首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human gingival fibroblast gelatinase (type IV collagenase) has been purified to homogeneity using a combination of ion exchange chromatography, gel filtration and affinity chromatography. The purified proenzyme electrophoresed under reducing conditions as a single band of 72 kDa which could be activated to a species of 65 kDa. Gelatinase was activated by organomercurials by a process apparently initiated by a conformational change and involving self-cleavage. It was not activated by trypsin or plasmin unlike the other family members, collagenase and stromelysin. Gelatinase otherwise exhibited properties typical of the metalloproteinases: it was inhibited by metal chelating agents and by the specific inhibitor TIMP (tissue inhibitor of metalloproteinases). Its major substrate was shown to be denatured collagen although it was also able to degrade native type IV and V collagens. A polyclonal antibody was raised in a sheep using the purified enzyme as antigen. The antiserum recognised and specifically inhibited the 72-kDa gelatinase but not a 95-kDa gelatinase from pig leukocytes. It was used in immunolocalisation studies on human fibroblasts to investigate the regulation of the production of the two Mr forms of gelatinase. These studies clearly demonstrate that human fibroblasts constitutively synthesize and secrete 72-kDa gelatinase but that 95-kDa gelatinase was inducible by agents such as cytokines. The significance of these results in relation to the likely in vivo r?le of gelatinases is discussed.  相似文献   

2.
Two kinds of gelatinases (or type IV collagenases), 90-kDa and 64-kDa gelatinases, were purified in a tissue inhibitor of metalloproteinases (TIMP)- or TIMP-2-free form from the serum-free conditioned medium of human schwannoma YST-3 cells, and their activities on extracellular matrix proteins were compared. Sequential chromatographies on a gelatin-Sepharose column, an LCA-agarose column, and a gel filtration column in the presence of 5 M urea yielded 600 micrograms of the 64-kDa enzyme and 45 micrograms of the 90-kDa enzyme from 2.8 liters of the conditioned medium. The purified enzymes showed high gelatinolytic activities without activation by p-aminophenyl mercuric acetate (APMA), indicating that 5 M urea used in the final chromatography not only dissociated the inhibitors from the progelatinases but also activated the proenzymes. The inhibitor-free gelatinases showed a much higher activity than the APMA-activated inhibitor-bound enzymes. The specific activity of the 90-kDa enzyme was nearly 25 times higher than that of the 64-kDa enzyme. The 90-kDa gelatinase hydrolyzed type I collagen as well as native and pepsin-treated type IV collagens at 30 degrees C, while at 37 degrees C it potently hydrolyzed types I, III, and IV collagens but not fibronectin or laminin. The 64-kDa gelatinase showed a similar substrate specificity to that of the 90-kDa enzyme, except that it did not hydrolyze type I collagen and native type IV collagen at 30 degrees C.  相似文献   

3.
The proform of chick gelatinase (type IV collagenase) was isolated and purified to a high specific activity of 12,071 U/mg from cultured embryonic skin fibroblasts stimulated with cytochalasin-B. The enzyme was activated in the presence of 4-aminophenylmercuric acetate with a fall in molecular weight from 66,000-58,000 on non-reducing polyacrylamide gel electrophoresis and was active over the pH range of 6.0-8.9 against a number of substrates. Further biochemical characterisation showed that the organomercurial activated form of the enzyme behaved like a typical mammalian gelatinase, actively degrading gelatin, soluble type I collagen, collagenase generated type I fragments, type IV collagen (producing 3/4 and 1/4 fragments) and type V collagen, whilst having little effect on laminin. The enzyme was inhibited by metal chelators such as EDTA and 1,10-phenanthroline, but not by inhibitors is suggested that this may be TIMP-2. An antiserum was raised to the proenzyme and was found to localise intra- and extra-cellularly in both tissue sections and cell cultures.  相似文献   

