首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The gene fprA of Mycobacterium tuberculosis, encoding a putative protein with 40% identity to mammalian adrenodoxin reductase, was expressed in Escherichia coli and the protein purified to homogeneity. The 50-kDa protein monomer contained one tightly bound FAD, whose fluorescence was fully quenched. FprA showed a low ferric reductase activity, whereas it was very active as a NAD(P)H diaphorase with dyes. Kinetic parameters were determined and the specificity constant (kcat/Km) for NADPH was two orders of magnitude larger than that of NADH. Enzyme full reduction, under anaerobiosis, could be achieved with a stoichiometric amount of either dithionite or NADH, but not with even large excess of NADPH. In enzyme titration with substoichiometric amounts of NADPH, only charge transfer species (FAD-NADPH and FADH2-NADP+) were formed. At NADPH/FAD ratios higher than one, the neutral FAD semiquinone accumulated, implying that the semiquinone was stabilized by NADPH binding. Stabilization of the one-electron reduced form of the enzyme may be instrumental for the physiological role of this mycobacterial flavoprotein. By several approaches, FprA was shown to be able to interact productively with [2Fe-2S] iron-sulfur proteins, either adrenodoxin or plant ferredoxin. More interestingly, kinetic parameters of the cytochrome c reductase reaction catalyzed by FprA in the presence of a 7Fe ferredoxin purified from M. smegmatis were determined. A Km value of 30 nm and a specificity constant of 110 microM(-1) x s(-1) (10 times greater than that for the 2Fe ferredoxin) were determined for this ferredoxin. The systematic name for FprA is therefore NADPH-ferredoxin oxidoreductase.  相似文献   

2.
The full-length bovine lung prostaglandin(PG) F synthase cDNA was constructed from partial cDNA clones and ligated into bacterial expression vector pUC8 to develop expression plasmid pUCPF1. This plasmid permitted the synthesis of bovine lung PGF synthase in Escherichia coli. The recombinant bacteria overproduced a 36-KDa protein that was recognized by anti-PGF synthase antibody, and the expressed protein was purified to apparent homogeneity. The expressed protein reduced not only carbonyl compounds including PGD2 and phenanthrenequinone but also PGH2; and the Km values for phenanthrenequinone, PGD2, and PGH2 of the expressed protein were 0.1, 100, and 8 microM, respectively, which are the same as those of the bovine lung PGF synthase. The protein produced PGF2 alpha from PGH2, and 9 alpha, 11 beta-PGF2 from PGD2 at different active sites. Moreover, the structure of the purified protein from Escherichia coli was essentially identical to that of the native enzyme in terms of C-terminal sequence, sulfhydryl groups, and CD spectra except that the nine amino acids provided by the lac Z' gene of the vector were fused to the N-terminus. These results indicate that the expressed protein is essentially identical to bovine lung PGF synthase. We confirmed that PGF synthase is a dual function enzyme catalyzing the reduction of PGH2 and PGD2 on a single enzyme and that it has one binding site for NADPH.  相似文献   

3.
Epididymal delta 4-steroid 5 alpha-reductase (cholestenone 5 alpha-reductase), the enzyme that catalyses the conversion of testosterone into the biologically active metabolite dihydrotestosterone (17 beta-hydroxy-5 alpha-androstan-3-one), is a membrane-bound enzyme found in both nuclear and microsomal subcellular fractions. In order to characterize epididymal delta 4-steroid 5 alpha-reductase, it was first necessary to solubilize the enzymic activity. Of the various treatments tested, a combination of 0.5% (w/v) Lubrol WX, 0.1 M-sodium citrate and 0.1 M-KCl maintained enzymic activity at control values and solubilized 66% of total epididymal delta 4-steroid 5 alpha-reductase activity in an active and stable form. The sedimentation coefficient of solubilized delta 4-steroid 5 alpha-reductase, as determined in continuous sucrose density gradients, was greater for the microsomal than for the nuclear enzyme (11.6S compared with 10.1S). Although the apparent Km values of the enzyme for testosterone were similar in nuclear and microsomal subcellular fractions (range 1.75 x 10(-7) - 4.52 x 10(-7)M), the apparent Km of the enzyme for NADPH was about 30-fold greater for the microsomal enzyme than for the nuclear enzyme. The apparent Km of the enzyme for either substrate was not significantly altered after solubilization. The relative capacity of steroids to inhibit the enzymic activity, the pH optima and the effects of Ca2+ and Mg2+ were similar for membrane-bound and solubilized delta 4-steroid 5 alpha-reductase in both the nuclear and the microsomal fractions. The results reported demonstrate that epididymal delta 4-steroid 5 alpha-reductase can be solubilized in an active and stable form with no significant changes in the kinetic characteristics of the enzyme after solubilization; furthermore, kinetic and molecular-size differences observed for the nuclear and the microsomal forms of the enzyme suggest that there may exist at least two forms of epididymal delta 4-steroid 5 alpha-reductase.  相似文献   

