Nicotiana tabacum 'Petit Havana') to analyze and compare their roles in assembly and stability of the complex. Deletion of petG or petN caused a bleached phenotype and loss of photosynthetic electron transport and photoautotrophy. Levels of all subunits that constitute the Cyt b(6)f complex were faintly detectable, indicating that both proteins are essential for the stability of the membrane complex. In contrast, DeltapetL plants accumulate about 50% of other Cyt b(6)f subunits, appear green, and grow photoautotrophically. However, DeltapetL plants show increased light sensitivity as compared to wild type. Assembly studies revealed that PetL is primarily required for proper conformation of the Rieske protein, leading to stability and formation of dimeric Cyt b(6)f complexes. Unlike wild type, phosphorylation levels of the outer antenna of photosystem II (PSII) are significantly decreased under state II conditions, although the plastoquinone pool is largely reduced in DeltapetL, as revealed by measurements of PSI and PSII redox states. This confirms the sensory role of the Cyt b(6)f complex in activation of the corresponding kinase. The reduced light-harvesting complex II phosphorylation did not affect state transition and association of light-harvesting complex II to PSI under state II conditions. Ferredoxin-dependent plastoquinone reduction, which functions in cyclic electron transport around PSI in vivo, was not impaired in DeltapetL.  相似文献   

4.
Cytochrome b6-f complexes have been isolated from Chlamydomonas reinhardtii, Dunaliella saline and Scenedesmus obliquus. Each complex is essentially free of chlorophyll and carotenoids and contains cytochrome b6 and cytochrome f hemes in a 2:1 molar ratio. C. reinhardtii and S. obliquus complexes contain the Rieske iron-sulfur protein (present in approx 1:1 molar ratio to cytochrome f) and each catalyzes a DBMIB- and DNP-INT-sensitive electron transfer from duroquinol to spinach plastocyanin. Immunological assays using antibodies to the peptides from the spinach cytochrome complex show varying cross-reactivity patterns except for the complete absence of binding to the Rieske proteins in any of the three complexes, suggesting little structural similarity between the Rieske proteins of algae with those from higher plants. One complex (D. salina) has been uniformly labeled by growth in NaH14CO3 to determine stoichiometries of constituent polypeptide subunits. Results from these studies indicate that all functionally active cytochrome b6-f complexes contain four subunits which occur in equimolar amounts.  相似文献   

5.
6.
R Kuras  F A Wollman 《The EMBO journal》1994,13(5):1019-1027
As an approach to the study of the biogenesis of the cytochrome b6/f complex, we characterized the behaviour of its constitutive subunits in mutant strains of Chlamydomonas reinhardtii bearing well-defined mutations. To this end, we have constructed three deletion mutant strains, each lacking one of the major chloroplast pet genes: the delta petA, delta petB and delta petD strains were unable to synthesize cyt f, cyt b6 and subunit IV (suIV) respectively. Western blotting analysis, pulse-labelling and pulse-chase experiments allowed us to compare the cellular accumulation, the rates of synthesis and the turnover of the cyt b6/f subunits remaining in the various strains. We show that the rates of synthesis of cyt b6 and suIV are independent of the presence of the other subunits of the complex but that their stabilization in the thylakoid membranes is a concerted process, with a marked dependence of suIV stability on the presence of cyt b6. In contrast, mature cyt f was stable in the absence of either suIV or cyt b6 but its rate of synthesis was severely decreased in these conditions. We conclude that the stoichiometric accumulation of the chloroplast-encoded subunits of the cyt b6/f complex results from two regulation processes: a post-translational regulation leading to the proteolytic disposal of unassembled cyt b6 and suIV and a co-translational (or early post-translational) regulation which ensures the production of cyt f next to its site of assembly.  相似文献   