4.
Gelatinases produced by stimulated peripheral blood monocytes were detected by substrate zymography and were compared with those derived from tumor cells. Stimulated monocytes were found to produce an 85 kDa gelatinase which co-migrated upon electrophoretic separation and cross-reacted in immunoprecipitation experiments with a phorbol ester inducible metalloprotease from human tumor cells. The intact natural gelatinase (85 kDa), a high molecular weight and complexed gelatinase as well as a proteolytic fragment (25 kDa) were purified by substrate- and antibody-affinity chromatography techniques. Aminoterminal sequence analysis showed that natural monocyte gelatinase occurs as a truncated form of tumor cell gelatinase/type IV collagenase. Furthermore, peripheral blood monocytes were found to also produce a tissue inhibitor of metalloproteases (TIMP). TIMP was co-purified with gelatinase on gelatin sepharose and identified by microsequencing. The balanced and regulated production of gelatinase and TIMP might be important in monocyte migration and tissue remodeling.  相似文献   

5.
Digestion of type V collagen by the gelatinases is an important step in tumor cell metastasis because this collagen maintains the integrity of the extracellular matrix that must be breached during this pathological process. However, the structural elements that provide the gelatinases with this unique proteolytic activity among matrix metalloproteinases had not been thoroughly defined. To identify these elements, we examined the substrate specificity of chimeric enzymes containing domains of gelatinase B and fibroblast collagenase. We have found that the addition of the fibronectin-like domain of gelatinase B to fibroblast collagenase is sufficient to endow the enzyme with the ability to cleave type V collagen. In addition, the substitution of the catalytic zinc-binding active site region of fibroblast collagenase with that of gelatinase B increased the catalytic efficiency of the enzyme 3- to 4-fold. This observation led to the identification of amino acid residues, Leu(397), Ala(406), Asp(410), and Pro(415), in this region of gelatinase B that are important for its efficient catalysis as determined by substituting these amino acids with the corresponding residues from fibroblast collagenase. Leu(397) and Ala(406) are important for the general proteolytic activity of the enzyme, whereas Asp(410) and Pro(415) specifically enhance its ability to cleave type V collagen and gelatin, respectively. These data provide fundamental information about the structural elements that distinguish the gelatinases from other matrix metalloproteinases in terms of substrate specificity and catalytic efficiency.  相似文献   

6.
The maintenance and developmental remodeling of extracellular matrix is crucial to such processes as uterine implantation and the cell migratory events of morphogenesis. When mouse blastocysts are placed in culture they adhere to extracellular matrix, and trophoblast giant cells migrate out onto the matrix and degrade it. The secretion of functional proteinases by developing mouse embryos increases dramatically at the time of implantation. By zymography we identified the major secreted gelatin-degrading proteinase, also known as type IV collagenase, as one migrating at 92 x 10(3) Mr. Several casein-degrading proteinases were also secreted. The tissue inhibitor of metalloproteinases (TIMP) inhibited all of the embryo-derived proteinases detected by gelatin gel zymography, indicating that they are metalloproteinases, whereas TIMP did not inhibit all of the caseinases. Urokinase was also secreted. Addition of TIMP at 5-500 nM effectively inhibited the degradation of matrix by the trophoblast outgrowths. Blocking antibodies directed against 92 x 10(3) Mr gelatinase abolished matrix degradation by the trophoblast cells. These observations suggest that several metalloproteinases are regulated in early development and that 92 x 10(3) Mr gelatinase, in particular, has a rate-limiting function in degradation of the maternal extracellular matrix by trophoblast cells.  相似文献   