4.
B Houston  G D Chisholm  F K Habib 《Steroids》1987,49(4-5):355-369
A kinetic analysis of the 5 alpha-reductases from human liver and prostate is presented. Human prostatic 5 alpha-reductase follows an ordered sequential mechanism in which NADPH binds first followed by testosterone. The order of release of products is DHT followed by NADP+. The apparent Km of prostatic 5 alpha-reductase for testosterone is 0.0339 +/- 0.006 microM, while the apparent Km for NADPH is 2.52 +/- 0.65 microM. Human liver 5 alpha-reductase also follows a sequential mechanism. The apparent Km of the liver enzyme is 0.110 +/- 0.08 microM; the apparent Km for NADPH is 6.2 +/- 0.6 microM. The fact that both the liver and prostatic 5 alpha-reductases have a sequential kinetic mechanism rules out the possibility that the reduction of testosterone to dihydrotestosterone involves an electron transport system as previously proposed.  相似文献   

5.
Mitochondrial 2,4-dienoyl-CoA reductase is a key enzyme for the beta-oxidation of unsaturated fatty acids. The cDNA of the full-length human mitochondrial 2,4-dienoyl-CoA reductase was previously cloned as pUC18::DECR. PCR methodologies were used to subclone the genes encoding various truncated human mitochondrial 2,4-dienoyl-CoA reductases from pUC18::DECR with primers that were designed to add six continuous histidine codons to the 3' or 5' primer. The PCR products were inserted into pLM1 expression vectors and overexpressed in Escherichia coli. A highly active truncated soluble protein was expressed and purified with a nickel HiTrap chelating metal affinity column to apparent homogeneity based on Coomassie blue-stained SDS-PAGE. The molecular weight of the protein subunit was 34 kDa. The purified protein is highly stable at room temperature, which makes it potentially valuable for protein crystallization. KM of 26.5 +/- 3.8 microM for 2,4-hexadienoyl-CoA, KM of 6.22 +/- 2.0 microM for 2,4-decadienoyl-CoA, and KM of 60.5 +/- 19.7 microM for NADPH, as well as Vmax of 7.78 +/- 1.08 micromol/min/mg for 2,4-hexadienoyl-CoA and Vmax of 0.74 +/- 0.07 micromol/min/mg for 2,4-decadienoyl-CoA were determined on kinetic study of the purified protein. The one-step purification of the highly active human mitochondrial 2,4-dienoyl-CoA reductase will greatly facilitate further investigation of this enzyme through site-directed mutagenesis and enzyme catalyzed reactions with substrate analogs as well as protein crystallization for solving its three-dimensional structure.  相似文献   

6.
7.
Methanosarcina barkeri has recently been shown to produce a multisubunit membrane-bound [NiFe] hydrogenase designated Ech (Escherichia coli hydrogenase 3) hydrogenase. In the present study Ech hydrogenase was purified to apparent homogeneity in a high yield. The enzyme preparation obtained only contained the six polypeptides which had previously been shown to be encoded by the ech operon. The purified enzyme was found to contain 0.9 mol of Ni, 11.3 mol of nonheme-iron and 10.8 mol of acid-labile sulfur per mol of enzyme. Using the purified enzyme the kinetic parameters were determined. The enzyme catalyzed the H2 dependent reduction of a M. barkeri 2[4Fe-4S] ferredoxin with a specific activity of 50 U x mg protein-1 at pH 7.0 and exhibited an apparent Km for the ferredoxin of 1 microM. The enzyme also catalyzed hydrogen formation with the reduced ferredoxin as electron donor at a rate of 90 U x mg protein-1 at pH 7.0. The apparent Km for the reduced ferredoxin was 7.5 microM. Reduction or oxidation of the ferredoxin proceeded at similar rates as the reduction or oxidation of oxidized or reduced methylviologen, respectively. The apparent Km for H2 was 5 microM. The kinetic data strongly indicate that the ferredoxin is the physiological electron donor or acceptor of Ech hydrogenase. Ech hydrogenase amounts to about 3% of the total cell protein in acetate-grown, methanol-grown or H2/CO2-grown cells of M. barkeri, as calculated from quantitative Western blot experiments. The function of Ech hydrogenase is ascribed to ferredoxin-linked H2 production coupled to the oxidation of the carbonyl-group of acetyl-CoA to CO2 during growth on acetate, and to ferredoxin-linked H2 uptake coupled to the reduction of CO2 to the redox state of CO during growth on H2/CO2 or methanol.  相似文献   

