首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified specific GABAergic‐modulated behaviors in the juvenile stage of the fruit fly, Drosophila melanogaster via systemic treatment of second instar larvae with the potent GABA transport inhibitor DL‐2,4‐diaminobutyric acid (DABA). DABA significantly inhibited motor‐controlled body wall and mouth hook contractions and impaired rollover activity and contractile responses to touch stimulation. The perturbations in locomotion and rollover activity were reminiscent of corresponding DABA‐induced deficits in locomotion and the righting reflex observed in adult flies. The effects were specific to these motor‐controlled behaviors, because DABA‐treated larvae responded normally in olfaction and phototaxis assays. Recovery of these behaviors was achieved by cotreatment with the vertebrate GABAA receptor antagonist picrotoxin. Pharmacological studies performed in vitro with plasma membrane vesicles isolated from second instar larval tissues verified the presence of high‐affinity, saturable GABA uptake mechanisms. GABA uptake was also detected in plasma membrane vesicles isolated from behaviorally quiescent stages. Competitive inhibition studies of [3H]‐GABA uptake into plasma membrane vesicles from larval and pupal tissues with either unlabeled GABA or the transport inhibitors DABA, nipecotic acid, or valproic acid, revealed differences in affinities. GABAergic‐modulation of motor behaviors is thus conserved between the larval and adult stages of Drosophila, as well as in mammals and other vertebrate species. The pharmacological studies reveal shared conservation of GABA transport mechanisms between Drosophila and mammals, and implicate the involvement of GABA and GABA transporters in regulating physiological processes distinct from neurotransmission during behaviorally quiescent stages of development. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2004  相似文献   

2.
We have identified several GABAergic‐modulated behaviors in Drosophila melanogaster by employing a pharmacological approach to disrupt GABA transporter function in vivo. Systemic treatment of adult female flies with the GABA transport inhibitors DL ‐2,4‐diaminobutyric acid (DABA) or R,S‐nipecotic acid (NipA), resulted in diminished locomotor activity, deficits in geotaxis, and the induction of convulsive behaviors with a secondary loss of the righting reflex. Pharmacological evidence suggested that the observed behavioral phenotypes were specific to disruption of GABA transporter function and GABAergic activity. The effects of GABA reuptake inhibitors on locomotor activity were dose dependent, pharmacologically distinct, and paralleled their known effects in mammalian systems. Recovery of normal locomotor activity and the righting reflex in DABA‐ and NipA‐treated flies was achieved by coadministration of bicuculline (BIC), a GABA receptor antagonist that supresses GABAergic activity in mammals. Recovery of these behaviors was also achieved by coadministration of gabapentin, an anticonvulsant agent that interacts with mammalian GABAergic systems. Finally, behavioral effects were selective because other specific behaviors such as feeding activity and female sexual receptivity were not affected. Related pharmacological analyses performed in vitro on isolated Drosophila synaptic plasma membrane vesicles demonstrated high affinity, saturable uptake mechanisms for [3H]‐GABA; further competitive inhibition studies with DABA and NipA demonstrated their ability to inhibit [3H]‐GABA transport. The existence of experimentally accessible GABA transporters in Drosophila that share conserved pharmacological properties with their mammalian counterparts has resulted in the identification of specific behaviors that are modulated by GABA. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 245–261, 2002; DOI 10.1002/neu.10030  相似文献   

3.
We have identified several GABAergic-modulated behaviors in Drosophila melanogaster by employing a pharmacological approach to disrupt GABA transporter function in vivo. Systemic treatment of adult female flies with the GABA transport inhibitors DL-2,4-diaminobutyric acid (DABA) or R,S-nipecotic acid (NipA), resulted in diminished locomotor activity, deficits in geotaxis, and the induction of convulsive behaviors with a secondary loss of the righting reflex. Pharmacological evidence suggested that the observed behavioral phenotypes were specific to disruption of GABA transporter function and GABAergic activity. The effects of GABA reuptake inhibitors on locomotor activity were dose dependent, pharmacologically distinct, and paralleled their known effects in mammalian systems. Recovery of normal locomotor activity and the righting reflex in DABA- and NipA-treated flies was achieved by coadministration of bicuculline (BIC), a GABA receptor antagonist that supresses GABAergic activity in mammals. Recovery of these behaviors was also achieved by coadministration of gabapentin, an anticonvulsant agent that interacts with mammalian GABAergic systems. Finally, behavioral effects were selective because other specific behaviors such as feeding activity and female sexual receptivity were not affected. Related pharmacological analyses performed in vitro on isolated Drosophila synaptic plasma membrane vesicles demonstrated high affinity, saturable uptake mechanisms for [3H]-GABA; further competitive inhibition studies with DABA and NipA demonstrated their ability to inhibit [3H]-GABA transport. The existence of experimentally accessible GABA transporters in Drosophila that share conserved pharmacological properties with their mammalian counterparts has resulted in the identification of specific behaviors that are modulated by GABA.  相似文献   