7.
Activation of human monocytes results in the production of interstitial collagenase through a prostaglandin E2 (PGE2)-cAMP-dependent pathway. Inasmuch as interleukin 4 (IL-4) has been shown to inhibit PGE2 synthesis by monocytes, we examined the effect of IL-4 on the production of human monocyte interstitial collagenase. Additionally, we also assessed the effect of IL-4 on the production of 92-kDa type IV collagenase/gelatinase and tissue inhibitor of metalloproteinase-1 (TIMP-1) by monocytes. The inhibition of PGE2 synthesis by IL-4 resulted in decreased interstitial collagenase protein and activity that could be restored by exogenous PGE2 or dibutyryl cyclic AMP (Bt2cAMP). IL-4 also suppressed ConA-stimulated 92-kDa type IV collagenase/gelatinase protein and zymogram enzyme activity that could be reversed by exogenous PGE2 or Bt2cAMP. Moreover, indomethacin suppressed the ConA-induced production of 92-kDa type IV collagenase/gelatinase. These data demonstrate that, like monocyte interstitial collagenase, the conA-inducible monocyte 92-kDa type IV collagenase/gelatinase is regulated through a PGE2-mediated cAMP-dependent pathway. In contrast to ConA stimulation, unstimulated monocytes released low levels of 92-kDa type IV collagenase/gelatinase that were not affected by IL-4, PGE2, or Bt2cAMP, indicating that basal production of this enzyme is PGE2-cAMP independent. IL-4 inhibition of both collagenases was not a result of increased TIMP expression since Western analysis of 28.5-kDa TIMP-1 revealed that IL-4 did not alter the increased TIMP-1 protein in response to ConA. These data indicate that IL-4 may function in natural host regulation of connective tissue damage by monocytes.  相似文献   

8.
A third metalloendopeptidase activity, gelatinase, has been completely separated from the collagenase and proteoglycanase activities of rabbit bone culture medium. Although the proteinase could not be purified to homogeneity in large amounts, it was possible to obtain accurate molecular weight values and activity after electrophoresis on non-reduced SDS/polyacrylamide gels. The latent form had an Mr of 65 000 which could be activated with 4-aminophenylmercuric acetate, APMA, to a form of Mr 61 000; under reducing conditions the latent and active forms had Mr of 72 000 and 65 000, respectively. Trypsin was a very poor activator of the latent enzyme. Gelatinase degraded gelatins derived from the interstitial collagens and it also had low activity on native types IV and V collagen and on insoluble elastin. Gelatinase acted synergistically with collagenase in degrading insoluble interstitial collagen. The specific mammalian tissue inhibitor of metalloproteinases inhibited gelatinase by forming a stable inactive complex. Comparison of the properties of gelatinase with those of collagenase and proteoglycanase suggest that the three proteinases form a family which together are capable of degrading all the major macromolecules of connective tissue matrices.  相似文献   

9.
The gelatinolytic activity of rat uterus collagenase   总被引:6,自引:0,他引:6  
The collagenase produced by rat uterine cells in culture has been examined for its ability to degrade denatured collagen. Acting as a gelatinase, rat uterus collagenase was able to successfully degrade the denatured chains of collagen types I through V. In addition, the enzyme produced multiple cleavages in these chains and displayed values for Km of 4-5 microM, compared to values of 1-2 microM when native collagen was used as substrate. Furthermore, rat uterus collagenase degraded the alpha 2 chain of denatured type I collagen at a significantly faster rate than the alpha 1 chain, as previously observed for human skin fibroblast collagenase. In contrast to the action of human skin collagenase, however, the rat uterus enzyme was found to be a markedly better gelatinase than a collagenase, degrading the alpha chains of denatured type I guinea pig skin collagen at rates some 7-15-fold greater than native collagen. Human skin collagenase degrades the same denatured chains at rates ranging from 13-44% of its rate on native collagen. Rat uterus collagenase, then, is approximately 50 times better a gelatinase than is human skin collagenase. In addition to its ability to cleave denatured collagen chains at greater rates than native collagen, the rat uterus collagenase also attacked a wider spectrum of peptide bonds in gelatin than does human skin collagenase. In addition to cleaving the Gly-Leu and Gly-Ile bonds characteristic of its action on native collagen, rat uterus collagenase readily catalyzed the cleavage of Gly-Phe bonds in gelatin. The rat enzyme was also capable of cleaving Gly-Ala and Gly-Val bonds, although these bonds were somewhat less preferred by the enzyme. The cleavage of peptide bonds other than Gly-Leu and Gly-Ile appears to be a property of the collagenase itself and not a contaminating protease. Thus, it appears that the collagenase responsible for the degradation of collagen during the massive involution of the uterus might also act as a gelatinase to further degrade the initial products of collagenolysis to small peptides suitable for further metabolism.  相似文献   