8.
A novel ketoreductase isolated from Zygosaccharomyces rouxii catalyzes the asymmetric reduction of selected ketone substrates of commercial importance. The 37.8-kDa ketoreductase was purified more than 300-fold to > 95% homogeneity from whole cells with a 30% activity yield. The ketoreductase functions as a monomer with an apparent Km for 3,4-methylenedioxyphenyl acetone of 2.9 mM and a Km for NADPH of 23.5 microM. The enzyme is able to effectively reduce alpha-ketolactones, alpha-ketolactams, and diketones. Inhibition is observed in the presence of diethyl pyrocarbonate, suggesting that a histidine is crucial for catalysis. The 1.0-kb ketoreductase gene was cloned and sequenced from a Z. rouxii cDNA library using a degenerate primer to the N-terminal sequence of the purified protein. Furthermore, it was expressed in both Escherichia coli and Pichia pastoris and shown to be active. Substrate specificity, lack of a catalytic metal, and extent of protein sequence identity to known reductases suggests that the enzyme falls into the carbonyl reductase enzyme class.  相似文献   

9.
The Synechocystis PCC 6803 katG gene encodes a dual-functional catalase-peroxidase (EC 1.11.1.7). We have established a system for the high level expression of a fully active recombinant form of this enzyme. Its entire coding DNA was extended using a synthetic oligonucleotide encoding a hexa-histidine tag at the C-terminus and expressed in Escherichia coli [BL21-(DE3)pLysS] using the pET-3a vector. Hemin was added to the culture medium to ensure its proper association with KatG upon induction. The expressed protein was purified to homogeneity by two chromatography steps including a metal chelate affinity and hydrophobic interaction chromatography. The homodimeric acidic protein (pl = 5.4) had a molecular mass of 170 kDa and a Reinheitszahl (A406/A280) of 0.64. The recombinant protein contained high catalase activity (apparent Km = 4.9 +/- 0.25 mM and apparent kcat = 3500 s(-1)) and an appreciable peroxidase activity with o-dianisidine, guaiacol and pyrogallol, but not with NAD(P)H, ferrocytochrome c, ascorbate or glutathione as electron donors. By using both conventional and sequential stopped-flow spectroscopy, formation of compound I with peroxoacetic acid was calculated to be (8.74 +/- 0.26) x 10(3) M(-1) s(-1), whereas compound I reduction by o-dianisidine, pyrogallol and ascorbate was determined to be (2.71 +/- 0.03) x 10(6) M(-1) S(-1), (8.62 +/- 0.21) x 10(4) M(-1) S(-1), and (5.43 +/- 0.19) x 10(3) M(-1) S(-1), respectively. Cyanide binding studies on native and recombinant enzyme indicated that both have the same heme environment. An apparent second-order rate constant for cyanide binding of (4.8 +/- 0.1) x 10(5) M(-1) S(-1) was obtained.  相似文献   