4.
We extend the numerical algorithm developed by Wang et al. (2003. J. Theor. Biol. 221, 491-511) for studying biomolecular transport processes to include the linkage that connects molecular motors to their cargo. The new algorithm is used to investigate how the stiffness of the linkage affects the average velocity, effective diffusion coefficient, and randomness parameter. Three different models for molecular motors are considered: (1) a discrete stepping motor (2) a motor moving in a tilted-periodic potential and (3) a motor driven by a flashing potential. We demonstrate that a flexible motor-cargo linkage can make inferences on motor behavior based on measurements of the cargo's position difficult. We also show that even for the case of a tilted-periodic potential there exists an optimal stiffness of the linkage at which transport is maximized. The MATLAB code used in this paper is available at: http://www.unc.edu/approximatelytelston/code/.  相似文献   

5.
《Current biology : CB》2022,32(9):1895-1908.e5
  1. Download : Download high-res image (141KB)
  2. Download : Download full-size image
  相似文献   

6.
While the proposal that γ-aminobutyric acid (GABA) acts a signal in plants is decades old, a signaling mode of action for plant GABA has been unveiled only relatively recently. Here, we review the recent research that demonstrates how GABA regulates anion transport through aluminum-activated malate transporters (ALMTs) and speculation that GABA also targets other proteins. The ALMT family of anion channels modulates multiple physiological processes in plants, with many members still to be characterized, opening up the possibility that GABA has broad regulatory roles in plants. We focus on the role of GABA in regulating pollen tube growth and stomatal pore aperture, and we speculate on its role in long-distance signaling and how it might be involved in cross talk with hormonal signals. We show that in barley (Hordeum vulgare), guard cell opening is regulated by GABA, as it is in Arabidopsis (Arabidopsis thaliana), to regulate water use efficiency, which impacts drought tolerance. We also discuss the links between glutamate and GABA in generating signals in plants, particularly related to pollen tube growth, wounding, and long-distance electrical signaling, and explore potential interactions of GABA signals with hormones, such as abscisic acid, jasmonic acid, and ethylene. We conclude by postulating that GABA encodes a signal that links plant primary metabolism to physiological status to fine tune plant responses to the environment.

γ-Aminobutyric acid (GABA) encodes a plant signal that links primary metabolism to physiological status to fine tune plant responses to the environment.  相似文献   

7.
Molecular evidence for the role of a ferric reductase in iron transport   总被引:1,自引:0,他引:1  
Duodenal cytochrome b (Dcytb) is a haem protein similar to the cytochrome b561 protein family. Dcytb is highly expressed in duodenal brush-border membrane and is implicated in dietary iron absorption by reducing dietary ferric iron to the ferrous form for transport via Nramp2/DCT1 (divalent-cation transporter 1)/DMT1 (divalent metal-transporter 1). The protein is expressed in other tissues and may account for ferric reductase activity at other sites in the body.  相似文献   