7.
The nearest-neighbor relationship among the constituent polypeptides of the isolated plastoquinol-plastocyanin oxidoreductase from spinach chloroplasts has been investigated. (1) The isolated plastoquinol-plastocyanin oxidoreductase (the b6/f complex) is treated with various concentrations of the cross-linker glutaraldehyde. The treated b6/f complexes are then analyzed by SDS-polyacrylamide gel electrophoresis coupled with the immunodecoration of cross-link products by specific antibodies for each of the four prominent constituent polypeptides. Cytochrome b6 is found to be most resistant to forming any intermolecular cross-link products. At low concentrations of glutaraldehyde, the 'Rieske' iron-sulfur (Fe-S) protein and subunit IV of the b6/f complex, however, appear to form cross-link products with a relative molecular weight of 35 000. Dimers of cytochrome f and cytochrome f/Rieske protein cross-link products can also be detected. (2) When a Rieske Fe-S protein-depleted b6/f complex is used in place of the control b6/f complex, cytochrome b6 is less resistant to intermolecular cross-linking, while subunit IV does not form any 35 kDa cross-link product, unlike the case in control b6/f complex. Subunit IV is concluded to be closely associated with the Rieske Fe-S protein. This provides evidence that subunit IV is a bona fide component of the cytochrome b6/f complex, although no function can yet be assigned to it. The results are discussed in relationship to the spatial and functional relationships among the components of the b6/f complex.  相似文献   

8.
The small chloroplast open reading frame ORF43 (ycf7) of the green unicellular alga Chlamydomonas reinhardtii is cotranscribed with the psaC gene and ORF58. While ORF58 has been found only in the chloroplast genome of C.reinhardtii, ycf7 has been conserved in land plants and its sequence suggests that its product is a hydrophobic protein with a single transmembrane alpha helix. We have disrupted ORF58 and ycf7 with the aadA expression cassette by particle-gun mediated chloroplast transformation. While the ORF58::aadA transformants are indistinguishable from wild type, photoautotrophic growth of the ycf7::aadA transformants is considerably impaired. In these mutant cells, the amount of cytochrome b6f complex is reduced to 25-50% of wild-type level in mid-exponential phase, and the rate of transmembrane electron transfer per b6f complex measured in vivo under saturating light is three to four times slower than in wild type. Under subsaturating light conditions, the rate of the electron transfer reactions within the b6f complex is reduced more strongly in the mutant than in the wild type by the proton electrochemical gradient. The ycf7 product (Ycf7) is absent in mutants deficient in cytochrome b6f complex and present in highly purified b6f complex from the wild-type strain. Ycf7-less complexes appear more fragile than wild-type complexes and selectively lose the Rieske iron-sulfur protein during purification. These observations indicate that Ycf7 is an authentic subunit of the cytochrome b6f complex, which is required for its stability, accumulation and optimal efficiency. We therefore propose to rename the ycf7 gene petL.  相似文献   

9.
10.
The 3.0-3.1A X-ray structures of the cytochrome b(6)f complex from Mastigocladus laminosus and Chlamydomonas reinhardtii obtained in the presence of the p-side quinone-analogue inhibitor tridecyl-stigmatellin (TDS) are very similar. A difference occurs in the p-side binding position of TDS. In C.reinhardtii, TDS binds in the ring-in mode, as previously found for stigmatellin in X-ray structures of the cytochrome bc(1) complex. In this mode, the H-bonding chromone ring moiety of the TDS bound in the Q(p) niche is proximal to the ISP [2Fe-2S] cluster, and its 13 carbon tail extends through a portal to the large inter-monomer quinone-exchange cavity. However, in M.laminosus, TDS binds in an oppositely oriented ring-out mode, with the tail inserted toward the Q(p) niche through the portal and the ring caught in the quinone-exchange cavity that is 20A away from the [2Fe-2S] cluster. Site-directed mutagenesis of residues that might determine TDS binding was performed with the related transformable cyanobacterium Synechococcus sp. PCC 7002. The following changes in the sensitivity of electron transport activity to TDS and stigmatellin were observed: (a) little effect of mutation L193A in cytochrome b(6), which is proximal to the chromone of the ring-out TDS; (b) almost complete loss of sensitivity by mutation L111A in the ISP cluster binding region, which is close to the chromone of the ring-in TDS; (c) a ten and 60-fold increase associated with the mutation L81F in subunit IV. It was inferred that only the ring-in binding mode, in which the ring interacts with residues near the ISP, is inhibitory, and that residue 81 of subunit IV, which resides at the immediate entrance to the Q(p) niche, controls the relative binding affinity of inhibitor at the two different binding sites.  相似文献   