10.
11.
Metabolism of adrenal androgens by human endometrium and adrenal cortex   总被引:1,自引:0,他引:1  
The enzyme 17 beta-hydroxysteroid dehydrogenase (17OHSD) was studied in human endometrium and adrenal cortex with respect to the metabolism of 5-androstene-3 beta,17 beta-diol (androstenediol) and dehydroepiandrosterone (DHA). The aim was to provide further information concerning the origin and biological significance of these androgens in endometrium, particularly the increased concentrations of the secretory phase and to compare the characteristics of the enzyme in the two tissues. In both endometrium and adrenal cortex the metabolism of androstenediol to DHA was linear with time and increasing enzyme concentration. The preferred cofactor was NAD and the apparent Km values were 3.4 +/- 0.2 (SD) microM (n = 3) for endometrium and 30.5 +/- 6.1 microM (n = 3) for adrenal cortex. In endometrium DHA was not metabolised to androstenediol in the presence of either NADH or NADPH whereas in the adrenal cortex both cofactors were utilised. However, the concentration of NADH required to achieve maximum enzyme activity was 10-fold higher (1 mM) than for NADPH (0.1 mM) and maximum activity with NADH was only 30% of that using NADPH. The apparent Km was 125 microM DHA (n = 2). The study indicates that androstenediol in endometrium does not arise from DHA metabolism but that its presence could be due to a binding protein particularly during the secretory phase. Our findings also suggest that the enzyme of endometrium differs from that of the adrenal cortex and that the kinetic properties may be related to the physiological requirements of the two tissues.  相似文献   

12.
A ferredoxin-NAD+ oxidoreductase (EC 1.18.1.3) has been isolated from extracts of the obligate methanotroph Methylosinus trichosporium OB3b. This enzyme was shown to couple electron flow from formate dehydrogenase (NAD+ requiring) to ferredoxin. Ferredoxin-NAD+ reductase was purified to homogeneity by conventional chromatography techniques and was shown to be a flavoprotein with a molecular weight of 36,000 +/- 1,000. This ferredoxin reductase was specific for NADH (Km, 125 microM) and coupled electron flow to the native ferredoxin and to ferredoxins from spinach, Clostridium pasteurianum, and Rhodospirillum rubrum (ferredoxin II). M. trichosporium ferredoxin saturated the ferredoxin-NAD+ reductase at a concentration 2 orders of magnitude lower (3 nM) than did spinach ferredoxin (0.4 microM). Ferredoxin-NAD+ reductase also had transhydrogenase activity which transferred electrons and protons from NADH to thionicotinamide adenine dinucleotide phosphate (Km, 9 microM) and from NADPH to 3-acetylpyridine adenine dinucleotide (Km, 16 microM). Reconstitution of a soluble electron transport pathway that coupled formate oxidation to ferredoxin reduction required formate dehydrogenase, NAD+, and ferredoxin-NAD+ reductase.  相似文献   

13.
1. Mitochondria isolated from the kidneys of rachitic pigs have been shown to contain an active 25-hydroxyvitamin D3-1 alpha-hydroxylase. From these mitochondria a cytochrome P-450 has been solubilized with a specific content of 0.02-0.04 nmol/mg protein. 2. In the presence of a bovine adrenal NADPH-ferredoxin reductase, bovine adrenal ferredoxin and NADPH, the cytochrome P-450 supported the formation of 1,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3. 3. The hydroxylation reaction was linear with time up to 40 min, and with the amount of enzyme up to 0.03 nmol cytochrome P-450. The pH optimum for the reaction was 7.4, and the apparent Km was 3 x 10(-10) mol/mg protein. 4. The results show that 25-hydroxyvitamin D3 is metabolized in mammals by the same enzyme system as has been demonstrated in birds.  相似文献   

14.
Ferredoxins found in animal mitochondria function in electron transfer from NADPH-dependent ferredoxin reductase (Fd-reductase) to cytochrome P450 enzymes. To identify residues involved in binding of human ferredoxin to its electron transfer partners, neutral amino acids were introduced in a highly conserved acidic region (positions 68-86) by site-directed mutagenesis of the cDNA. Mutant ferredoxins were produced in Escherichia coli, and separate assays were used to determine the effect of substitutions on the capacity of each mutant to bind to Fd-reductase and cytochrome P450scc and to participate in the cholesterol side chain cleavage reaction. Replacements at several positions (mutants D68A, E74Q, and D86A) did not significantly affect activity, suggesting that acidic residues at these positions are not required for binding or electron transfer interactions. In contrast, substitutions at positions 76 and 79 (D76N and D79A) caused dramatic decreases in activity and in the affinity of ferredoxin for both Fd-reductase and P450scc; this suggests that the binding sites on ferredoxin for its redox partners overlap. Other substitutions (mutants D72A, D72N, E73A, E73Q, and D79N), however, caused differential effects on binding to Fd-reductase and P450scc, suggesting that the interaction sites are not identical. We propose a model in which Fd-reductase and P450scc share a requirement for ferredoxin residues Asp-76 and Asp-79 but have other determinants that differ and play an important role in binding. This model is consistent with the hypothesis that ferredoxin functions as a mobile shuttle in steroidogenic electron transfer, and it is considered unlikely that a functional ternary complex is formed.  相似文献   