8.
Two alleles of the HG1 gene, which encodes a putative GABA receptor alpha/gamma subunit, were isolated from Haemonchus contortus. These two alleles were shown previously to be associated with ivermectin susceptibility (HG1A) and resistance (HG1E), respectively. Sequence analysis indicates that they differ in four amino acids. To explore the functional properties of the two alleles, a full-length cDNA encoding the beta subunit, a key functional component of the GABA receptor, was isolated from Caenorhabditis elegans (gab-1, corresponding to the GenBank locus ZC482.1) and coexpressed in Xenopus oocytes with the HG1 alleles. When gab-1 was coexpressed with either the HG1A allele or the HG1E allele in Xenopus oocytes, gamma-aminobutyric acid (GABA)-responsive channels with different sensitivity to the agonist were formed. The effects of ivermectin on the hetero-oligomeric receptors were determined. Application of ivermectin alone had no effect on the receptors. However, when coapplied with 10 micro m GABA, ivermectin potentiated the GABA-evoked current of the GAB-1/HG1A receptor, but attenuated the GABA response of the GAB-1/HG1E receptor. We demonstrated that the coexpressed HG1 and GAB-1 receptors are GABA-responsive, and provide evidence for the possible involvement of GABA receptors in the mechanism of ivermectin resistance.  相似文献   

9.
The role of glutamine and alanine transport in the recycling of neurotransmitter glutamate was investigated in Guinea pig brain cortical tissue slices and prisms, and in cultured neuroblastoma and astrocyte cell lines. The ability of exogenous (2 mm) glutamine to displace 13C label supplied as [3-13C]pyruvate, [2-13C]acetate, l-[3-13C]lactate, or d-[1-13C]glucose was investigated using NMR spectroscopy. Glutamine transport was inhibited in slices under quiescent or depolarising conditions using histidine, which shares most transport routes with glutamine, or 2-(methylamino)isobutyric acid (MeAIB), a specific inhibitor of the neuronal system A. Glutamine mainly entered a large, slow turnover pool, probably located in neurons, which did not interact with the glutamate/glutamine neurotransmitter cycle. This uptake was inhibited by MeAIB. When [1-13C]glucose was used as substrate, glutamate/glutamine cycle turnover was inhibited by histidine but not MeAIB, suggesting that neuronal system A may not play a prominent role in neurotransmitter cycling. When transport was blocked by histidine under depolarising conditions, neurotransmitter pools were depleted, showing that glutamine transport is essential for maintenance of glutamate, GABA and alanine pools. Alanine labelling and release were decreased by histidine, showing that alanine was released from neurons and returned to astrocytes. The resultant implications for metabolic compartmentation and regulation of metabolism by transport processes are discussed.  相似文献   

10.
Receptor tyrosine kinases (RTKs) and their ligands are important components of the signalling pathways by which cells interact. This review summarizes a growing body of genetic evidence showing that many developmentally important mutations in Drosophila and the mouse are in the genes that encode RTKs or their ligands, indicating that these molecules play central roles during both invertebrate and vertebrate development.  相似文献   

11.
Lipophorin was isolated from homogenized adult Drosophila melanogaster. It is stained by Sudan Black and has a native molecular mass of 640 kD and a density of 1.12 g/ml. It consists of two glycosylated apoproteins of 240 and 75 kDa. Gas chromatography and mass spectrometry showed that lipophorins isolated separately from virgin 3-day-old male and female flies were associated with specific hydrocarbons, and that these were the same hydrocarbons found in male and female cuticles, respectively. Moreover, a pool of internal hydrocarbons was demonstrated for the first time, with chain lengths similar to those of the cuticular pool. Studies on the fate of the hydrocarbons synthesized de novo after topical applications of radiolabelled fatty acid precursors showed a decrease of the internal pool of hydrocarbons with time, concomitant with an increase of the cuticular pool. These results suggest that hydrocarbons synthesized at an internal site, possibly in oenocytes, may be transported to the cuticle of the flies by lipophorin. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Effects of sodium valproate, which is believed to act via a gamma-aminobutyric acid mechanism, on basal and exercise-induced rise of growth hormone release have been tested in eighteen healthy volunteers. The exercise test consisted of using a stationary bicycle ergometer at 450 kg/min for 20 min. 600 mg per os of the drug resulted in a significant enhancement in plasma hormonal concentrations, whereas no effects were induced by placebo (p less than 0.005). Conversely, the growth hormone rise stimulated by exercise was markedly inhibited by sodium valproate (p less than 0.001 and p less than 0.01 at time 20, 40 and 60 min respectively). The results of this study are consistent with the hypothesis that a dual GABAergic control of growth hormone secretion is present in man.  相似文献   