11.
Finazzi G 《Biochemistry》2002,41(23):7475-7482
The pH dependence of cytochrome b(6)f catalytic activity has been measured in whole cells of the green alga Chlamydomonas reinhardtii over the 5-8 range. An acid pH slowed the reactions occurring at the lumenal side of the complex (cytochrome b(6) and f reduction) and affected also the rate and amplitude of the slow electrogenic reaction (phase b), which is supposed to reflect transmembrane electron flow in the complex. On the other hand, a direct measurement of the transmembrane electron flow from the kinetics of cytochrome b(6) oxidation revealed no pH sensitivity. This suggests that a substantial fraction of the electrogenicity associated with cytochrome b(6)f catalysis is not due to electron transfer in the b(6) hemes but to a plastoquinol-oxidation-triggered charge movement, in agreement with previous suggestions that a redox-coupled proton pump operates in cytochrome b(6)f complex. The pH dependence of cytochrome b(6)f activity has also been measured in two mutant strains, where the glutamic 78 of the conserved PEWY sequence of subunit IV has been substituted for a basic (E78K) and a polar (E78Q) residue [Zito, F., Finazzi, G., Joliot, P., and Wollman, F.-A. (1998) Biochemistry 37, 10395-10403]. Their comparison with the wild type revealed that this residue plays an essential role in plastoquinol oxidation at low pH, while it is not required for efficient activity at neutral pH. Its involvement in gating the redox-coupled proton pumping activity is also shown.  相似文献   

12.
C de Vitry  O Vallon 《Biochimie》1999,81(6):631-643
The unicellular green alga Chlamydomonas reinhardtii is a model system for the study of photosynthesis and chloroplast biogenesis. C. reinhardtii has a photosynthesis apparatus similar to that of higher plants and it grows at rapid rate (generation time about 8 h). It is a facultative phototroph, which allows the isolation of mutants unable to perform photosynthesis and its sexual cycle allows a variety of genetic studies. Transformation of the nucleus and chloroplast genomes is easily performed. Gene transformation occurs mainly by homologous recombination in the chloroplast and heterologous recombination in the nucleus. Mutants are precious tools for studies of thylakoid membrane structure, photosynthetic function and assembly. Photosynthesis mutants affected in the biogenesis of a subunit of a protein complex usually lack the entire complex; this pleiotropic effect has been used in the identification of the other subunits, in the attribution of spectroscopic signals and also as a 'genetic cleaning' process which facilitates both protein complex purification, absorption spectroscopy studies or freeze-fracture analysis. The cytochrome b6f complex is not required for the growth of C. reinhardtii, unlike the case of photosynthetic prokaryotes in which the cytochrome complex is also part of the respiratory chain, and can be uniquely studied in Chlamydomonas by genetic approaches. We describe in greater detail the use of Chlamydomonas mutants in the study of this complex.  相似文献   

13.
The chloroplast atpB gene of Chlamydomonas reinhardtii, which encodes the beta subunit of the ATP synthase, contains three in-frame ATGs that are candidate translation initiation codons. An earlier study revealed that the N terminus of the assembled beta subunit maps at the +2 position with respect to the second in-frame methionine codon (Fiedler et al. 1995). Using chloroplast transformation, we have examined the possibility that either of the two additional in-frame ATG codons is competent for translation initiation. We provide evidence that translation of atpB is initiated exclusively at the second ATG codon. We conclude that the beta subunit is not synthesized with an N-terminal leader before its assembly into a functional ATP synthase complex.  相似文献   

14.
We created a Qo pocket mutant by site-directed mutagenesis of the chloroplast petD gene in Chlamydomonas reinhardtii. We mutated the conserved PEWY sequence in the EF loop of subunit IV into PWYE. The pwye mutant did not grow in phototrophic conditions although it assembled wild-type levels of cytochrome b6f complexes. We demonstrated a complete block in electron transfer through the cytochrome b6f complex and a loss of plastoquinol binding at Qo. The accumulation of cytochrome b6f complexes lacking affinity for plastoquinol enabled us to investigate the role of plastoquinol binding at Qo in the activation of the light-harvesting complex II (LHCII) kinase during state transitions. We detected no fluorescence quenching at room temperature in state II conditions relative to that in state I. The quantum yield spectrum of photosystem I charge separation in the two state conditions displayed a trough in the absorption region of the major chlorophyll a/b proteins, demonstrating that the cells remained locked in state I. 33Pi labeling of the phosphoproteins in vivo demonstrated that the antenna proteins remained poorly phosphorylated in both state conditions. Thus, the absence of state transitions in the pwye mutant demonstrates directly that plastoquinol binding in the Qo pocket is required for LHCII kinase activation.  相似文献   