10.
《The Journal of cell biology》1994,124(6):1091-1102
cDNA clones for murine 92 kD type IV collagenase (gelatinase B) were generated for the determination of its primary structure and for analysis of temporal and spatial expression in vivo. The mouse enzyme has 72% sequence identity with the human counterpart, the major difference being the presence of a 16-residue segment absent from the human enzyme. In situ hybridization analyses of embryonic and postnatal mouse tissues revealed intense signals in cells of the osteoclast cell lineage. Clear expression above background was not observed in macrophages, polymorphonuclear leukocytes, monocytes, or epithelial cells which have been shown to express the gene in vitro in cell cultures. Expression of the gene was first observed at early stage of cartilage and tooth development at E13, where signals were seen transiently in surrounding mesenchymal cells. At later developmental stages and postnatally strong expression was seen in large cells at the surface of bones. These cells were presumably osteoclasts as their location correlated with that of TRAP positive cells. Signals above background were not observed in a number of other tissues studied. The results represent the first demonstration of a highly osteoclast specific extracellular proteinase. The results suggest that during normal development of embryonic organs the 92-kD type IV collagenase does not have a major role in basement membrane degradation, but is rather mainly used for the turnover of bone matrix, possibly as a gelatinase required for the removal of denatured collagen fragments (gelatin) generated by interstitial collagenase.  相似文献   

11.
Summary Dimethylbenzanthracene-induced rat mammary tumours consist of lobules of tumours cells surrounded by connective tissue. The interstitial connective tissue proteins, collagen types I, III and V, fibronectin and elastin are largely restricted to the interlobular connective tissue. The tumour lobules are surrounded by a basement membrane that stains with antiserum to laminin. Electron microscopy reveals a greatly thickened basement membrane to which striated interstitial collagen fibres are closely juxtaposed. The lumina within the tumour lobules are of two types. In the first type, the luminal surface is characterized by the presence of microvilli and tight junctions are reacts with antiserum to rat milk fat globule membrane. In the second type, the luminal surface is flattened and lined by a thickened basement membrane that stains with antiserum to laminin and type IV collagen. These abnormal patterns of growth and differentiation may be partly a consequence of the disorganization of extracellular matrix components at the interface between the tumour epithelial cells and the surrounding stroma.  相似文献   

12.
Secreted metalloproteases initiating proteolytic degradation of collagens and proteoglycans play a critical role in remodeling of the connective tissue. Activation of the secreted proenzymes and interaction with their specific inhibitors TIMP and TIMP-2 are responsible for regulation of enzyme activity in extracellular space. We have previously demonstrated that 92- and 72-kDa Type IV procollagenases, in contrast to interstitial collagenase (ClI), form specific complexes with TIMP and the related inhibitor TIMP-2, respectively. The physiologic significance of the proenzyme-inhibitor complex and the mechanism of activation of Type IV collagenases remained unclear. Here, we demonstrate that in the absence of TIMP, 92-kDa Type IV procollagenase (92T4Cl) can form a covalent homodimer and a novel complex with ClI. In the presence of TIMP, the formation of a 92T4Cl proenzyme complex with TIMP prevents dimerization, formation of the complex with ClI, and activation of the 92T4Cl proenzyme by stromelysin, a related metalloprotease. The proenzyme homodimer is unable to form a complex with TIMP. All TIMP-free forms of the proenzyme can be activated by stromelysin. The 92T4Cl-ClI complex can be activated to yield a complex active against both gelatin and fibrillar Type I collagen, suggesting a mechanism for cooperative action of two enzymes in reducing collagen fibrils to small peptides under physiologic conditions.  相似文献   