13.
Parkin is an ubiquitin‐protein ligase (E3), mutations of which cause juvenile onset – autosomal recessive Parkinson's disease, and result in reduced enzymic activity. In contrast, increased levels are protective against mitochondrial dysfunction and neurodegeneration, the mechanism of which is largely unknown. In this study, 2‐DE and MS proteomic techniques were utilised to investigate the effects of increased Parkin levels on protein expression in whole cell lysates using in an inducible Parkin expression system in HEK293 cells, and also to isolate potential interactants of Parkin using tandem affinity purification and MS. Nine proteins were significantly differentially expressed (±2‐fold change; p<0.05) using 2‐DE analysis. MS revealed the identity of these proteins to be ACAT2, HNRNPK, HSPD1, PGK1, PRDX6, VCL, VIM, TPI1, and IMPDH2. The first seven of these were reduced in expression. Western blot analysis confirmed the reduction in one of these proteins (HNRNPK), and that its levels were dependent on 26S proteasomal activity. Tandem affinity purification/MS revealed 14 potential interactants of Parkin; CKB, DBT, HSPD1, HSPA9, LRPPRC, NDUFS2, PRDX6, SLC25A5, TPI1, UCHL1, UQCRC1, VCL, YWHAZ, YWHAE. Nine of these are directly involved in mitochondrial energy metabolism and glycolysis; four were also identified in the 2‐DE study (HSP60, PRDX6, TPI1, and VCL). This study provides further evidence for a role for Parkin in regulating mitochondrial activity within cells.  相似文献   

14.
15.
The unique architecture of neurons requires the establishment and maintenance of polarity, which relies in part on microtubule-based transport to deliver essential cargo into dendrites. To test different models of differential motor protein regulation and to understand how different compartments in neurons are supplied with necessary functional proteins, we studied mechanisms of dendritic transport, using Drosophila as a model system. Our data suggest that dendritic targeting systems in Drosophila and mammals are evolutionarily conserved, since mammalian cargoes are moved into appropriate domains in Drosophila. In a genetic screen for mutants that mislocalize the dendritic marker human transferrin receptor (hTfR), we found that kinesin heavy chain (KHC) may function as a dendritic motor. Our analysis of dendritic and axonal phenotypes of KHC loss-of-function clones revealed a role for KHC in maintaining polarity of neurons, as well as ensuring proper axonal outgrowth. In addition we identified adenomatous polyposis coli 1 (APC1) as an interaction partner of KHC in controlling directed transport and modulating kinesin function in neurons.  相似文献   

16.
GABA (gamma-aminobutyric acid) type A receptors (GABA(A)Rs) mediate most fast synaptic inhibition in the mammalian brain, controlling activity at both the network and the cellular levels. The diverse functions of GABA in the CNS are matched not just by the heterogeneity of GABA(A)Rs, but also by the complex trafficking mechanisms and protein-protein interactions that generate and maintain an appropriate receptor cell-surface localization. In this Review, we discuss recent progress in our understanding of the dynamic regulation of GABA(A)R composition, trafficking to and from the neuronal surface, and lateral movement of receptors between synaptic and extrasynaptic locations. Finally, we highlight a number of neurological disorders, including epilepsy and schizophrenia, in which alterations in GABA(A)R trafficking occur.  相似文献   

17.
Kinetics of CO binding to human hemoglobin (Hb) has been followed below neutrality. With respect to the behavior observed at pH 7.0, CO binding to deoxy-Hb at pH 2.3 displays a much faster second-order combination rate constant (1.2 x 10(-7) M-1 s-1) and loss of the autocatalytic character of the kinetic progress curve. The spectroscopic features of the transient deoxy-Hb at pH 2.75 indicate the phenomenon to be related to the cleavage of the proximal histidine N epsilon-Fe bond, as reported for monomeric hemoproteins (Coletta, M., Ascenzi, P., Traylor, T. G., and Brunori, M. (1985) J. Biol. Chem. 260, 4151-4155). The faster CO binding rate constant, higher than that characteristic of the R state, cannot be attributed to either (i) an enhanced dimerization of deoxy-Hb at low pH, or (ii) a quaternary switch of the unliganded form to the R0 state. The data indicate that interaction(s) of the heme on the proximal side is crucial in accounting for the difference in the CO binding rate constant between the two quaternary conformations of hemoglobin.  相似文献   