15.
细胞色素b6f蛋白复合体(Cyt b6f)参与光合膜上电子传递和跨膜质子转移,在体内以二体形式存在,每个单体只结合1分子叶绿素a(Chla).该Chla性质独特,光照条件下十分稳定,是甲醇中游离Chla的120~130倍,然而其光稳定性的机制仍未彻底阐明.Cyt b6f 2.7的晶体结构显示,Chla中心的Mg离子和H2O分子配位,并且该H2O分子通过氢键与复合体亚基Ⅳ的氨基酸G136和T137相互作用.本研究基于这一结构特点,对上述2个氨基酸进行了定点突变,以干扰、破坏氢键网络.结果发现,突变不仅导致蛋白与Chla结合能力下降,而且显著降低了Chla的光稳定性,这一结果表明,Cyt b6f中Chla相关的氢键网络对其稳定性具有重要的作用.  相似文献   

16.
Because light is not required for catalytic turnover of the cytochrome b 6 f complex, the role of the single chlorophyll a in the structure and function of the complex is enigmatic. Photodamage from this pigment is minimized by its short singlet excited-state lifetime ( approximately 200 ps), which has been attributed to quenching by nearby aromatic residues ( Dashdorj et al., 2005). The crystal structure of the complex shows that the fifth ligand of the chlorophyll a contains two water molecules. On the basis of this structure, the properties of the bound chlorophyll and the complex were studied in the cyanobacterium, Synechococcus sp. PCC 7002, through site-directed mutagenesis of aromatic amino acids in the binding niche of the chlorophyll. The b 6 f complex was purified from three mutant strains, a double mutant Phe133Leu/Phe135Leu in subunit IV and single mutants Tyr112Phe and Trp125Leu in the cytochrome b 6 subunit. The purified b 6 f complex from Tyr112Phe or Phe133Leu/Phe135Leu mutants was characterized by (i) a loss of bound Chl and b heme, (ii) a shift in the absorbance peak and increase in bandwidth, (iii) multiple lifetime components, including one of 1.35 ns, and (iv) relatively small time-resolved absorbance anisotropy values of the Chl Q y band. A change in these properties was minimal in the Trp125Leu mutant. In vivo, no decrease in electron-transport efficiency was detected in any of the mutants. It was concluded that (a) perturbation of its aromatic residue niche influences the stability of the Chl a and one or both b hemes in the monomer of the b 6 f complex, and (b) Phe residues (Phe133/Phe135) of subunit IV are important in maintaining the short lifetime of the Chl a singlet excited state, thereby decreasing the probability of singlet oxygen formation.  相似文献   

17.
Highly active cytochrome b(6)f complexes from spinach and the cyanobacterium Mastigocladus laminosus have been analyzed by liquid chromatography with electrospray ionization mass spectrometry (LCMS+). Both size-exclusion and reverse-phase separations were used to separate protein subunits allowing measurement of their molecular masses to an accuracy exceeding 0.01% (+/-3 Da at 30,000 Da). The products of petA, petB, petC, petD, petG, petL, petM, and petN were detected in complexes from both spinach and M. laminosus, while the spinach complex also contained ferredoxin-NADP(+) oxidoreductase (Zhang, H., Whitelegge, J. P., and Cramer, W. A. (2001) Flavonucleotide:ferredoxin reductase is a subunit of the plant cytochrome b(6)f complex. J. Biol. Chem. 276, 38159-38165). While the measured masses of PetC and PetD (18935.8 and 17311.8 Da, respectively) from spinach are consistent with the published primary structure, the measured masses of cytochrome f (31934.7 Da, PetA) and cytochrome b (24886.9 Da, PetB) modestly deviate from values calculated based upon genomic sequence and known post-translational modifications. The low molecular weight protein subunits have been sequenced using tandem mass spectrometry (MSMS) without prior cleavage. Sequences derived from the MSMS spectra of these intact membrane proteins in the range of 3.2-4.2 kDa were compared with translations of genomic DNA sequence where available. Products of the spinach chloroplast genome, PetG, PetL, and PetN, all retained their initiating formylmethionine, while the nuclear encoded PetM was cleaved after import from the cytoplasm. While the sequences of PetG and PetN revealed no discrepancy with translations of the spinach chloroplast genome, Phe was detected at position 2 of PetL. The spinach chloroplast genome reports a codon for Ser at position 2 implying the presence of a DNA sequencing error or a previously undiscovered RNA editing event. Clearly, complete annotation of genomic data requires detailed expression measurements of primary structure by mass spectrometry. Full subunit coverage of an oligomeric intrinsic membrane protein complex by LCMS+ presents a new facet to intact mass proteomics.  相似文献   