15.
A two-step affinity chromatography procedure, using 2',5'-ADP-agarose and adrenodoxin-Sepharose 4B affinity supports, was used to purify mitochondrial ferredoxin:NADP+ oxidoreductase (EC 1.18.1.2, formerly EC 1.6.7.1) from pig kidney. The 450:270 nm absorbance ratio of the enzyme was 0.128, and it had a specific activity of 16,305 nmol/min/mg for the reduction of cytochrome c. The mitochondrial enzyme was a monomer which contained one molecule of FAD and had calculated molecular masses of 51,500 and 48,000 daltons when determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high performance liquid chromatography gel exclusion chromatography, respectively. The porcine enzyme had a Km for NADPH of 0.94 microM and it expressed maximal activity when coupled with its homologous ferredoxin, although it was also active with the heterologous ferredoxin from bovine adrenal. The purified ferredoxin:NADP+ oxidoreductase supported the in vitro reduction of membrane-bound adrenal mitochondrial P-450, and it was demonstrated from immunologic studies that the enzyme shares some common epitopes with bovine adrenodoxin:NADP+ oxidoreductase.  相似文献   

16.
CPT (carnitine palmitoyltransferase) 1 and CPT2 regulate fatty acid oxidation. Recombinant rat CPT2 was isolated from the soluble fractions of bacterial extracts and expressed in Escherichia coli. The acyl-CoA chain-length-specificity of the recombinant CPT2 was identical with that of the purified enzyme from rat liver mitochondrial inner membranes. The Km for carnitine for both the mitochondrial preparation and the recombinant enzyme was identical. In isolated mitochondrial outer membranes, cardiolipin (diphosphatidylglycerol) increased CPT1 activity 4-fold and the Km for carnitine 6-fold. It decreased the Ki for malonyl-CoA inhibition 60-fold, but had no effect on the apparent Km for myristoyl-CoA. Cardiolipin also activated recombinant CPT2 almost 4-fold, whereas phosphatidylglycerol, phosphatidylserine and phosphatidylcholine activated the enzyme 3-, 2- and 2-fold respectively. Most of the recombinant CPT2 was found to have substantial interaction with cardiolipin. A model is proposed whereby cardiolipin may hold the fatty-acid-oxidizing enzymes in the active functional conformation between the mitochondrial inner and outer membranes in conjunction with the translocase and the acyl-CoA synthetase, thus combining all four enzymes into a functional unit.  相似文献   

17.
Sulfation, catalyzed by members of the sulfotransferase enzyme family, is a major metabolic pathway which modulates the biological activity of numerous endogenous and xenobiotic chemicals. A number of these enzymes have been expressed in prokaryotic and eukaryotic systems to produce protein for biochemical and physical characterization. However, the effective use of heterologous expression systems to produce recombinant enzymes for such purposes depends upon the expressed protein faithfully representing the "native" protein. For human sulfotransferases, little attention has been paid to this despite the widespread use of recombinant enzymes. Here we have validated a number of heterologous expression systems for producing the human dopamine-metabolizing sulfotransferase SULT1A3, including Escherichia coli, Saccharomyces cerevisiae, COS-7, and V79 cells, by comparison of Km values of the recombinant enzyme in cell extracts with enzyme present in human platelets and with recombinant enzyme purified to homogeneity following E. coli expression. This is the first report of heterologous expression of a cytosolic sulfotransferase in yeast. Expression of SULT1A3 was achieved in all cell types, and the Km for dopamine under the conditions applied was approximately 1 microM in all heterologous systems studied, which compared favorably with the value determined with human platelets. We also determined the subunit and native molecular weights of the purified recombinant enzyme by SDS-PAGE, electrospray ionization mass spectrometry, dynamic light scattering, and sedimentation analysis. The enzyme purified following expression in E. coli existed as a homodimer with Mr approximately 68,000 as determined by light scattering and sedimentation analysis. Mass spectrometry revealed two species with experimentally determined masses of 34,272 and 34,348 which correspond to the native protein with either one or two 2-mercaptoethanol adducts. We conclude that the enzyme expressed in prokaryotic and eukaryotic heterologous systems, and also purified from E. coli, equates to that which is found in human tissue preparations.  相似文献   