18.
19.
Bayer S  Jellali A  Crenner F  Aunis D  Angel F 《Life sciences》2003,72(13):1481-1493
In the enteric nervous system, activation of neuronal GABA(A)- and GABA(B)-receptors has been shown to modulate neuronal activity. The consequences of this modulation depend on the location in the gastrointestinal tract or the animal species studied. These data illustrate the complexity of GABA-induced effects. Furthermore, the GABA(C)-receptor has been identified in a neuroendocrine cell line suggesting a modulating role of this third type of GABA receptor in intestinal functions. Therefore, the modulating role of GABA-receptor agonists was determined in circular preparations of rat distal colon during electrical nerve stimulation (NS) in vitro. Mechanical response to NS was characterized by a relaxation followed at the end of the stimulation by an off-contraction. In normal Krebs solution (basal conditions), muscimol and baclofen, respectively GABA(A)- and GABA(B)-agonists, induced a significant increase of the electrically induced off-contraction. The GABA(C) agonist, CACA, showed no significant effect on the response to NS. Excitatory effects of muscimol on the off-contraction were abolished in the presence of atropine. Furthermore, in the presence of atropine, muscimol increased the amplitude of the electrically induced relaxation; similarly the baclofen-induced increase of off-contraction amplitude was significantly lower than that observed in control conditions. Baclofen and muscimol effects on the off-contraction were abolished in the presence of hexamethonium or guanethidine. Furthermore, muscimol and baclofen did not induce any significant change on the response to NS in the presence of L-NAME and apamin together. Thus, it seems that in rat distal colon, GABA regulates significantly both excitatory (through GABA(A)- and GABA(B)-receptors) and inhibitory (through GABA(A)-receptors) neuronal activities. We also gave evidence for a possible interplay between GABAergic intrinsic neurons and adrenergic nerve terminals. Finally, it is shown for the first time the presence of the GABA vesicular transporter (VIAAT) around myenteric ganglia of rat colon.  相似文献   

20.
We wished to examine the effects of diabetes on muscle glutamine kinetics. Accordingly, female Wistar rats (200 g) were made diabetic by a single injection of streptozotocin (85 mg/kg) and studied 4 days later; control rats received saline. In diabetic rats, glutamine concentration of gastrocnemius muscle was 33% less than in control rats: 2.60 ± 0.06 μmol/g vs. 3.84 ± 0.13 μmol/g (P < 0.001). In gastrocnemius muscle, glutamine synthetase activity (Vmax) was unaltered by diabetes (approx. 235 nmol/min per g) but glutaminase Vmax increased from 146 ± 29 to 401 ± 94 nmol/min per g; substrate Km values of neither enzyme were affected by diabetes. Net glutamine efflux (AZ concentration difference × blood flow) from hindlimbs of diabetic rats in vivo was greater than control values (?30.0 ± 3.2 vs. ?1.9 ± 2.6 nmol/min per g (P < 0.001) and hindlimb NH3 uptake was concomitantly greater (about 27 nmol/min per g). The glutamine transport capacity (Vmax) of the Na-dependent System Nm in perfused hindlimb muscle was 29% lower in diabetic rats than in controls (820 ± 50 vs. 1160 ± 80 nmol/min per g (P < 0.01)), but transporter Km was the same in both groups (9.2 ± 0.5 nM). The difference between inward and net glutamine fluxes indicated that glutamine efflux in perfused hindlimbs was stimulated in diabetes at physiological perfusate glutamine (0.5 mM); ammonia (1 mM in perfusate) had little effect on net glutamine flux in control and diabetic muscles. In Intramuscular Na+ was 26% greater in diabetic (13.2 μmol/g) than control muscle, but muscle K+ (100 μmol/g) was similar. The accelerated rate of glutamine release from skeletal muscle and the lower muscle free glutamine concentration observed in diabetes may result from a combination of; (i), a diminished Na+ electrochemical gradient (i.e., the net driving force for glutamine accrual in muscle falls); (ii), a faster turnover of glutamine in muscle and (iii), an increased Vmax/Km for sarcolemmal glutamine efflux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号