13.
H-ras-transformed human bronchial epithelial cells (TBE-1) secrete a single major extracellular matrix metalloprotease which is not found in the normal parental cells. The enzyme is secreted in a latent form of 72 kDa, which can be activated to catalyze the cleavage of the basement membrane macromolecule type IV collagen. The substrates in their order of preference are: gelatin, type IV collagen, type V collagen, fibronectin, and type VII collagen; but the enzyme does not cleave the interstitial collagens or laminin. This protease is identical to gelatinase isolated from normal human skin explants, normal human skin fibroblasts, and SV40-transformed human lung fibroblasts. Based on its ability to initiate the degradation of type IV collagen in a pepsin-resistant portion of the molecule, it will be referred to as type IV collagenase. This enzyme is most likely the human analog of type IV collagenase detected in several rodent tumors, which has the same molecular mass and has been linked to their metastatic potential. Type IV collagenase consists of three domains. Two of them, the amino-terminal domain and the carboxyl-terminal domain, are homologous to interstitial collagenase and human and rat stromelysin. The middle domain, of 175 residues, is organized into three 58-residue head-to-tail repeats which are homologous to the type II motif of the collagen-binding domain of fibronectin. Type IV collagenase represents the third member of a newly recognized gene family coding for secreted extracellular matrix metalloproteases, which includes interstitial fibroblast collagenase and stromelysin.  相似文献   

14.
On purification, human fibroblast collagenase breaks down into two major forms (Mr22,000 and Mr 27,000) and one minor form (Mr 25,000). The most likely mechanism is autolysis, although the presence of contaminating enzymes cannot be excluded. From N-terminal sequencing studies, the 22,000-Mr fragment contains the active site; differential binding to concanavalin A shows the 25,000-Mr fragment is a glycosylated form of the 22,000-Mr fragment. These low-Mr forms can be separated by Zn2+-chelate chromatography. An activity profile of this column, combined with data from substrate gels, indicates no activity against collagen in the 22,000-Mr and 25,000-Mr forms, but rather, activity casein and gelatin. The 27,000-Mr form has no activity. The 22,000/25,000-Mr form can act as an activator for collagenase in a similar way to that reported for stromelysin. The activity of the 22,000/25,000-Mr form is not inhibited by the tissue inhibitor of metalloproteinases (TIMP). The 27,000-Mr C-terminal part of the collagenase molecule therefore appears to be important in maintaining the substrate-specificity of the enzyme, and also plays a role in the binding of TIMP.  相似文献   

15.
The 72-kDa gelatinase/type IV collagenase, a metalloproteinase thought to play a role in metastasis and in angiogenesis, forms a noncovalent stoichiometric complex with the tissue inhibitor of metalloproteinase-2 (TIMP-2), a potent inhibitor of enzyme activity. To define the regions of the 72-kDa gelatinase responsible for TIMP-2 binding, a series of NH2- and COOH-terminal deletions of the enzyme were constructed using the polymerase chain reaction technique. The full-length and the truncated enzymes were expressed in a recombinant vaccinia virus mammalian cell expression system (Vac/T7). Two truncated enzymes ending at residues 425 (delta 426-631) and 454 (delta 455-631) were purified. Like the full-length recombinant 72-kDa gelatinase, both COOH-terminally truncated enzymes were activated with organomercurial and digested gelatin and native collagen type IV. In contrast to the full-length enzyme, delta 426-631 and delta 455-631 enzymes were less sensitive to TIMP-2 inhibition requiring 10 mol of TIMP-2/mol of enzyme to achieve maximal inhibition of enzymatic activity. The activated but not the latent forms of the delta 426-631 and delta 455-631 proteins formed a complex with TIMP-2 only when excess molar concentrations of inhibitor were used. We also expressed the 205-amino acid COOH-terminal fragment, delta 1-426, and found that it binds TIMP-2. In addition, a truncated version of the 72-kDa gelatinase lacking the NH2-terminal 78 amino acids (delta 1-78) of the proenzyme retained the ability to bind TIMP-2. These studies demonstrate that 72-kDa gelatinases lacking the COOH-terminal domain retain full enzymatic activity but acquire a reduced sensitivity to TIMP-2 inhibition. These data suggest that both the active site and the COOH-terminal tail of the 72-kDa gelatinase independently and cooperatively participate in TIMP-2 binding.  相似文献   