18.
The nuclear conversion of testosterone (T) to dihydrotestosterone (DHT) and androstenedione (delta 4A) to androstanedione (5 alpha-Adione) was compared in the separated stromal and epithelial fractions of hyperplastic (n = 6) and malignant (n = 3) prostatic tissues. Assay conditions were linear with respect to time and protein concentration and were optimal for NADPH concentration. The apparent Km values for the stromal enzymes were 0.2 and 0.02 microM for hyperplasia and carcinoma, respectively, using T as substrate. The apparent Km values, using delta 4A as substrate, were 0.03 and 0.02 microM, respectively. Apparent Vmax values for the stromal formation of DHT were 16.5 +/- 5.4 and 1.97 +/- 0.45 pmol/mg protein/30 min incubation, respectively, for the hyperplastic and malignant tissues. The apparent Vmax values for the formation of 5 alpha-Adione were 2.8 +/- 1.3 and 6.5 +/- 1.2 pmol/mg/protein/30 min incubation. The apparent Km values for the epithelial enzyme, for hyperplastic and malignant tissue were 0.04 and 0.04 microM, for T, and 0.05 and 0.03 microM for delta 4A. The respective apparent Vmax values were 4.6 +/- 0.93 and 0.65 +/- 0.07 for DHT and 2.0 +/- 0.86 and 6.4 +/- 0.45 pmol/mg protein/30 min incubation for 5 alpha-Adione. delta 4A was a competitive inhibitor of T 5 alpha-reduction. These results provide further evidence that different rates of 5 alpha-reduction at least partially explain the differences in androgen levels seen in the hyperplastic and the malignant prostate.  相似文献   

19.
NAD kinase was purified 93-fold from Escherichia coli. The enzyme was found to have a pH optimum of 7.2 and an apparent Km for NAD+, ATP, and Mg2+ of 1.9, 2.1, and 4.1 mM, respectively. Several compounds including quinolinic acid, nicotinic acid, nicotinamide, nicotinamide mononucleotide, AMP, ADP, and NADP+ did not affect NAD kinase activity. The enzyme was not affected by changes in the adenylate energy charge. In contrast, both NADH and NADPH were potent negative modulators of the enzyme, since their presence at micromolar concentrations resulted in a pronounced sigmoidal NAD+ saturation curve. In addition, the presence of a range of concentrations of the reduced nucleotides resulted in an increase of the Hill slope (nH) to 1.7 to 2.0 with NADH and to 1.8 to 2.1 with NADPH, suggesting that NAD kinase is an allosteric enzyme. These results indicate that NAD kinase activity is regulated by the availability of ATP, NAD+, and Mg2+ and, more significantly, by changes in the NADP+/NADPH and NAD+/NADH ratios. Thus, NAD kinase probably plays a role in the regulation of NADP turnover and pool size in E. coli.  相似文献   

20.
The 5alpha reductase activity ofthe monkey epididymis was studied. The enzyme was found in particulate subcellular fractions, its distribution closely resembling that of the microsomal marker enzyme NADPH: cytochrome c reductase, suggesting an association of 5alpha reductase with membranes of the endoplasmic reticulum. Maximal enzyme activity was found at pH 5.4 and at 32--37 C. The crude nuclear preparation had a Km: 0.315 x 10(-6)M and Vmax: 168 pmoles/mg protein/h. The microsomal enzyme had a Km: 0.243 x 10(-6)M and Vmax: 828 pmoles/mg protein/h. Neither enzyme preparation was affected by addition to the incubation media of dihydrotestosterone (DHT) or 5alpha-androstane-3alpha,17beta-diol. The endogenous androgen concentration in the epididymides of 2 different monkeys, in ng/g wet weight was: DHT 20.81 +/- 1.98; T: 9.0L +/- 2.83; diol: 3.03 +/- 0.41.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号