18.
Preparations enriched in Chlamydomonas reinhardtii thylakoids have proven useful in the study of photosynthesis. Many of their polypeptides however remain unidentified. We report here on three of those, h1 (34 kDa), h2 (11 kDa), and P3 (63 kDa). h1, h2, and P3 are present in all tested mutants of C. reinhardtii lacking either one or several of the photosynthetic chain complexes or depleted in thylakoid membranes. h2 is an ascorbate-reducible, soluble c550-type cytochrome encoded in the nucleus. It cross-reacts immunologically with mitochondrial cytochromes c from various sources and contains a hexapeptide encoded in C. reinhardtii cytochrome c cDNA. P3, a nuclear-encoded peripheral protein, cross-reacts with various ATP synthase beta subunits. Its N-terminal sequence is encoded in C. reinhardtii mitochondrial beta subunit cDNA. h1 behaves as an integral hemoprotein; it is absent in a mitochondrial mutant that carries a deletion in apocytochrome b gene. We conclude that C. reinhardtii mitochondrial membranes copurify with thylakoid membranes. h1 is part of the cytochrome bc1 complex, h2 is cytochrome c, and P3 is the beta subunit of mitochondrial ATP synthase.  相似文献   

19.
We have conducted a proteomic analysis of the 70 S ribosome from the Chlamydomonas reinhardtii chloroplast. Twenty-seven orthologs of Escherichia coli large subunit proteins were identified in the 50 S subunit, as well as an ortholog of the spinach plastid-specific ribosomal protein-6. Several of the large subunit proteins of C. reinhardtii have short extension or insertion sequences, but overall the large subunit proteins are very similar to those of spinach chloroplast and E. coli. Two proteins of 38 and 41 kDa, designated RAP38 and RAP41, were identified from the 70 S ribosome that were not found in either of the ribosomal subunits. Phylogenetic analysis identified RAP38 and RAP41 as paralogs of spinach CSP41, a chloroplast RNA-binding protein with endoribonuclease activity. Overall, the chloroplast ribosome of C. reinhardtii is similar to those of spinach chloroplast and E. coli, but the C. reinhardtii ribosome has proteins associated with the 70 S complex that are related to non-ribosomal proteins in other species. In addition, the 30 S subunit contains unusually large orthologs of E. coli S2, S3, and S5 and a novel S1-type protein (Yamaguchi, K. et al., (2002) Plant Cell 14, 2957-2974). These additional proteins and domains likely confer functions used to regulate chloroplast translation in C. reinhardtii.  相似文献   

20.
ATP synthase from bovine mitochondria is a complex of 13 different polypeptides, whereas the Escherichia coli enzyme is simpler and contains eight subunits only. Two of the bovine subunits, b and d, which had not been characterized, have been isolated from the purified enzyme. Subunits with sizes corresponding to bovine subunits b and d are evident in preparations of the enzyme from mitochondria of other species. Partial protein sequences have been determined by direct methods. On the basis of some of this information, two oligonucleotide mixtures, 17 and 18 bases in length, have been synthesized and used as hybridization probes in the isolation of clones of the cognate cDNAs. The sequences of the two proteins have been deduced from their DNA sequences. Subunit b is 214 amino acid residues in length and has a free N terminus. Subunit d is 160 amino acid residues long. Its N-terminal alanine is blocked by an N-acetyl group, as demonstrated by fast atom bombardment mass spectrometry of N-terminal peptides. The sequence near the N terminus of the b subunit is made predominantly of hydrophobic residues, whereas the remainder of the protein is mainly hydrophilic. This N-terminal hydrophobic region may be folded into an alpha-helical structure spanning the lipid bilayer. In its distribution of hydrophobic residues, this protein resembles the b subunits of ATP synthase complexes in bacteria and chloroplasts. The b subunit in E. coli forms an important structural link between the extramembrane sector of the enzyme F1, and the intrinsic membrane domain, FO. It is proposed that the bovine mitochondrial subunit b serves a similar function. If this is so, the mitochondrial enzyme, as the chloroplast ATP synthase, contains equivalent subunits to all eight of those that constitute the E. coli enzyme. Subunit d has no extensive hydrophobic sequences, and is not apparently related to any subunit described in the simpler ATP synthases in bacteria and chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号