16.
Production of a 92-kDa gelatinase/type IV collagenase and tissue inhibitor of metalloproteinases (TIMP) was investigated with human sarcoma cell lines. Among the cytokines and growth factors examined, only human recombinant tumor necrosis factor alpha (TNF alpha) induced and stimulated the proteinase with concomitant increase in TIMP expression, but matrix metalloproteinase 2 (72-kDa gelatinase/type IV collagenase) expression was unchanged. These data suggest that gene expression of the two metalloproteinases is regulated in a different fashion and TNF alpha may be important to allow cancer cells to be more invasive and metastatic.  相似文献   

17.
Regulation of the activity of proteolytic enzymes is of major importance in the turnover of connective tissues. The search for physiologically relevant activation mechanisms of principal tissue-degrading enzymes, e.g., metalloproteinases, has therefore been of wide interest. We have now studied whether the initiating factor of the fibrinolytic system, urokinase plasminogen activator (u-PA), may also function in the early steps of activation of one of the metalloproteinases, the M(r) 72,000 gelatinase/type IV collagenase produced by cultured fibroblasts. Treatment of the secreted M(r) 72,000 proteinase by u-PA yielded a cleavage product of M(r) 62,000 as revealed by fluorography of radioactively labeled proteins as well as by gelatin zymography SDS-PAGE gels. The u-PA-catalyzed cleavage of the M(r) 72,000 proteinase was blocked by anti-u-PA antibodies, but was unaffected by the plasmin inhibitor aprotinin, thus indicating a specific action for the activator. On the contrary, the tissue activator of plasminogen, t-PA, did not cleave the type IV collagenase in similar assays. u-PA-catalyzed cleavage of recombinant type IV collagenase, produced in a baculovirus expression system, yielded a similar M(r) 62,000 activity in gelatinolysis assay. Zymograms of the isolated pericellular matrices of cultured fibroblasts also revealed M(r) 72,000 gelatinolytic polypeptide that was converted to an M(r) 62,000 form by u-PA. Both polypeptides were recognized in immunoblotting by antibodies against the gelatinase/type IV collagenase, suggesting immunological identity with the secreted enzyme. Thus the M(r) 72,000 gelatinase/type IV collagenase is not only secreted, but also deposited into the pericellular fibroblast matrix, and both forms are substrates for u-PA. The results suggest a new potential role for u-PA as a direct regulator of metalloproteinase-mediated extracellular proteolysis via the cleavage of the M(r) 72,000 gelatinase/type IV collagenase to an M(r) 62,000 form.  相似文献   

18.
Matrix metalloproteinase 9 (MMP-9) has been purified as an inactive zymogen of M(r) 92,000 (proMMP-9) from the culture medium of HT 1080 human fibrosarcoma cells. The NH2-terminal sequence of proMMP-9 is Ala-Pro-Arg-Gln-Arg-Gln-Ser-Thr-Leu-Val-Leu-Phe-Pro, which is identical to that of the 92-kDa type IV collagenase/gelatinase. The zymogen can be activated by 4-aminophenylmercuric acetate, yielding an intermediate form of M(r) 83,000 and an active species of M(r) 67,000, the second of which has a new NH2 terminus of Met-Arg-Thr-Pro-Arg-(Cys)-Gly-Val-Pro-Asp-Leu-Gly-Arg-Phe-Gln-Thr- Phe-Glu. Immunoblot analyses demonstrate that this activation process is achieved by sequential processing of both NH2- and COOH-terminal peptides. TIMP-1 complexed with proMMP-9 inhibits the conversion of the intermediate form to the active species of M(r) 67,000. The proenzyme is fully activated by cathepsin G, trypsin, alpha-chymotrypsin, and MMP-3 (stromelysin 1) but not by plasmin, leukocyte elastase, plasma kallikrein, thrombin, or MMP-1 (tissue collagenase). During the activation by MMP-3, proMMP-9 is converted to an active species of M(r) 64,000 that lacks both NH2- and COOH-terminal peptides. In addition, HOCl partially activates the zymogen by reacting with an intermediate species of M(r) 83,000. The enzyme degrades type I gelatin rapidly and also cleaves native collagens including alpha 2 chain of type I collagen, collagen types III, IV, and V at undenaturing temperatures. These results indicate that MMP-9 has different activation mechanisms and substrate specificity from those of MMP-2 (72-kDa gelatinase/type IV collagenase).  相似文献   

19.
A neutral proteinase, capable of degrading gelatin, has been found in both an active and a latent form in the medium from the culture of rat mesangial cells. The latent form had an Mr of 80,000-100,000 and could be activated with either 4-aminophenylmercuric acetate or prolonged incubation at neutral pH. The active form of the enzyme was extensively purified. The estimated Mr of the purified enzyme on gel filtration was approximately 200,000, indicating that the active enzyme formed aggregates. However, analysis by SDS/polyacrylamide-gel electrophoresis under reducing conditions showed two protein bands, with Mr 68,000 and 66,000. Both proteins were found to contain proteolytic activity when run on SDS/substrate gels. The enzyme was inhibited by EDTA and 1,10-phenanthroline, but not by inhibitors for cysteine, serine or aspartic proteinases. The enzyme did not digest fibronectin, bovine serum albumin, proteoglycan or interstitial collagen. The enzyme degraded pepsin-solubilized placental type V collagen at 31 degrees C, whereas similarly solubilized type IV collagen was only degraded at higher temperatures. In addition, the neutral proteinase degraded native soluble type IV collagen. It also had activity on insoluble type IV collagen of glomerular basement membrane. The above properties suggest that the mesangial neutral proteinase belongs to the gelatinase group of metalloproteinases and that it may play a role in the normal turnover of extracellular glomerular matrix.  相似文献   

20.
We have reported that SV40-transformed human lung fibroblasts secrete a 92-kDa metalloprotease which is not detectable in the parental cell line IMR-90. We now present the complete structure of this enzyme along with the evidence that it is identical to the 92-kDa metalloprotease secreted by normal human alveolar macrophages, phorbol ester-differentiated monocytic leukemia U937 cells, fibrosarcoma HT1080 cells, and cultured human keratinocytes. A similar, perhaps identical, enzyme can be released by polymorphonuclear cells. The preproenzyme is synthesized as a polypeptide of predicted Mr 78,426 containing a 19 amino-acid-long signal peptide and secreted as a single 92,000 glycosylated proenzyme. The purified proenzyme complexes noncovalently with the tissue inhibitor of metalloproteases (TIMP) and can be activated by organomercurials. Activation with phenylmercuric chloride results in removal of 73 amino acids from the NH2 terminus of the proenzyme, yielding an active form capable of digesting native types IV and V collagen. The in vitro substrate specificity of the enzyme using these substrates was indistinguishable from that of the 72-kDa type IV collagenase. The 92-kDa type IV collagenase consists of five domains; the amino-terminal and zinc-binding domains shared by all members of the secreted metalloprotease gene family, the collagen-binding fibronectin-like domain also present in the 72-kDa type IV collagenase, a carboxyl-terminal hemopexin-like domain shared by all known enzymes of this family with the exception of PUMP-1, and a unique 54-amino-acid-long proline-rich domain homologous to the alpha 2 chain of type V collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号